Abstract

We study the hybridized plasmonic-photonic modes supported by two-dimensional arrays of metallic nanoparticles coupled to light-emitting optical waveguides. Localized surface plasmon polaritons in the metallic nanoparticles can couple to guided modes in the underlying waveguide, forming quasi-guided hybrid modes, or to diffracted orders in the plane of the array, forming surface lattice resonances. We consider three kinds of samples: one sustains quasi-guided modes only, another sustains surface lattice resonances only, and a third sample sustains both modes. This third sample constitutes the first demonstration of simultaneous coupling of localized surface plasmons to guided modes and diffracted orders. The dispersive properties of the modes in the samples are investigated through light extinction and emission spectroscopy. We elucidate the conditions that lead to the coexistence of surface lattice resonances and quasi-guided hybrid modes, and assess their potential for enhancing the luminescence of emitters embedded in the coupled waveguide. We find the largest increase in emission intensity for the surface lattice resonances, reaching up to a factor of 20.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A5, S16 (2003).
    [CrossRef]
  2. W. Murray and W. Barnes, “Plasmonic materials,” Adv. Mater.19, 3771–3782 (2007).
    [CrossRef]
  3. E. Fort and S. Grsillon, “Surface enhanced fluorescence,” J. Phys. D41, 013001 (2008).
    [CrossRef]
  4. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009).
    [CrossRef]
  5. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
    [CrossRef] [PubMed]
  6. P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys.74, 106401 (2011).
    [CrossRef]
  7. V. Giannini, A. I. Femandez-Dominiguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev.111, 3888–3912 (2011).
    [CrossRef] [PubMed]
  8. W. L. Barnes, “Fluorescence near interfaces: The role of photonic mode density,” J. Mod. Opt.45, 661–699 (1998).
    [CrossRef]
  9. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006).
    [CrossRef] [PubMed]
  10. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. lett.96, 113002 (2006).
    [CrossRef] [PubMed]
  11. O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007).
    [CrossRef] [PubMed]
  12. R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92, 043101 (2008).
    [CrossRef]
  13. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
    [CrossRef] [PubMed]
  14. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008).
    [CrossRef]
  15. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
    [CrossRef]
  16. T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagiuda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011).
    [CrossRef] [PubMed]
  17. T. Kosako, Y. Kadoya, and H. F. Hoffman, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4, 312–314 (2010).
    [CrossRef]
  18. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120, 10871–5 (2004).
    [CrossRef] [PubMed]
  19. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
    [CrossRef] [PubMed]
  20. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
    [CrossRef]
  21. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
    [CrossRef] [PubMed]
  22. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech.6, 423–427 (2011).
    [CrossRef]
  23. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-Plasmon Polaritons : Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab,” Phys. Rev. Lett.91, 183901 (2003).
    [CrossRef] [PubMed]
  24. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80, 195415 (2009).
    [CrossRef]
  25. S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Light-emitting waveguide-plasmon polaritons,” Phys. Rev. Lett.109, 166803 (2012).
    [CrossRef] [PubMed]
  26. F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett.95, 233901 (2005).
    [CrossRef]
  27. B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010).
    [CrossRef]
  28. V. A. Markel, “Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B38, L115–L121 (2005).
    [CrossRef]
  29. P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A64, 417–418 (1997).
    [CrossRef]
  30. M. A. Verschuuren and H. van Sprang, “3d photonic structures by sol-gel imprint lithography,” in “Mater. Res. Soc. Sym. Proc.”, (MRS, New York, NY, USA, 2007), N03–N05.
  31. A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater.13, 999–1007 (2001).
    [CrossRef]
  32. S. Murai, K. Fujita, K. Iwata, and K. Tanaka, “Scattering-based hole burning in Y3Al5O12: Ce3+ monoliths with hierarchical porous structures prepared via the solgel route,” J. Phys. Chem. C115, 17676–17681 (2011).
    [CrossRef]
  33. S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, A. F. Koenderink, and J. Gómez Rivas, “Enhanced absorption and emission of Y3Al5O12: Ce3+ thin layers prepared by epoxide-catalyzed sol-gel method,” Opt. Mater. Express2, 1111–1120 (2012).
    [CrossRef]
  34. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
    [CrossRef]
  35. S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
    [CrossRef]
  36. S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, New York, 2007).
  37. A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B70, 125113 (2004).
    [CrossRef]
  38. P. Yeh, Optical Waves in Layered Media, 1st ed. (Wiley-InterScience, College Station, Texas, 1998).
  39. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
    [CrossRef] [PubMed]
  40. V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801 (2010).
    [CrossRef]
  41. G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Phys. Chem. C115, 24662–24665 (2011).
    [CrossRef]
  42. S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
    [CrossRef]
  43. W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from Ag-coated Ce doped Y3Al5O12 thin films phosphor capped with a dielectric layer of SiO2,” J. Appl. Phys.107, 013101 (2010).
    [CrossRef]
  44. FDTD Solutions, from Lumerical Solutions Inc., http://www.lumerical.com/ .
  45. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  46. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
    [CrossRef] [PubMed]
  47. P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5, 5151–5157 (2011).
    [CrossRef] [PubMed]

