Abstract

We describe the first example of a primitive cubic lattice assembled spontaneously from three mutually orthogonal and intersecting arrays of cylindrical, multimode waveguides. The lattice is generated in a single, room-temperature step with separate (mutually incoherent) incandescent light bulbs. To demonstrate its potential as a nonlinear photonic lattice, we generated a self-trapped lattice beam of incoherent white light. These two findings open entirely new experimental opportunities to study the behavior of spatially and temporally incoherent, polychromatic lattice solitons in 3-D Bravais lattices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Mitchell and M. Segev, “Self-trapping of incoherent white light,” Nature387(6636), 858–883 (1997).
    [CrossRef]
  2. H. Buljan, A. Šiber, M. Soljacić, and M. Segev, “Propagation of incoherent “white” light and modulation instability in noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(33 Pt 2A), 035601 (2002).
    [CrossRef] [PubMed]
  3. H. Buljan, A. Šiber, M. Soljacić, T. Schwartz, M. Segev, and D. N. Christodoulides, “Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(3), 036607 (2003).
    [CrossRef] [PubMed]
  4. H. Buljan, M. Segev, M. Soljacić, N. K. Efremidis, and D. N. Christodoulides, “White-light solitons,” Opt. Lett.28(14), 1239–1241 (2003).
    [CrossRef] [PubMed]
  5. T. Schwartz, T. Carmon, H. Buljan, and M. Segev, “Spontaneous pattern formation with incoherent white light,” Phys. Rev. Lett.93(22), 223901 (2004).
    [CrossRef] [PubMed]
  6. J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc.128(2), 406–407 (2006).
    [CrossRef] [PubMed]
  7. J. Zhang and K. Saravanamuttu, “The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium,” J. Am. Chem. Soc.128(46), 14913–14923 (2006).
    [CrossRef] [PubMed]
  8. K. Kasala and K. Saravanamuttu, “An experimental study of the interactions of self-trapped white light beams in a photopolymer,” Appl. Phys. Lett.93(5), 051111 (2008).
    [CrossRef]
  9. I. B. Burgess, W. E. Shimmell, and K. Saravanamuttu, “Spontaneous pattern formation due to modulation instability of incoherent white light in a photopolymerizable medium,” J. Am. Chem. Soc.129(15), 4738–4746 (2007).
    [CrossRef] [PubMed]
  10. K. Kasala and K. Saravanamuttu, “Optochemical self-organisation of a single-step route to intersecting and interleaving 3-D optical and waveguide lattices,” J. Mater. Chem.22, 12281–12287 (2012).
    [CrossRef]
  11. I. B. Burgess, M. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” J. Mater. Chem.18(35), 4133–4139 (2008).
    [CrossRef]
  12. Z. Chen, J. Klinger, and D. N. Christodoulides, “Induced modulation instability of partially spatially incoherent light with varying perturbation periods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 066601 (2002).
    [CrossRef] [PubMed]
  13. W. E. Shimmell, “Controlling Polymer Microstructure Through the Coherence of Light,” M.Sc. thesis, (2009)
  14. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
    [CrossRef] [PubMed]
  15. R. Pezer, H. Buljan, G. Bartal, M. Segev, and J. W. Fleischer, “Incoherent white-light solitons in nonlinear periodic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(5), 056608 (2006).
    [CrossRef] [PubMed]
  16. M. Born and E. Wolf, Principles of Optics, Electromagnetic theory of propagation, interference and diffraction of light, 7th ed. (Cambridge University Press, UK, 2002), Ch. 7.
  17. K. Kasala and K. Saravanamuttu, “Optochemical self-organization in a spatially modulated incandescent field: a single-step route to black and bright polymer lattices” (submitted)
  18. J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett.90(2), 023902 (2003).
    [CrossRef] [PubMed]
  19. G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of Second-Band Vortex Solitons in 2D Photonic Lattices,” Phys. Rev. Lett.95(5), 053904 (2005).
    [CrossRef] [PubMed]
  20. O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature433(7025), 500–503 (2005).
    [CrossRef] [PubMed]
  21. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete Solitons and Soliton-Induced Dislocations in Partially Coherent Photonic Lattices,” Phys. Rev. Lett.92(12), 123902 (2004).
    [CrossRef] [PubMed]
  22. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature422(6928), 147–150 (2003).
    [CrossRef] [PubMed]

2012 (1)

K. Kasala and K. Saravanamuttu, “Optochemical self-organisation of a single-step route to intersecting and interleaving 3-D optical and waveguide lattices,” J. Mater. Chem.22, 12281–12287 (2012).
[CrossRef]

