Abstract

Blue-phase liquid crystal (BPLC) is introduced into the pores of capillary arrays to fabricate fiber arrays. Owing to the photonic-crystals like properties of BPLC, these fiber arrays exhibit temperature dependent photonic bandgaps in the visible spectrum. With the cores maintained in isotropic as well as the Blue phases, the fiber arrays allow high quality image transmission when inserted in the focal plane of a 1x telescope. Nonlinear transmission and optical limiting action on a cw white-light continuum laser is also observed and is attributed to laser induced self-defocusing and propagation modes changing effects caused by some finite absorption of the broadband laser at the short wavelength regime. These nonlinear and other known electro-optical properties of BPLC, in conjunction with their fabrication ease make these fiber arrays highly promising for imaging, electro-optical or all-optical modulation, switching and passive optical limiting applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989).
  2. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  3. A. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express10(23), 1320–1333 (2002).
    [CrossRef] [PubMed]
  4. H. S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, “Effect of chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics54(1), 568–575 (1996).
    [CrossRef] [PubMed]
  5. I. C. Khoo and H. Li, “Nonlinear optical propagation and self-limiting effect in liquid-crystalline fibers,” Appl. Phys. B59(6), 573–580 (1994).
    [CrossRef]
  6. A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett.97(9), 093302 (2010).
    [CrossRef]
  7. G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett.94(6), 063903 (2005).
    [CrossRef] [PubMed]
  8. J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
    [CrossRef]
  9. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express11(20), 2589–2596 (2003).
    [CrossRef] [PubMed]
  10. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett.85(12), 2181–2183 (2004).
    [CrossRef]
  11. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express12(24), 5857–5871 (2004).
    [CrossRef] [PubMed]
  12. L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express13(19), 7483–7496 (2005).
    [CrossRef] [PubMed]
  13. V. K. S. Hsiao and C.-Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express16(17), 12670–12676 (2008).
    [CrossRef] [PubMed]
  14. A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express16(23), 19375–19381 (2008).
    [CrossRef] [PubMed]
  15. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett.33(19), 2215–2217 (2008).
    [CrossRef] [PubMed]
  16. W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009).
    [CrossRef] [PubMed]
  17. C. H. Chen, C. H. Lee, and T. H. Lin, “Loss-reduced photonic liquid-crystal fiber by using photoalignment method,” Appl. Opt.49(26), 4846–4850 (2010).
    [CrossRef] [PubMed]
  18. L. Scolari, L. Wei, S. Gauza, S.-T. Wu, and A. Bjarklev, “Low loss liquid crystal photonic bandgap fiber in the near-infrared region,” Opt. Rev.18(1), 114–116 (2011).
    [CrossRef]
  19. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
    [CrossRef] [PubMed]
  20. H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
    [CrossRef] [PubMed]
  21. R. M. Hornreich, S. Shtrikman, and C. Sommers, “Photonic bands in simple and body-centered-cubic cholesteric blue phases,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics47(3), 2067–2072 (1993).
    [CrossRef] [PubMed]
  22. C. T. Wang, H. C. Jau, and T. H. Lin, “Bistable cholesteric-blue phase liquid crystal using thermal hysteresis,” Opt. Mater.34(1), 248–250 (2011).
    [CrossRef]
  23. C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express20(21), 23978–23984 (2012).
    [CrossRef] [PubMed]
  24. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: Novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007).
    [CrossRef]
  25. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008).
    [CrossRef]
  26. H.-K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B104(30), 7023–7028 (2000).
    [CrossRef]
  27. Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. (Deerfield Beach Fla.)17(1), 96–98 (2005).
    [CrossRef]
  28. Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Modeling of blue phase liquid crystal displays,” J. Display Technol.5(7), 250–256 (2009).
    [CrossRef]
  29. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett.94(10), 101104 (2009).
    [CrossRef]
  30. I. C. Khoo and T. H. Lin, “Nonlinear optical grating diffraction in dye-doped blue-phase liquid crystals,” Opt. Lett.37(15), 3225–3227 (2012).
    [CrossRef] [PubMed]
  31. I. C. Khoo and R. Normandin, “The mechanism and dynamics of transient thermal grating diffraction in nematic liquid crystal films,” IEEE J. Quantum Electron.21(4), 329–335 (1985).
    [CrossRef]
  32. I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley InterScience, 2007).
  33. I. C. Khoo, “Nonlinear organic liquid cored fiber array for all- optical switching and sensor protection against short pulsed lasers,” IEEE J. Sel. Top. Quantum Electron.14(3), 946–951 (2008) (and references therein).
    [CrossRef]
  34. H. J. Eichler, R. Macdonald, and B. Trosken, “Multi-photon excitation and relaxation of thermal gratings in the nematic liquid crystal 5CB,” Molecular Cryst. Liquid Cryst. Sci. Technol.231(1), 1–10 (1993).
    [CrossRef]
  35. I. C. Khoo and A. Diaz, “Multipe-time-scales dynamical studies of nonlinear transmission of pulsed lasers in a multi-photon absorbing organic material,” J. Opt. Soc. Am. B28(7), 1702–1710 (2011).
    [CrossRef]
  36. See for example,I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm-1.55 μm) lasers with dye-doped nematic liquid crystals,” Molecular Cryst. Liquid Cryst. Sci. Technol.527, 109–118 (2010); and references therein.
  37. I. C. Khoo, “Extreme nonlinear optics of nematic liquid crystals,” J. Opt. Soc. Am. B28(12), A45–A55 (2011).
    [CrossRef]