2012

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Light-emitting waveguide-plasmon polaritons,” Phys. Rev. Lett.109, 166803 (2012).
[CrossRef] [PubMed]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, A. F. Koenderink, and J. Gómez Rivas, “Enhanced absorption and emission of Y3Al5O12: Ce3+ thin layers prepared by epoxide-catalyzed sol-gel method,” Opt. Mater. Express2, 1111–1120 (2012).
[CrossRef]

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

2011

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Phys. Chem. C115, 24662–24665 (2011).
[CrossRef]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5, 5151–5157 (2011).
[CrossRef] [PubMed]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

S. Murai, K. Fujita, K. Iwata, and K. Tanaka, “Scattering-based hole burning in Y3Al5O12: Ce3+ monoliths with hierarchical porous structures prepared via the solgel route,” J. Phys. Chem. C115, 17676–17681 (2011).
[CrossRef]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech.6, 423–427 (2011).
[CrossRef]

P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys.74, 106401 (2011).
[CrossRef]

V. Giannini, A. I. Femandez-Dominiguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev.111, 3888–3912 (2011).
[CrossRef] [PubMed]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagiuda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011).
[CrossRef] [PubMed]

2010

T. Kosako, Y. Kadoya, and H. F. Hoffman, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4, 312–314 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801 (2010).
[CrossRef]

W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from Ag-coated Ce doped Y3Al5O12 thin films phosphor capped with a dielectric layer of SiO2,” J. Appl. Phys.107, 013101 (2010).
[CrossRef]

2009

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80, 195415 (2009).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009).
[CrossRef]

2008

E. Fort and S. Grsillon, “Surface enhanced fluorescence,” J. Phys. D41, 013001 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008).
[CrossRef]

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92, 043101 (2008).
[CrossRef]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
[CrossRef] [PubMed]

2007

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

W. Murray and W. Barnes, “Plasmonic materials,” Adv. Mater.19, 3771–3782 (2007).
[CrossRef]

2006

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. lett.96, 113002 (2006).
[CrossRef] [PubMed]

2005

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

V. A. Markel, “Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B38, L115–L121 (2005).
[CrossRef]

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett.95, 233901 (2005).
[CrossRef]

2004

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B70, 125113 (2004).
[CrossRef]

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120, 10871–5 (2004).
[CrossRef] [PubMed]

2003

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A5, S16 (2003).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-Plasmon Polaritons : Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab,” Phys. Rev. Lett.91, 183901 (2003).
[CrossRef] [PubMed]

2001

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater.13, 999–1007 (2001).
[CrossRef]

1998

W. L. Barnes, “Fluorescence near interfaces: The role of photonic mode density,” J. Mod. Opt.45, 661–699 (1998).
[CrossRef]

1997

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A64, 417–418 (1997).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Abass, A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. lett.96, 113002 (2006).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

Auguié, B.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Bakker, R. M.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92, 043101 (2008).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Barnes, W.

W. Murray and W. Barnes, “Plasmonic materials,” Adv. Mater.19, 3771–3782 (2007).
[CrossRef]

Barnes, W. L.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
[CrossRef] [PubMed]

W. L. Barnes, “Fluorescence near interfaces: The role of photonic mode density,” J. Mod. Opt.45, 661–699 (1998).
[CrossRef]

Bendaña, X. M.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010).
[CrossRef]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. lett.96, 113002 (2006).
[CrossRef] [PubMed]

Boltasseva, A.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92, 043101 (2008).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Brongersma, S. H.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5, 5151–5157 (2011).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Chao, W.-H.