2008 (2)

I. B. Burgess, M. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” J. Mater. Chem.18(35), 4133–4139 (2008).
[CrossRef]

K. Kasala and K. Saravanamuttu, “An experimental study of the interactions of self-trapped white light beams in a photopolymer,” Appl. Phys. Lett.93(5), 051111 (2008).
[CrossRef]

2007 (1)

I. B. Burgess, W. E. Shimmell, and K. Saravanamuttu, “Spontaneous pattern formation due to modulation instability of incoherent white light in a photopolymerizable medium,” J. Am. Chem. Soc.129(15), 4738–4746 (2007).
[CrossRef] [PubMed]

2006 (3)

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc.128(2), 406–407 (2006).
[CrossRef] [PubMed]

J. Zhang and K. Saravanamuttu, “The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium,” J. Am. Chem. Soc.128(46), 14913–14923 (2006).
[CrossRef] [PubMed]

R. Pezer, H. Buljan, G. Bartal, M. Segev, and J. W. Fleischer, “Incoherent white-light solitons in nonlinear periodic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(5), 056608 (2006).
[CrossRef] [PubMed]

2005 (2)

G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of Second-Band Vortex Solitons in 2D Photonic Lattices,” Phys. Rev. Lett.95(5), 053904 (2005).
[CrossRef] [PubMed]

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature433(7025), 500–503 (2005).
[CrossRef] [PubMed]

2004 (2)

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete Solitons and Soliton-Induced Dislocations in Partially Coherent Photonic Lattices,” Phys. Rev. Lett.92(12), 123902 (2004).
[CrossRef] [PubMed]

T. Schwartz, T. Carmon, H. Buljan, and M. Segev, “Spontaneous pattern formation with incoherent white light,” Phys. Rev. Lett.93(22), 223901 (2004).
[CrossRef] [PubMed]

2003 (4)

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett.90(2), 023902 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature422(6928), 147–150 (2003).
[CrossRef] [PubMed]

H. Buljan, A. Šiber, M. Soljacić, T. Schwartz, M. Segev, and D. N. Christodoulides, “Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(3), 036607 (2003).
[CrossRef] [PubMed]

H. Buljan, M. Segev, M. Soljacić, N. K. Efremidis, and D. N. Christodoulides, “White-light solitons,” Opt. Lett.28(14), 1239–1241 (2003).
[CrossRef] [PubMed]

2002 (2)

H. Buljan, A. Šiber, M. Soljacić, and M. Segev, “Propagation of incoherent “white” light and modulation instability in noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(33 Pt 2A), 035601 (2002).
[CrossRef] [PubMed]

Z. Chen, J. Klinger, and D. N. Christodoulides, “Induced modulation instability of partially spatially incoherent light with varying perturbation periods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 066601 (2002).
[CrossRef] [PubMed]

2000 (1)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

1997 (1)

M. Mitchell and M. Segev, “Self-trapping of incoherent white light,” Nature387(6636), 858–883 (1997).
[CrossRef]

Bartal, G.

R. Pezer, H. Buljan, G. Bartal, M. Segev, and J. W. Fleischer, “Incoherent white-light solitons in nonlinear periodic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(5), 056608 (2006).
[CrossRef] [PubMed]

G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of Second-Band Vortex Solitons in 2D Photonic Lattices,” Phys. Rev. Lett.95(5), 053904 (2005).
[CrossRef] [PubMed]

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature433(7025), 500–503 (2005).
[CrossRef] [PubMed]

Buljan, H.

R. Pezer, H. Buljan, G. Bartal, M. Segev, and J. W. Fleischer, “Incoherent white-light solitons in nonlinear periodic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(5), 056608 (2006).
[CrossRef] [PubMed]

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature433(7025), 500–503 (2005).
[CrossRef] [PubMed]

T. Schwartz, T. Carmon, H. Buljan, and M. Segev, “Spontaneous pattern formation with incoherent white light,” Phys. Rev. Lett.93(22), 223901 (2004).
[CrossRef] [PubMed]

H. Buljan, A. Šiber, M. Soljacić, T. Schwartz, M. Segev, and D. N. Christodoulides, “Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(3), 036607 (2003).
[CrossRef] [PubMed]

H. Buljan, M. Segev, M. Soljacić, N. K. Efremidis, and D. N. Christodoulides, “White-light solitons,” Opt. Lett.28(14), 1239–1241 (2003).
[CrossRef] [PubMed]

H. Buljan, A. Šiber, M. Soljacić, and M. Segev, “Propagation of incoherent “white” light and modulation instability in noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(33 Pt 2A), 035601 (2002).
[CrossRef] [PubMed]

Burgess, I. B.

