Abstract

In this article, a novel method of holographic imaging with Au nanoantenna array is presented. In order to obtain the plasmonic holographic plate for a preset letter “NANO”, the phase distribution of the hologram is firstly generated by the weighted Gerchberg-Saxton (GSW) algorithm, and then 16 kinds of V-shaped nanoantennas with different geometric parameters are designed to evenly cover the phase shift of 0 to 2π by finite-difference time-domain (FDTD) method. Through orienting these nanoantennas according to the phase distribution of the hologram, the plasmonic array hologram is obtained. Very good imaging quality is observed with our nanoantenna array hologram plate. This method can be used for holographic imaging of arbitrary shape, and may find potential applications in holographic memory, printing and holographic display.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
    [CrossRef] [PubMed]
  3. F. J. G. de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
    [CrossRef]
  4. B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quant. Electron.34, 47–87 (2010).
    [CrossRef]
  5. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
    [CrossRef] [PubMed]
  6. P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nature Commun.3, 1278 (2012).
    [CrossRef]
  7. I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett.109, 203903 (2012).
    [CrossRef] [PubMed]
  8. N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
    [CrossRef] [PubMed]
  9. F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
    [CrossRef] [PubMed]
  10. P. Y. Chen and A. Alu, “Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays,” Nano Lett.11, 5514–5518 (2011).
    [CrossRef] [PubMed]
  11. M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science332, 218–220 (2011).
    [CrossRef] [PubMed]
  12. M. C. King, A. M. Noll, and D. H. Berry, “A new approach to computer-generated holography,” Appl. Opt.9, 471–475 (1970).
    [CrossRef] [PubMed]
  13. B. K. Jennison, J. P. Allebach, and D. W. Sweeney, “Iterative approaches to computer-generated holography,” Opt. Eng.28, 629–637 (1989).
    [CrossRef]
  14. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express14, 603–608 (2006).
    [CrossRef] [PubMed]
  15. Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light Sci. Appl.1, e26 (2012).
    [CrossRef]
  16. R. W. Gerchber and W. O. Saxton, “A Practical algorithm for determination of phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).
  17. L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun.281, 1217–1221 (2008).
    [CrossRef]
  18. N. Yoshikawa and T. Yatagai, “Phase optimization of a kinoform by simulated annealing,” Appl. Opt.33, 863–868 (1994).
    [CrossRef] [PubMed]
  19. R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15, 1913–1922 (2007).
    [CrossRef] [PubMed]
  20. M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge ; New York, 1999), 7th ed.
  21. A. Taflove and S. C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method, Artech House antennas and propagation library (Artech House, Boston, 2005), 3rd ed.

2012

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nature Commun.3, 1278 (2012).
[CrossRef]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett.109, 203903 (2012).
[CrossRef] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light Sci. Appl.1, e26 (2012).
[CrossRef]

2011

P. Y. Chen and A. Alu, “Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays,” Nano Lett.11, 5514–5518 (2011).
[CrossRef] [PubMed]

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science332, 218–220 (2011).
[CrossRef] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

2010

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quant. Electron.34, 47–87 (2010).
[CrossRef]

2008

L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun.281, 1217–1221 (2008).
[CrossRef]

2007

F. J. G. de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15, 1913–1922 (2007).
[CrossRef] [PubMed]

2006

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

2002

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

1994

1989

B. K. Jennison, J. P. Allebach, and D. W. Sweeney, “Iterative approaches to computer-generated holography,” Opt. Eng.28, 629–637 (1989).
[CrossRef]

1972

R. W. Gerchber and W. O. Saxton, “A Practical algorithm for determination of phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).

1970

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Allebach, J. P.

B. K. Jennison, J. P. Allebach, and D. W. Sweeney, “Iterative approaches to computer-generated holography,” Opt. Eng.28, 629–637 (1989).
[CrossRef]

Alu, A.

P. Y. Chen and A. Alu, “Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays,” Nano Lett.11, 5514–5518 (2011).
[CrossRef] [PubMed]

Arie, A.

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett.109, 203903 (2012).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Berry, D. H.

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

Born, M.

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge ; New York, 1999), 7th ed.

Capasso, F.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nature Commun.3, 1278 (2012).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Chen, P. Y.

P. Y. Chen and A. Alu, “Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays,” Nano Lett.11, 5514–5518 (2011).
[CrossRef] [PubMed]

Chen, Y. H.

Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light Sci. Appl.1, e26 (2012).
[CrossRef]

Courtial, J.

L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun.281, 1217–1221 (2008).
[CrossRef]

de Abajo, F. J. G.

F. J. G. de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Dolev, I.

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett.109, 203903 (2012).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Epstein, I.

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett.109, 203903 (2012).
[CrossRef] [PubMed]

Gaburro, Z.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Gahurro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

Gan, L.

Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light Sci. Appl.1, e26 (2012).
[CrossRef]

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nature Commun.3, 1278 (2012).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Gerchber, R. W.

R. W. Gerchber and W. O. Saxton, “A Practical algorithm for determination of phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method, Artech House antennas and propagation library (Artech House, Boston, 2005), 3rd ed.

Huang, L.

Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light Sci. Appl.1, e26 (2012).
[CrossRef]

Ianni, F.

Ito, T.

Jennison, B. K.

B. K. Jennison, J. P. Allebach, and D. W. Sweeney, “Iterative approaches to computer-generated holography,” Opt. Eng.28, 629–637 (1989).
[CrossRef]

Kato, J.

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science332, 218–220 (2011).
[CrossRef] [PubMed]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nature Commun.3, 1278 (2012).
[CrossRef]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Kawata, S.