W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from Ag-coated Ce doped Y3Al5O12 thin films phosphor capped with a dielectric layer of SiO2,” J. Appl. Phys.107, 013101 (2010).
[CrossRef]

Christ, A.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B70, 125113 (2004).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-Plasmon Polaritons : Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab,” Phys. Rev. Lett.91, 183901 (2003).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

Coenen, T.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagiuda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011).
[CrossRef] [PubMed]

Crego-Calama, M.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5, 5151–5157 (2011).
[CrossRef] [PubMed]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

Deutsch, B.

Drachev, V. P.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92, 043101 (2008).
[CrossRef]

Eisler, H.-J.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Femandez-Dominiguez, A. I.

V. Giannini, A. I. Femandez-Dominiguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev.111, 3888–3912 (2011).
[CrossRef] [PubMed]

Fort, E.

E. Fort and S. Grsillon, “Surface enhanced fluorescence,” J. Phys. D41, 013001 (2008).
[CrossRef]

Fujita, K.

S. Murai, K. Fujita, K. Iwata, and K. Tanaka, “Scattering-based hole burning in Y3Al5O12: Ce3+ monoliths with hierarchical porous structures prepared via the solgel route,” J. Phys. Chem. C115, 17676–17681 (2011).
[CrossRef]

García de Abajo, F. J.

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010).
[CrossRef]

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett.95, 233901 (2005).
[CrossRef]

Gash, A. E.

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater.13, 999–1007 (2001).
[CrossRef]

Geyter, B. D.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Giannini, V.

V. Giannini, A. I. Femandez-Dominiguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev.111, 3888–3912 (2011).
[CrossRef] [PubMed]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801 (2010).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

Giessen, H.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B70, 125113 (2004).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-Plasmon Polaritons : Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab,” Phys. Rev. Lett.91, 183901 (2003).
[CrossRef] [PubMed]

Gippius, N. A.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B70, 125113 (2004).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-Plasmon Polaritons : Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab,” Phys. Rev. Lett.91, 183901 (2003).
[CrossRef] [PubMed]

Gomes, R.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Gómez Rivas, J.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Light-emitting waveguide-plasmon polaritons,” Phys. Rev. Lett.109, 166803 (2012).
[CrossRef] [PubMed]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, A. F. Koenderink, and J. Gómez Rivas, “Enhanced absorption and emission of Y3Al5O12: Ce3+ thin layers prepared by epoxide-catalyzed sol-gel method,” Opt. Mater. Express2, 1111–1120 (2012).
[CrossRef]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5, 5151–5157 (2011).
[CrossRef] [PubMed]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801 (2010).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

Gresillon, S.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92, 043101 (2008).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

Grsillon, S.

E. Fort and S. Grsillon, “Surface enhanced fluorescence,” J. Phys. D41, 013001 (2008).
[CrossRef]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

Hassinen, A.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Hecht, B.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Heck, S. C.

V. Giannini, A. I. Femandez-Dominiguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev.111, 3888–3912 (2011).
[CrossRef] [PubMed]

Hens, Z.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Hoffman, H. F.

T. Kosako, Y. Kadoya, and H. F. Hoffman, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4, 312–314 (2010).
[CrossRef]

Hrubesh, L. W.

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater.13, 999–1007 (2001).
[CrossRef]

Iwata, K.

S. Murai, K. Fujita, K. Iwata, and K. Tanaka, “Scattering-based hole burning in Y3Al5O12: Ce3+ monoliths with hierarchical porous structures prepared via the solgel route,” J. Phys. Chem. C115, 17676–17681 (2011).
[CrossRef]

Janel, N.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120, 10871–5 (2004).
[CrossRef] [PubMed]

Janssen, O. T. A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hoffman, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4, 312–314 (2010).
[CrossRef]

Kildishev, A. V.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92, 043101 (2008).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Koenderink, A. F.

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, A. F. Koenderink, and J. Gómez Rivas, “Enhanced absorption and emission of Y3Al5O12: Ce3+ thin layers prepared by epoxide-catalyzed sol-gel method,” Opt. Mater. Express2, 1111–1120 (2012).
[CrossRef]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagiuda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011).
[CrossRef] [PubMed]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hoffman, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4, 312–314 (2010).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

Kuhl, J.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B70, 125113 (2004).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-Plasmon Polaritons : Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab,” Phys. Rev. Lett.91, 183901 (2003).
[CrossRef] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

Lambert, K.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Liu, Z.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92, 043101 (2008).
[CrossRef]

Lozano, G.