2012 (2)

2011 (5)

I. C. Khoo and A. Diaz, “Multipe-time-scales dynamical studies of nonlinear transmission of pulsed lasers in a multi-photon absorbing organic material,” J. Opt. Soc. Am. B28(7), 1702–1710 (2011).
[CrossRef]

I. C. Khoo, “Extreme nonlinear optics of nematic liquid crystals,” J. Opt. Soc. Am. B28(12), A45–A55 (2011).
[CrossRef]

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

L. Scolari, L. Wei, S. Gauza, S.-T. Wu, and A. Bjarklev, “Low loss liquid crystal photonic bandgap fiber in the near-infrared region,” Opt. Rev.18(1), 114–116 (2011).
[CrossRef]

C. T. Wang, H. C. Jau, and T. H. Lin, “Bistable cholesteric-blue phase liquid crystal using thermal hysteresis,” Opt. Mater.34(1), 248–250 (2011).
[CrossRef]

2010 (3)

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett.97(9), 093302 (2010).
[CrossRef]

See for example,I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm-1.55 μm) lasers with dye-doped nematic liquid crystals,” Molecular Cryst. Liquid Cryst. Sci. Technol.527, 109–118 (2010); and references therein.

C. H. Chen, C. H. Lee, and T. H. Lin, “Loss-reduced photonic liquid-crystal fiber by using photoalignment method,” Appl. Opt.49(26), 4846–4850 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (5)

2007 (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: Novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007).
[CrossRef]

2005 (4)

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. (Deerfield Beach Fla.)17(1), 96–98 (2005).
[CrossRef]

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett.94(6), 063903 (2005).
[CrossRef] [PubMed]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (2)

2002 (2)

A. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express10(23), 1320–1333 (2002).
[CrossRef] [PubMed]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

2000 (1)

H.-K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B104(30), 7023–7028 (2000).
[CrossRef]

1996 (1)

H. S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, “Effect of chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics54(1), 568–575 (1996).
[CrossRef] [PubMed]

1994 (1)

I. C. Khoo and H. Li, “Nonlinear optical propagation and self-limiting effect in liquid-crystalline fibers,” Appl. Phys. B59(6), 573–580 (1994).
[CrossRef]

1993 (2)