I. B. Burgess, M. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” J. Mater. Chem.18(35), 4133–4139 (2008).
[CrossRef]

I. B. Burgess, W. E. Shimmell, and K. Saravanamuttu, “Spontaneous pattern formation due to modulation instability of incoherent white light in a photopolymerizable medium,” J. Am. Chem. Soc.129(15), 4738–4746 (2007).
[CrossRef] [PubMed]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Carmon, T.

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature433(7025), 500–503 (2005).
[CrossRef] [PubMed]

T. Schwartz, T. Carmon, H. Buljan, and M. Segev, “Spontaneous pattern formation with incoherent white light,” Phys. Rev. Lett.93(22), 223901 (2004).
[CrossRef] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett.90(2), 023902 (2003).
[CrossRef] [PubMed]

Chen, Z.

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete Solitons and Soliton-Induced Dislocations in Partially Coherent Photonic Lattices,” Phys. Rev. Lett.92(12), 123902 (2004).
[CrossRef] [PubMed]

Z. Chen, J. Klinger, and D. N. Christodoulides, “Induced modulation instability of partially spatially incoherent light with varying perturbation periods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 066601 (2002).
[CrossRef] [PubMed]

Christodoulides, D. N.

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature433(7025), 500–503 (2005).
[CrossRef] [PubMed]

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete Solitons and Soliton-Induced Dislocations in Partially Coherent Photonic Lattices,” Phys. Rev. Lett.92(12), 123902 (2004).
[CrossRef] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett.90(2), 023902 (2003).
[CrossRef] [PubMed]

H. Buljan, M. Segev, M. Soljacić, N. K. Efremidis, and D. N. Christodoulides, “White-light solitons,” Opt. Lett.28(14), 1239–1241 (2003).
[CrossRef] [PubMed]

H. Buljan, A. Šiber, M. Soljacić, T. Schwartz, M. Segev, and D. N. Christodoulides, “Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(3), 036607 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature422(6928), 147–150 (2003).
[CrossRef] [PubMed]

Z. Chen, J. Klinger, and D. N. Christodoulides, “Induced modulation instability of partially spatially incoherent light with varying perturbation periods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 066601 (2002).
[CrossRef] [PubMed]

Cohen, O.

G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of Second-Band Vortex Solitons in 2D Photonic Lattices,” Phys. Rev. Lett.95(5), 053904 (2005).
[CrossRef] [PubMed]

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature433(7025), 500–503 (2005).
[CrossRef] [PubMed]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Efremidis, N. K.

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett.90(2), 023902 (2003).
[CrossRef] [PubMed]

H. Buljan, M. Segev, M. Soljacić, N. K. Efremidis, and D. N. Christodoulides, “White-light solitons,” Opt. Lett.28(14), 1239–1241 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature422(6928), 147–150 (2003).
[CrossRef] [PubMed]

Eugenieva, E. D.

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete Solitons and Soliton-Induced Dislocations in Partially Coherent Photonic Lattices,” Phys. Rev. Lett.92(12), 123902 (2004).
[CrossRef] [PubMed]

Fleischer, J. W.

R. Pezer, H. Buljan, G. Bartal, M. Segev, and J. W. Fleischer, “Incoherent white-light solitons in nonlinear periodic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(5), 056608 (2006).
[CrossRef] [PubMed]

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature433(7025), 500–503 (2005).
[CrossRef] [PubMed]

G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of Second-Band Vortex Solitons in 2D Photonic Lattices,” Phys. Rev. Lett.95(5), 053904 (2005).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature422(6928), 147–150 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett.90(2), 023902 (2003).
[CrossRef] [PubMed]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Kasala, K.

K. Kasala and K. Saravanamuttu, “Optochemical self-organisation of a single-step route to intersecting and interleaving 3-D optical and waveguide lattices,” J. Mater. Chem.22, 12281–12287 (2012).
[CrossRef]

K. Kasala and K. Saravanamuttu, “An experimental study of the interactions of self-trapped white light beams in a photopolymer,” Appl. Phys. Lett.93(5), 051111 (2008).
[CrossRef]

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc.128(2), 406–407 (2006).
[CrossRef] [PubMed]

Klinger, J.