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, A. F. Koenderink, and J. Gómez Rivas, “Enhanced absorption and emission of Y3Al5O12: Ce3+ thin layers prepared by epoxide-catalyzed sol-gel method,” Opt. Mater. Express2, 1111–1120 (2012).
[CrossRef]

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Maes, B.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

Maier, S. A.

V. Giannini, A. I. Femandez-Dominiguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev.111, 3888–3912 (2011).
[CrossRef] [PubMed]

S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, New York, 2007).

Markel, V. A.

V. A. Markel, “Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B38, L115–L121 (2005).
[CrossRef]

Martin, O. J. F.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Mattei, G.

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Phys. Chem. C115, 24662–24665 (2011).
[CrossRef]

Mazzoldi, P.

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Phys. Chem. C115, 24662–24665 (2011).
[CrossRef]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Muhlschlegel, P.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Murai, S.

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Light-emitting waveguide-plasmon polaritons,” Phys. Rev. Lett.109, 166803 (2012).
[CrossRef] [PubMed]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, A. F. Koenderink, and J. Gómez Rivas, “Enhanced absorption and emission of Y3Al5O12: Ce3+ thin layers prepared by epoxide-catalyzed sol-gel method,” Opt. Mater. Express2, 1111–1120 (2012).
[CrossRef]

S. Murai, K. Fujita, K. Iwata, and K. Tanaka, “Scattering-based hole burning in Y3Al5O12: Ce3+ monoliths with hierarchical porous structures prepared via the solgel route,” J. Phys. Chem. C115, 17676–17681 (2011).
[CrossRef]

Murray, W.

W. Murray and W. Barnes, “Plasmonic materials,” Adv. Mater.19, 3771–3782 (2007).
[CrossRef]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. lett.96, 113002 (2006).
[CrossRef] [PubMed]

Odom, T. W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech.6, 423–427 (2011).
[CrossRef]

Offermans, P.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5, 5151–5157 (2011).
[CrossRef] [PubMed]

Orrit, M.

P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys.74, 106401 (2011).
[CrossRef]

Oulton, R. F.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80, 195415 (2009).
[CrossRef]

Pedersen, R. H.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92, 043101 (2008).
[CrossRef]

Pellegrini, G.

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Phys. Chem. C115, 24662–24665 (2011).
[CrossRef]

Pirruccio, G.

Poco, J. F.

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater.13, 999–1007 (2001).
[CrossRef]

Pohl, D. W.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Polman, A.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagiuda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

Rodriguez, S. R. K.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Light-emitting waveguide-plasmon polaritons,” Phys. Rev. Lett.109, 166803 (2012).
[CrossRef] [PubMed]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5, 5151–5157 (2011).
[CrossRef] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

Sáenz, J. J.

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett.95, 233901 (2005).
[CrossRef]

Sánchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

Satcher, J. H.

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater.13, 999–1007 (2001).
[CrossRef]

Schaafsma, M. C.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5, 5151–5157 (2011).
[CrossRef] [PubMed]

Schatz, G. C.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120, 10871–5 (2004).
[CrossRef] [PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

Schlotter, P.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A64, 417–418 (1997).
[CrossRef]

Schmidt, R.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A64, 417–418 (1997).
[CrossRef]

Schneider, J.

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A64, 417–418 (1997).
[CrossRef]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008).
[CrossRef]

Shalaev, V. M.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92, 043101 (2008).
[CrossRef]

Simpson, R. L.

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater.13, 999–1007 (2001).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A5, S16 (2003).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008).
[CrossRef]

Tanaka, K.

S. Murai, K. Fujita, K. Iwata, and K. Tanaka, “Scattering-based hole burning in Y3Al5O12: Ce3+ monoliths with hierarchical porous structures prepared via the solgel route,” J. Phys. Chem. C115, 17676–17681 (2011).
[CrossRef]

Thourhout, D. V.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Tikhodeev, S. G.

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B70, 125113 (2004).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-Plasmon Polaritons : Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab,” Phys. Rev. Lett.91, 183901 (2003).
[CrossRef] [PubMed]

Tillotson, T. M.