R. M. Hornreich, S. Shtrikman, and C. Sommers, “Photonic bands in simple and body-centered-cubic cholesteric blue phases,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics47(3), 2067–2072 (1993).
[CrossRef] [PubMed]

H. J. Eichler, R. Macdonald, and B. Trosken, “Multi-photon excitation and relaxation of thermal gratings in the nematic liquid crystal 5CB,” Molecular Cryst. Liquid Cryst. Sci. Technol.231(1), 1–10 (1993).
[CrossRef]

1985 (1)

I. C. Khoo and R. Normandin, “The mechanism and dynamics of transient thermal grating diffraction in nematic liquid crystal films,” IEEE J. Quantum Electron.21(4), 329–335 (1985).
[CrossRef]

Abeeluck, A.

Alkeskjold, T. T.

Anawati, A.

Asquini, R.

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett.97(9), 093302 (2010).
[CrossRef]

Bang, O.

Barna, V.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett.94(6), 063903 (2005).
[CrossRef] [PubMed]

Bartelt, H.

Bartolino, R.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett.94(6), 063903 (2005).
[CrossRef] [PubMed]

Bassi, P.

Beccherelli, R.

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett.97(9), 093302 (2010).
[CrossRef]

Bjarklev, A.

Broeng, J.

Bunning, T. J.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: Novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007).
[CrossRef]

Caputo, R.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett.94(6), 063903 (2005).
[CrossRef] [PubMed]

Chen, C. H.

Chen, C. W.

Coles, H. J.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

Crooker, P. P.

H. S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, “Effect of chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics54(1), 568–575 (1996).
[CrossRef] [PubMed]

Cuennet, J. G.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

d’Alessandro, A.

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett.97(9), 093302 (2010).
[CrossRef]

De Luca, A.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett.94(6), 063903 (2005).
[CrossRef] [PubMed]

De Sio, L.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

Diaz, A.

Doi, K.

H.-K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B104(30), 7023–7028 (2000).
[CrossRef]

Dong, X.

Du, F.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett.85(12), 2181–2183 (2004).
[CrossRef]

Du, J.

Eggleton, B. J.

Eichler, H. J.

H. J. Eichler, R. Macdonald, and B. Trosken, “Multi-photon excitation and relaxation of thermal gratings in the nematic liquid crystal 5CB,” Molecular Cryst. Liquid Cryst. Sci. Technol.231(1), 1–10 (1993).
[CrossRef]

Gauza, S.

L. Scolari, L. Wei, S. Gauza, S.-T. Wu, and A. Bjarklev, “Low loss liquid crystal photonic bandgap fiber in the near-infrared region,” Opt. Rev.18(1), 114–116 (2011).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett.94(10), 101104 (2009).
[CrossRef]

Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Modeling of blue phase liquid crystal displays,” J. Display Technol.5(7), 250–256 (2009).
[CrossRef]

Ge, Z.

Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Modeling of blue phase liquid crystal displays,” J. Display Technol.5(7), 250–256 (2009).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett.94(10), 101104 (2009).
[CrossRef]

Gilardi, G.

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett.97(9), 093302 (2010).
[CrossRef]

Harada, H.

H.-K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B104(30), 7023–7028 (2000).
[CrossRef]

Headley, C.

Hermann, D. S.

Hisakado, Y.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. (Deerfield Beach Fla.)17(1), 96–98 (2005).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Hornreich, R. M.

R. M. Hornreich, S. Shtrikman, and C. Sommers, “Photonic bands in simple and body-centered-cubic cholesteric blue phases,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics47(3), 2067–2072 (1993).
[CrossRef] [PubMed]

Hrozhyk, U. A.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: Novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007).
[CrossRef]

Hsiao, V. K. S.

Ikeda, T.

H.-K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B104(30), 7023–7028 (2000).
[CrossRef]

Jau, H. C.