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science332, 218–220 (2011).
[CrossRef] [PubMed]

Kim, H.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quant. Electron.34, 47–87 (2010).
[CrossRef]

Kim, S.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quant. Electron.34, 47–87 (2010).
[CrossRef]

King, M. C.

Lee, B.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quant. Electron.34, 47–87 (2010).
[CrossRef]

Leonardo, R. D.

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Li, Z. Y.

Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light Sci. Appl.1, e26 (2012).
[CrossRef]

Lim, Y.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quant. Electron.34, 47–87 (2010).
[CrossRef]

Lin, J.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nature Commun.3, 1278 (2012).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

Masuda, N.

Noll, A. M.

Ozaki, M.

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science332, 218–220 (2011).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
[CrossRef] [PubMed]

Ruocco, G.

Saxton, W. O.

R. W. Gerchber and W. O. Saxton, “A Practical algorithm for determination of phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).

Shiraki, A.

Sugie, T.

Sweeney, D. W.

B. K. Jennison, J. P. Allebach, and D. W. Sweeney, “Iterative approaches to computer-generated holography,” Opt. Eng.28, 629–637 (1989).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method, Artech House antennas and propagation library (Artech House, Boston, 2005), 3rd ed.

Tanaka, T.

Tetienne, J. P.

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Thomson, L. C.

L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun.281, 1217–1221 (2008).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge ; New York, 1999), 7th ed.

Yatagai, T.

Yoshikawa, N.

Yu, N. F.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

Appl. Opt.

Light Sci. Appl.

Y. H. Chen, L. Huang, L. Gan, and Z. Y. Li, “Wavefront shaping of infrared light through a subwavelength hole,” Light Sci. Appl.1, e26 (2012).
[CrossRef]

Nano Lett.

F. Aieta, P. Genevet, M. A. Kats, N. F. Yu, R. Blanchard, Z. Gahurro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12, 4932–4936 (2012).
[CrossRef] [PubMed]

P. Y. Chen and A. Alu, “Subwavelength imaging using phase-conjugating nonlinear nanoantenna arrays,” Nano Lett.11, 5514–5518 (2011).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Nature Commun.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nature Commun.3, 1278 (2012).
[CrossRef]

Opt. Commun.

L. C. Thomson and J. Courtial, “Holographic shaping of generalized self-reconstructing light beams,” Opt. Commun.281, 1217–1221 (2008).
[CrossRef]

Opt. Eng.

B. K. Jennison, J. P. Allebach, and D. W. Sweeney, “Iterative approaches to computer-generated holography,” Opt. Eng.28, 629–637 (1989).
[CrossRef]

Opt. Express

Optik

R. W. Gerchber and W. O. Saxton, “A Practical algorithm for determination of phase from image and diffraction plane pictures,” Optik35, 237–246 (1972).

Phys. Rev. Lett.

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett.109, 203903 (2012).
[CrossRef] [PubMed]

Prog. Quant. Electron.

B. Lee, S. Kim, H. Kim, and Y. Lim, “The use of plasmonics in light beaming and focusing,” Prog. Quant. Electron.34, 47–87 (2010).
[CrossRef]

Rev. Mod. Phys.

F. J. G. de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

Science

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297, 820–822 (2002).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
[CrossRef] [PubMed]

N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science334, 333–337 (2011).
[CrossRef] [PubMed]

M. Ozaki, J. Kato, and S. Kawata, “Surface-plasmon holography with white-light illumination,” Science332, 218–220 (2011).
[CrossRef] [PubMed]

Other

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge ; New York, 1999), 7th ed.

A. Taflove and S. C. Hagness, Computational Electrodynamics : The Finite-Difference Time-Domain Method, Artech House antennas and propagation library (Artech House, Boston, 2005), 3rd ed.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The 400 × 400 hologram for the preset shape “NANO”; (b) The Fraunhofer diffraction pattern of the hologram shown in Fig. 1(a).

Fig. 2
Fig. 2

The efficiency and RSD of the holographic imaging when adapting different phase shift levels. The dashed lines are the efficiency (black) and the RSD (red) for continuous phase shifts.

Fig. 3
Fig. 3

(a) Scheme of the simulation to get the phase shifts for nanoantennas with different geometric parameters. The nanoantennas are placed on a Si substrate, and the angle between the symmetric axis of each nanoantenna and x-axis is 45°. The incidence is x-polarized, and the y-component of the scattered electric field is recorded. (b) The phase shifts and amplitudes of the scattered electric field for nanoantenna #1 to #16.

Fig. 4
Fig. 4

(a) The 40 × 40 hologram, and the part of the corresponding nanoantenna array; (b) The Fraunhofer diffraction pattern of the hologram shown in (a); (c) The simulation scheme; (d) The intensity distribution in the focal plane simulated by FDTD technique.

Tables (1)

Tables Icon

Table 1 The arm lengths and angles for the 16 nanoantennas. The arm widths of all nanoantennas are 50 nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

φ j ( k ) = arg { m w m ( k ) exp ( i ( Δ j m + θ m ( k ) ) ) } ,
V m ( k ) = j = 1 N exp ( i ( φ j ( k ) Δ j m ) ) .
θ m ( k + 1 ) = arg ( V m ( k ) )
w m ( k + 1 ) = w m ( k 1 ) | V m ( k ) | / | V m ( k ) |
e = m I m / I 0
R S D = ( I m I ) 2 / I
x = f tan ( θ ) cos ( φ ) y = f tan ( θ ) sin ( φ ) .

Metrics