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater.13, 999–1007 (2001).
[CrossRef]

Tsai, C.-S.

W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from Ag-coated Ce doped Y3Al5O12 thin films phosphor capped with a dielectric layer of SiO2,” J. Appl. Phys.107, 013101 (2010).
[CrossRef]

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008).
[CrossRef]

van Sprang, H.

M. A. Verschuuren and H. van Sprang, “3d photonic structures by sol-gel imprint lithography,” in “Mater. Res. Soc. Sym. Proc.”, (MRS, New York, NY, USA, 2007), N03–N05.

Vecchi, G.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801 (2010).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

Verschuuren, M. A.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

S. Murai, M. A. Verschuuren, G. Lozano, G. Pirruccio, A. F. Koenderink, and J. Gómez Rivas, “Enhanced absorption and emission of Y3Al5O12: Ce3+ thin layers prepared by epoxide-catalyzed sol-gel method,” Opt. Mater. Express2, 1111–1120 (2012).
[CrossRef]

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Light-emitting waveguide-plasmon polaritons,” Phys. Rev. Lett.109, 166803 (2012).
[CrossRef] [PubMed]

M. A. Verschuuren and H. van Sprang, “3d photonic structures by sol-gel imprint lithography,” in “Mater. Res. Soc. Sym. Proc.”, (MRS, New York, NY, USA, 2007), N03–N05.

Vesseur, E. J. R.

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagiuda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

Wu, R.-J.

W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from Ag-coated Ce doped Y3Al5O12 thin films phosphor capped with a dielectric layer of SiO2,” J. Appl. Phys.107, 013101 (2010).
[CrossRef]

Wu, T.-B.

W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from Ag-coated Ce doped Y3Al5O12 thin films phosphor capped with a dielectric layer of SiO2,” J. Appl. Phys.107, 013101 (2010).
[CrossRef]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

Yeh, P.

P. Yeh, Optical Waves in Layered Media, 1st ed. (Wiley-InterScience, College Station, Texas, 1998).

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Yuan, H.-K.

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92, 043101 (2008).
[CrossRef]

Zayats, A. V.

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A5, S16 (2003).
[CrossRef]

Zentgraf, T.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80, 195415 (2009).
[CrossRef]

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B70, 125113 (2004).
[CrossRef]

Zhang, S.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80, 195415 (2009).
[CrossRef]

Zhang, X.

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80, 195415 (2009).
[CrossRef]

Zhang, Y.

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5, 5151–5157 (2011).
[CrossRef] [PubMed]

Zhou, W.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech.6, 423–427 (2011).
[CrossRef]

Zijlstra, P.

P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys.74, 106401 (2011).
[CrossRef]

Zou, S.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120, 10871–5 (2004).
[CrossRef] [PubMed]

ACS Nano

P. Offermans, M. C. Schaafsma, S. R. K. Rodriguez, Y. Zhang, M. Crego-Calama, S. H. Brongersma, and J. Gómez Rivas, “Universal scaling of the figure of merit of plasmonic sensors,” ACS Nano5, 5151–5157 (2011).
[CrossRef] [PubMed]

Adv. Mater.

W. Murray and W. Barnes, “Plasmonic materials,” Adv. Mater.19, 3771–3782 (2007).
[CrossRef]

Adv. Opt. Photon.

Appl. Phys. A

P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A64, 417–418 (1997).
[CrossRef]

Appl. Phys. Lett.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett.92, 043101 (2008).
[CrossRef]

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. Gómez Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Chem. Mater.

A. E. Gash, T. M. Tillotson, J. H. Satcher, J. F. Poco, L. W. Hrubesh, and R. L. Simpson, “Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts,” Chem. Mater.13, 999–1007 (2001).
[CrossRef]

Chem. Rev.