C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express20(21), 23978–23984 (2012).
[CrossRef] [PubMed]

C. T. Wang, H. C. Jau, and T. H. Lin, “Bistable cholesteric-blue phase liquid crystal using thermal hysteresis,” Opt. Mater.34(1), 248–250 (2011).
[CrossRef]

Jiao, M.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett.94(10), 101104 (2009).
[CrossRef]

Kajiyama, T.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. (Deerfield Beach Fla.)17(1), 96–98 (2005).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Kanazawa, A.

H.-K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B104(30), 7023–7028 (2000).
[CrossRef]

Khoo, I. C.

C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express20(21), 23978–23984 (2012).
[CrossRef] [PubMed]

I. C. Khoo and T. H. Lin, “Nonlinear optical grating diffraction in dye-doped blue-phase liquid crystals,” Opt. Lett.37(15), 3225–3227 (2012).
[CrossRef] [PubMed]

I. C. Khoo, “Extreme nonlinear optics of nematic liquid crystals,” J. Opt. Soc. Am. B28(12), A45–A55 (2011).
[CrossRef]

I. C. Khoo and A. Diaz, “Multipe-time-scales dynamical studies of nonlinear transmission of pulsed lasers in a multi-photon absorbing organic material,” J. Opt. Soc. Am. B28(7), 1702–1710 (2011).
[CrossRef]

See for example,I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm-1.55 μm) lasers with dye-doped nematic liquid crystals,” Molecular Cryst. Liquid Cryst. Sci. Technol.527, 109–118 (2010); and references therein.

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett.97(9), 093302 (2010).
[CrossRef]

I. C. Khoo, “Nonlinear organic liquid cored fiber array for all- optical switching and sensor protection against short pulsed lasers,” IEEE J. Sel. Top. Quantum Electron.14(3), 946–951 (2008) (and references therein).
[CrossRef]

I. C. Khoo and H. Li, “Nonlinear optical propagation and self-limiting effect in liquid-crystalline fibers,” Appl. Phys. B59(6), 573–580 (1994).
[CrossRef]

I. C. Khoo and R. Normandin, “The mechanism and dynamics of transient thermal grating diffraction in nematic liquid crystal films,” IEEE J. Quantum Electron.21(4), 329–335 (1985).
[CrossRef]

Kikuchi, H.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. (Deerfield Beach Fla.)17(1), 96–98 (2005).
[CrossRef]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Kitzerow, H. S.

H. S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, “Effect of chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics54(1), 568–575 (1996).
[CrossRef] [PubMed]

Kitzerow, H.-S.

Ko, C.-Y.

Kobelke, J.

Lægsgaard, J.

Larsen, T. T.

Lee, C. H.

Lee, H.-K.

H.-K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B104(30), 7023–7028 (2000).
[CrossRef]

Li, H.

I. C. Khoo and H. Li, “Nonlinear optical propagation and self-limiting effect in liquid-crystalline fibers,” Appl. Phys. B59(6), 573–580 (1994).
[CrossRef]

Li, J.

Lin, T. H.

Liou, J.

See for example,I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm-1.55 μm) lasers with dye-doped nematic liquid crystals,” Molecular Cryst. Liquid Cryst. Sci. Technol.527, 109–118 (2010); and references therein.

Litchinitser, N. M.

Liu, B.

J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett.33(19), 2215–2217 (2008).
[CrossRef] [PubMed]

H. S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, “Effect of chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics54(1), 568–575 (1996).
[CrossRef] [PubMed]

Liu, Y.

Lorenz, A.

Lu, Y.-Q.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett.85(12), 2181–2183 (2004).
[CrossRef]

Macdonald, R.

H. J. Eichler, R. Macdonald, and B. Trosken, “Multi-photon excitation and relaxation of thermal gratings in the nematic liquid crystal 5CB,” Molecular Cryst. Liquid Cryst. Sci. Technol.231(1), 1–10 (1993).
[CrossRef]

Nagamura, T.