Z. Chen, J. Klinger, and D. N. Christodoulides, “Induced modulation instability of partially spatially incoherent light with varying perturbation periods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 066601 (2002).
[CrossRef] [PubMed]

Manela, O.

G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of Second-Band Vortex Solitons in 2D Photonic Lattices,” Phys. Rev. Lett.95(5), 053904 (2005).
[CrossRef] [PubMed]

Martin, H.

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete Solitons and Soliton-Induced Dislocations in Partially Coherent Photonic Lattices,” Phys. Rev. Lett.92(12), 123902 (2004).
[CrossRef] [PubMed]

Mitchell, M.

M. Mitchell and M. Segev, “Self-trapping of incoherent white light,” Nature387(6636), 858–883 (1997).
[CrossRef]

Pezer, R.

R. Pezer, H. Buljan, G. Bartal, M. Segev, and J. W. Fleischer, “Incoherent white-light solitons in nonlinear periodic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(5), 056608 (2006).
[CrossRef] [PubMed]

Ponte, M.

I. B. Burgess, M. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” J. Mater. Chem.18(35), 4133–4139 (2008).
[CrossRef]

Rewari, A.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc.128(2), 406–407 (2006).
[CrossRef] [PubMed]

Saravanamuttu, K.

K. Kasala and K. Saravanamuttu, “Optochemical self-organisation of a single-step route to intersecting and interleaving 3-D optical and waveguide lattices,” J. Mater. Chem.22, 12281–12287 (2012).
[CrossRef]

I. B. Burgess, M. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” J. Mater. Chem.18(35), 4133–4139 (2008).
[CrossRef]

K. Kasala and K. Saravanamuttu, “An experimental study of the interactions of self-trapped white light beams in a photopolymer,” Appl. Phys. Lett.93(5), 051111 (2008).
[CrossRef]

I. B. Burgess, W. E. Shimmell, and K. Saravanamuttu, “Spontaneous pattern formation due to modulation instability of incoherent white light in a photopolymerizable medium,” J. Am. Chem. Soc.129(15), 4738–4746 (2007).
[CrossRef] [PubMed]

J. Zhang and K. Saravanamuttu, “The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium,” J. Am. Chem. Soc.128(46), 14913–14923 (2006).
[CrossRef] [PubMed]

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc.128(2), 406–407 (2006).
[CrossRef] [PubMed]

Schwartz, T.

T. Schwartz, T. Carmon, H. Buljan, and M. Segev, “Spontaneous pattern formation with incoherent white light,” Phys. Rev. Lett.93(22), 223901 (2004).
[CrossRef] [PubMed]

H. Buljan, A. Šiber, M. Soljacić, T. Schwartz, M. Segev, and D. N. Christodoulides, “Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(3), 036607 (2003).
[CrossRef] [PubMed]

Segev, M.

R. Pezer, H. Buljan, G. Bartal, M. Segev, and J. W. Fleischer, “Incoherent white-light solitons in nonlinear periodic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(5), 056608 (2006).
[CrossRef] [PubMed]

G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of Second-Band Vortex Solitons in 2D Photonic Lattices,” Phys. Rev. Lett.95(5), 053904 (2005).
[CrossRef] [PubMed]

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature433(7025), 500–503 (2005).
[CrossRef] [PubMed]

T. Schwartz, T. Carmon, H. Buljan, and M. Segev, “Spontaneous pattern formation with incoherent white light,” Phys. Rev. Lett.93(22), 223901 (2004).
[CrossRef] [PubMed]

H. Buljan, A. Šiber, M. Soljacić, T. Schwartz, M. Segev, and D. N. Christodoulides, “Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(3), 036607 (2003).
[CrossRef] [PubMed]

H. Buljan, M. Segev, M. Soljacić, N. K. Efremidis, and D. N. Christodoulides, “White-light solitons,” Opt. Lett.28(14), 1239–1241 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature422(6928), 147–150 (2003).
[CrossRef] [PubMed]

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett.90(2), 023902 (2003).
[CrossRef] [PubMed]

H. Buljan, A. Šiber, M. Soljacić, and M. Segev, “Propagation of incoherent “white” light and modulation instability in noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(33 Pt 2A), 035601 (2002).
[CrossRef] [PubMed]

M. Mitchell and M. Segev, “Self-trapping of incoherent white light,” Nature387(6636), 858–883 (1997).
[CrossRef]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Shimmell, W. E.