V. Giannini, A. I. Femandez-Dominiguez, S. C. Heck, and S. A. Maier, “Plasmonic Nanoantennas: Fundamentals and Their Use in Controlling the Radiative Properties of Nanoemitters,” Chem. Rev.111, 3888–3912 (2011).
[CrossRef] [PubMed]

J. Appl. Phys.

W.-H. Chao, R.-J. Wu, C.-S. Tsai, and T.-B. Wu, “Surface plasmon-enhanced emission from Ag-coated Ce doped Y3Al5O12 thin films phosphor capped with a dielectric layer of SiO2,” J. Appl. Phys.107, 013101 (2010).
[CrossRef]

J. Chem. Phys.

S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys.120, 10871–5 (2004).
[CrossRef] [PubMed]

J. Mod. Opt.

W. L. Barnes, “Fluorescence near interfaces: The role of photonic mode density,” J. Mod. Opt.45, 661–699 (1998).
[CrossRef]

J. Opt. A

A. V. Zayats and I. I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A5, S16 (2003).
[CrossRef]

J. Phys. B

V. A. Markel, “Divergence of dipole sums and the nature of non-lorentzian exponentially narrow resonances in one-dimensional periodic arrays of nanospheres,” J. Phys. B38, L115–L121 (2005).
[CrossRef]

J. Phys. Chem. C

S. Murai, K. Fujita, K. Iwata, and K. Tanaka, “Scattering-based hole burning in Y3Al5O12: Ce3+ monoliths with hierarchical porous structures prepared via the solgel route,” J. Phys. Chem. C115, 17676–17681 (2011).
[CrossRef]

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Phys. Chem. C115, 24662–24665 (2011).
[CrossRef]

J. Phys. D

E. Fort and S. Grsillon, “Surface enhanced fluorescence,” J. Phys. D41, 013001 (2008).
[CrossRef]

Nano Lett.

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, “Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas,” Nano Lett.7, 2871–2875 (2007).
[CrossRef] [PubMed]

T. Coenen, E. J. R. Vesseur, A. Polman, and A. F. Koenderink, “Directional emission from plasmonic yagiuda antennas probed by angle-resolved cathodoluminescence spectroscopy,” Nano Lett.11, 3779–3784 (2011).
[CrossRef] [PubMed]

Nat. Mater.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9, 193–204 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

Nat. Nanotech.

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nat. Nanotech.6, 423–427 (2011).
[CrossRef]

Nat. Photonics

T. Kosako, Y. Kadoya, and H. F. Hoffman, “Directional control of light by a nano-optical Yagi-Uda antenna,” Nat. Photonics4, 312–314 (2010).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics2, 234–237 (2008).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3, 654–657 (2009).
[CrossRef]

Opt. Mater. Express

Phys. Rev. B

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: Critical role of the substrate,” Phys. Rev. B82, 155447 (2010).
[CrossRef]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B80, 195415 (2009).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and H. Giessen, “Optical properties of planar metallic photonic crystal structures: experiment and theory,” Phys. Rev. B70, 125113 (2004).
[CrossRef]

Phys. Rev. Lett.

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801 (2010).
[CrossRef]

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. Gómez Rivas, “Light-emitting waveguide-plasmon polaritons,” Phys. Rev. Lett.109, 166803 (2012).
[CrossRef] [PubMed]

F. J. García de Abajo and J. J. Sáenz, “Electromagnetic surface modes in structured perfect-conductor surfaces,” Phys. Rev. Lett.95, 233901 (2005).
[CrossRef]

A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-Plasmon Polaritons : Strong Coupling of Photonic and Electronic Resonances in a Metallic Photonic Crystal Slab,” Phys. Rev. Lett.91, 183901 (2003).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97, 017402 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. lett.96, 113002 (2006).
[CrossRef] [PubMed]

Phys. Rev. X

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

Rep. Prog. Phys.

P. Zijlstra and M. Orrit, “Single metal nanoparticles: optical detection, spectroscopy and applications,” Rep. Prog. Phys.74, 106401 (2011).
[CrossRef]

Science

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Other

S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, New York, 2007).

M. A. Verschuuren and H. van Sprang, “3d photonic structures by sol-gel imprint lithography,” in “Mater. Res. Soc. Sym. Proc.”, (MRS, New York, NY, USA, 2007), N03–N05.

P. Yeh, Optical Waves in Layered Media, 1st ed. (Wiley-InterScience, College Station, Texas, 1998).

FDTD Solutions, from Lumerical Solutions Inc., http://www.lumerical.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scanning electron microscope top view image of an Ag nanorod array.