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. (Deerfield Beach Fla.)17(1), 96–98 (2005).
[CrossRef]

Nielsen, M.

Normandin, R.

I. C. Khoo and R. Normandin, “The mechanism and dynamics of transient thermal grating diffraction in nematic liquid crystal films,” IEEE J. Quantum Electron.21(4), 329–335 (1985).
[CrossRef]

Pivnenko, M. N.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

Price, G. N.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett.94(6), 063903 (2005).
[CrossRef] [PubMed]

Psaltis, D.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

Rao, L.

Riishede, J.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Scaramuzza, N.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett.94(6), 063903 (2005).
[CrossRef] [PubMed]

Schwuchow, A.

Scolari, L.

Serak, S. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: Novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007).
[CrossRef]

Shiono, T.

H.-K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B104(30), 7023–7028 (2000).
[CrossRef]

Shtrikman, S.

R. M. Hornreich, S. Shtrikman, and C. Sommers, “Photonic bands in simple and body-centered-cubic cholesteric blue phases,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics47(3), 2067–2072 (1993).
[CrossRef] [PubMed]

Sommers, C.

R. M. Hornreich, S. Shtrikman, and C. Sommers, “Photonic bands in simple and body-centered-cubic cholesteric blue phases,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics47(3), 2067–2072 (1993).
[CrossRef] [PubMed]

Stinger, M. V.

See for example,I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm-1.55 μm) lasers with dye-doped nematic liquid crystals,” Molecular Cryst. Liquid Cryst. Sci. Technol.527, 109–118 (2010); and references therein.

Strangi, G.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett.94(6), 063903 (2005).
[CrossRef] [PubMed]

Tabiryan, N. V.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: Novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007).
[CrossRef]

Trosken, B.

H. J. Eichler, R. Macdonald, and B. Trosken, “Multi-photon excitation and relaxation of thermal gratings in the nematic liquid crystal 5CB,” Molecular Cryst. Liquid Cryst. Sci. Technol.231(1), 1–10 (1993).
[CrossRef]

Trotta, M.

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett.97(9), 093302 (2010).
[CrossRef]

Tsutsumi, O.

H.-K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B104(30), 7023–7028 (2000).
[CrossRef]

Umeton, C.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett.94(6), 063903 (2005).
[CrossRef] [PubMed]

Vasdekis, A. E.

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

Versace, C.

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett.94(6), 063903 (2005).
[CrossRef] [PubMed]

Wang, C. T.

C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express20(21), 23978–23984 (2012).
[CrossRef] [PubMed]

C. T. Wang, H. C. Jau, and T. H. Lin, “Bistable cholesteric-blue phase liquid crystal using thermal hysteresis,” Opt. Mater.34(1), 248–250 (2011).
[CrossRef]

Wang, Z.

Wei, L.

L. Scolari, L. Wei, S. Gauza, S.-T. Wu, and A. Bjarklev, “Low loss liquid crystal photonic bandgap fiber in the near-infrared region,” Opt. Rev.18(1), 114–116 (2011).
[CrossRef]

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

Wu, S.-T.

L. Scolari, L. Wei, S. Gauza, S.-T. Wu, and A. Bjarklev, “Low loss liquid crystal photonic bandgap fiber in the near-infrared region,” Opt. Rev.18(1), 114–116 (2011).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett.94(10), 101104 (2009).
[CrossRef]

Z. Ge, L. Rao, S. Gauza, and S.-T. Wu, “Modeling of blue phase liquid crystal displays,” J. Display Technol.5(7), 250–256 (2009).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett.85(12), 2181–2183 (2004).
[CrossRef]

Xianyu, H.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett.94(10), 101104 (2009).
[CrossRef]

Xu, F.

H. S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, “Effect of chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics54(1), 568–575 (1996).
[CrossRef] [PubMed]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Yuan, W.

Zou, B.

Adv. Mater. (Deerfield Beach Fla.) (2)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: Novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007).
[CrossRef]

Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, “Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases,” Adv. Mater. (Deerfield Beach Fla.)17(1), 96–98 (2005).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

I. C. Khoo and H. Li, “Nonlinear optical propagation and self-limiting effect in liquid-crystalline fibers,” Appl. Phys. B59(6), 573–580 (1994).
[CrossRef]

Appl. Phys. Lett. (3)

A. d’Alessandro, R. Asquini, M. Trotta, G. Gilardi, R. Beccherelli, and I. C. Khoo, “All-optical intensity modulation of near infrared light in a liquid crystal channel waveguide,” Appl. Phys. Lett.97(9), 093302 (2010).
[CrossRef]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett.85(12), 2181–2183 (2004).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett.94(10), 101104 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. C. Khoo and R. Normandin, “The mechanism and dynamics of transient thermal grating diffraction in nematic liquid crystal films,” IEEE J. Quantum Electron.21(4), 329–335 (1985).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

I. C. Khoo, “Nonlinear organic liquid cored fiber array for all- optical switching and sensor protection against short pulsed lasers,” IEEE J. Sel. Top. Quantum Electron.14(3), 946–951 (2008) (and references therein).
[CrossRef]

J. Appl. Phys. (1)

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008).
[CrossRef]

J. Display Technol. (1)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (1)

H.-K. Lee, K. Doi, H. Harada, O. Tsutsumi, A. Kanazawa, T. Shiono, and T. Ikeda, “Photochemical modulation of color and transmittance in chiral nematic liquid crystal containing an azobenzene as a photosensitive chromophore,” J. Phys. Chem. B104(30), 7023–7028 (2000).
[CrossRef]

Molecular Cryst. Liquid Cryst. Sci. Technol. (2)

H. J. Eichler, R. Macdonald, and B. Trosken, “Multi-photon excitation and relaxation of thermal gratings in the nematic liquid crystal 5CB,” Molecular Cryst. Liquid Cryst. Sci. Technol.231(1), 1–10 (1993).
[CrossRef]

See for example,I. C. Khoo, J. Liou, and M. V. Stinger, “Microseconds-nanoseconds all-optical switching of visible-near infrared (0.5 μm-1.55 μm) lasers with dye-doped nematic liquid crystals,” Molecular Cryst. Liquid Cryst. Sci. Technol.527, 109–118 (2010); and references therein.

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater.1(1), 64–68 (2002).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. G. Cuennet, A. E. Vasdekis, L. De Sio, and D. Psaltis, “Optofluidic modulator based on peristaltic nematogen microflows,” Nat. Photonics5(4), 234–238 (2011).
[CrossRef]

Nature (1)

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature436(7053), 997–1000 (2005).
[CrossRef] [PubMed]

Opt. Express (8)

A. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express10(23), 1320–1333 (2002).
[CrossRef] [PubMed]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express11(20), 2589–2596 (2003).
[CrossRef] [PubMed]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S.-T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express12(24), 5857–5871 (2004).
[CrossRef] [PubMed]

L. Scolari, T. T. Alkeskjold, J. Riishede, A. Bjarklev, D. S. Hermann, A. Anawati, M. Nielsen, and P. Bassi, “Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers,” Opt. Express13(19), 7483–7496 (2005).
[CrossRef] [PubMed]

V. K. S. Hsiao and C.-Y. Ko, “Light-controllable photoresponsive liquid-crystal photonic crystal fiber,” Opt. Express16(17), 12670–12676 (2008).
[CrossRef] [PubMed]

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express17(22), 19356–19364 (2009).
[CrossRef] [PubMed]

A. Lorenz, H.-S. Kitzerow, A. Schwuchow, J. Kobelke, and H. Bartelt, “Photonic crystal fiber with a dual-frequency addressable liquid crystal: behavior in the visible wavelength range,” Opt. Express16(23), 19375–19381 (2008).
[CrossRef] [PubMed]

C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express20(21), 23978–23984 (2012).
[CrossRef] [PubMed]