Fig. 2
Fig. 2

Extinction measurements of arrays of Ag nanorods in different environments as a function of the wavelength and the angle of incidence θinc (top panels). The extinction is defined as 1 − T where T is the zeroth-order transmittance. The same measurements are represented in the bottom panels as a function of the photon energy and the in-plane wave vector of the incident light, kinc. (a) corresponds to an array fabricated on an Al2O3 substrate and covered by an Al2O3 upperstrate. (b) is the measurements of a similar array on a Si3N4-planarized YAG:Ce layer fabricated on a SiO2 glass substrate. (c) corresponds to the measurements of a similar array on a Si3N4-planarized YAG:Ce layer on a SiO2 glass substrate, covered by a SiO2 upperstrate. The incident light is polarized along the y direction, i.e., parallel to the short axis of the nanorods. In the bottom panels, the Rayleigh anomalies and the dispersion of the fundamental TE0 mode guided in the YAG:Ce layer are also plotted. The insets in the bottom panels show a schematic illustration of the samples.

Fig. 3
Fig. 3

(a) Extinction (color scale), plotted as a function of the wavelength and the angle of incidence θinc, of an Ag nanorod array fabricated on a Si3N4-planarized YAG:Ce layer on a SiO2 glass substrate and covered by a 20 nm passivation layer of Si3N4. The incident light is polarized along the y direction, i.e., parallel to the short axis of the nanorods, and the extinction is defined as 1−T where T is the zeroth-order transmittance. The inset shows a schematic illustration of the sample. (b) Magnified image of the area indicated by the dashed square in (a). (c) Photoluminescence enhancement defined as the fluorescent intensity of the sample normalized by the intensity of a similar YAG:Ce layer without antenna array on top, plotted as a function of the wavelength and the angle of emission with respect to the normal to the surface, θem. We collected the light polarized along the y direction. Note that the photoluminescent enhancement is saturated to a value of 8 in this plot. (d) Magnified image of the area indicated by the dashed square in (c).

Fig. 4
Fig. 4

(a) Cuts to the extinction measurements (1 − T) of Fig. 3(a) at angles of incidence θinc = 0° (black solid curve), 4° (red dashed curve), and 7° (blue dotted curve). (b) Photoluminescence (PL) spectra at detection angles θem = 0°, 4°, and 7° (solid, dashed and dotted curves, respectively). The gray filled area corresponds to the emission spectrum of a YAG:Ce layer without the array at θem = 0°. (c) PL enhancement at the same angles. The inset shows the magnified plot from 500 nm to 600 nm.

Fig. 5
Fig. 5

(a) Extinction (color scale), plotted as a function of the wavelength λ and the angle of incidence θinc, of a similar Ag nanorod array that employed in Fig. 3, but with a SiO2 glass upperstrate on the top. The inset shows a schematic illustration of the sample. The incident light is polarized along the y direction, i.e., parallel to the short axis of the nanorods. (b) Photoluminescence enhancement of light polarized along the y direction as a function of λ and the angle of emission with respect to the normal to the surface, θem. (c) 1 − T at θinc = 0 ° (top panel) and PL enhancement at θem = 0 ° (bottom). The inset shows the magnified plot from λ = 550 to 650 nm. PL enhancement above λ = 750 nm is smoothed by adjacent averaging over a 10 nm window because the emission intensity of YAG:Ce is weak in this spectral region.

Fig. 6
Fig. 6

Simulation using a 3D finite-difference time-domain method. (a) Sketch of the simulated structure. The top panel displays the x–y plane (top view) of the structure. The black square indicates the Ag nanorod, and dotted lines indicate the unit cell of the structure. The bottom panel shows the x–z plane (side view) of the structure. The thickness of the YAG:Ce layer, d, was varied from 200 nm to 300 nm. (b) Calculated extinction (1 − T) at normal incidence for the structures with d = 200 (black solid curve), 250 (red dashed curve), and 300 nm (blue dotted curve). The curves are vertically shifted by 0.8 from each other for clarity. Dotted vertical lines indicate the wavelengths at which the total electric field intenisty enhancement distribution was calculated for the d = 300 nm structure. (c),(d),(e) The field intenisty distribution in the x–z plane, at y intersecting the middle of the nanorod. The intensity enhancement was calculated for the d = 300 nm structure using a plane wave with wavelength of 650 nm (b), 730 nm (c), and 814 nm (c) illuminating the unit cell of the array at normal incidence. The interfaces between silica/Si3N4, Si3N4/YAG:Ce, and YAG:Ce/silica are highlighted by white lines.

Metrics