Opt. Lett. (2)

Opt. Mater. (1)

C. T. Wang, H. C. Jau, and T. H. Lin, “Bistable cholesteric-blue phase liquid crystal using thermal hysteresis,” Opt. Mater.34(1), 248–250 (2011).
[CrossRef]

Opt. Rev. (1)

L. Scolari, L. Wei, S. Gauza, S.-T. Wu, and A. Bjarklev, “Low loss liquid crystal photonic bandgap fiber in the near-infrared region,” Opt. Rev.18(1), 114–116 (2011).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (2)

H. S. Kitzerow, B. Liu, F. Xu, and P. P. Crooker, “Effect of chirality on liquid crystals in capillary tubes with parallel and perpendicular anchoring,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics54(1), 568–575 (1996).
[CrossRef] [PubMed]

R. M. Hornreich, S. Shtrikman, and C. Sommers, “Photonic bands in simple and body-centered-cubic cholesteric blue phases,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics47(3), 2067–2072 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

G. Strangi, V. Barna, R. Caputo, A. De Luca, C. Versace, N. Scaramuzza, C. Umeton, R. Bartolino, and G. N. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett.94(6), 063903 (2005).
[CrossRef] [PubMed]

Science (1)

P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989).

I. C. Khoo, Liquid Crystals, 2nd ed. (Wiley InterScience, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Double helix arrangement of the BPLC director axis and the crystal lattice structures corresponding to the BPI and BPII phases; (b) Upper: schematic depiction (not to scale) of the capillary array with BPLC filled pores; lower: Microscope photograph of one end face of the BPLC fiber array illuminated by obliquely incident white light showing green reflections from the fiber ends; ambient temperature is 25 °C (BPI phase).

Fig. 2
Fig. 2

(top) Interferometer set-up for measuring the temperature dependent refractive index gradient of BPLC cell. Index changes of the bulk cell give rise to moving fringe pattern detected by the slit-detector. (bottom) Temperature dependence of the refractive index of a 1-mm thick BPLC cell measured at the He-Ne laser wavelength λ = 6328 nm. Photos depict the reflected colors of the BPLC cell in the respective phases

Fig. 3
Fig. 3

(a) Experimental set-up used for measuring the transmission spectrum of a BPLC fiber with white light continuum laser. (b) Transmission spectrum of a single BPLC cored fiber at 29 °C - BPII phase; (c) Transmission spectrum at 25 °C – BPI phase.

Fig. 4
Fig. 4

(a) Experimental set up where a fiber array is inserted in the image plane inside a 1x telescope. Photograph at bottom shows the image of color bars on white paper viewed through the telescope. (b) Enlarged view of the transmitted image where individual image pixel defined by a single fiber of the fiber array is clearly visible. Upper image is obtained above the clearing temperature showing good transmission for all colors in the isotropic phase. Lower image is obtained at the temperature corresponding to BPII phase with poor transmission in the blue-green spectrum, while good transmission in the yellow and red region is still maintained.

Fig. 5
Fig. 5

Schematic depiction of some nonlinear optical absorption and scattering processes that cause nonlinear transmission of the laser through the fiber core.

Fig. 6
Fig. 6

Plots of the core transmission data as a function of the input laser power for fiber array maintained at various ambient temperatures: (i) T_1 = 35°C (above the clearing points) and (ii) T_2 = 24°C (below the BPI phase). Attached photos (top to bottom) are taken of the exit end of the fiber array in isotropic phase, showing initial transmission through a single fiber at low power, and increasingly more transmission through the neighboring fibers at high input laser power.

Fig. 7
Fig. 7

Schematic depiction of self-defocusing action on the cw white light continuum laser with a bulk planar BPLC cell at room temperature (focal conic phase). Attached photos shows the input and exit beam profiles at two laser powers when strong defocusing effects are evident. Similar results are obtained for isotropic phase and BPI and BPII phase.

Metrics