I. B. Burgess, W. E. Shimmell, and K. Saravanamuttu, “Spontaneous pattern formation due to modulation instability of incoherent white light in a photopolymerizable medium,” J. Am. Chem. Soc.129(15), 4738–4746 (2007).
[CrossRef] [PubMed]

Šiber, A.

H. Buljan, A. Šiber, M. Soljacić, T. Schwartz, M. Segev, and D. N. Christodoulides, “Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(3), 036607 (2003).
[CrossRef] [PubMed]

H. Buljan, A. Šiber, M. Soljacić, and M. Segev, “Propagation of incoherent “white” light and modulation instability in noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(33 Pt 2A), 035601 (2002).
[CrossRef] [PubMed]

Soljacic, M.

H. Buljan, A. Šiber, M. Soljacić, T. Schwartz, M. Segev, and D. N. Christodoulides, “Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(3), 036607 (2003).
[CrossRef] [PubMed]

H. Buljan, M. Segev, M. Soljacić, N. K. Efremidis, and D. N. Christodoulides, “White-light solitons,” Opt. Lett.28(14), 1239–1241 (2003).
[CrossRef] [PubMed]

H. Buljan, A. Šiber, M. Soljacić, and M. Segev, “Propagation of incoherent “white” light and modulation instability in noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(33 Pt 2A), 035601 (2002).
[CrossRef] [PubMed]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc.128(2), 406–407 (2006).
[CrossRef] [PubMed]

J. Zhang and K. Saravanamuttu, “The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium,” J. Am. Chem. Soc.128(46), 14913–14923 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

K. Kasala and K. Saravanamuttu, “An experimental study of the interactions of self-trapped white light beams in a photopolymer,” Appl. Phys. Lett.93(5), 051111 (2008).
[CrossRef]

J. Am. Chem. Soc. (3)

I. B. Burgess, W. E. Shimmell, and K. Saravanamuttu, “Spontaneous pattern formation due to modulation instability of incoherent white light in a photopolymerizable medium,” J. Am. Chem. Soc.129(15), 4738–4746 (2007).
[CrossRef] [PubMed]

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc.128(2), 406–407 (2006).
[CrossRef] [PubMed]

J. Zhang and K. Saravanamuttu, “The dynamics of self-trapped beams of incoherent white light in a free-radical photopolymerizable medium,” J. Am. Chem. Soc.128(46), 14913–14923 (2006).
[CrossRef] [PubMed]

J. Mater. Chem. (2)

K. Kasala and K. Saravanamuttu, “Optochemical self-organisation of a single-step route to intersecting and interleaving 3-D optical and waveguide lattices,” J. Mater. Chem.22, 12281–12287 (2012).
[CrossRef]

I. B. Burgess, M. Ponte, and K. Saravanamuttu, “Spontaneous formation of 3-D optical and structural lattices from two orthogonal and mutually incoherent beams of white light propagating in a photopolymerisable material,” J. Mater. Chem.18(35), 4133–4139 (2008).
[CrossRef]

Nature (4)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature404(6773), 53–56 (2000).
[CrossRef] [PubMed]

J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature422(6928), 147–150 (2003).
[CrossRef] [PubMed]

M. Mitchell and M. Segev, “Self-trapping of incoherent white light,” Nature387(6636), 858–883 (1997).
[CrossRef]

O. Cohen, G. Bartal, H. Buljan, T. Carmon, J. W. Fleischer, M. Segev, and D. N. Christodoulides, “Observation of random-phase lattice solitons,” Nature433(7025), 500–503 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (4)

H. Buljan, A. Šiber, M. Soljacić, and M. Segev, “Propagation of incoherent “white” light and modulation instability in noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(33 Pt 2A), 035601 (2002).
[CrossRef] [PubMed]

H. Buljan, A. Šiber, M. Soljacić, T. Schwartz, M. Segev, and D. N. Christodoulides, “Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(3), 036607 (2003).
[CrossRef] [PubMed]

R. Pezer, H. Buljan, G. Bartal, M. Segev, and J. W. Fleischer, “Incoherent white-light solitons in nonlinear periodic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.73(5), 056608 (2006).
[CrossRef] [PubMed]

Z. Chen, J. Klinger, and D. N. Christodoulides, “Induced modulation instability of partially spatially incoherent light with varying perturbation periods,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(6), 066601 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of Discrete Solitons in Optically Induced Real Time Waveguide Arrays,” Phys. Rev. Lett.90(2), 023902 (2003).
[CrossRef] [PubMed]

G. Bartal, O. Manela, O. Cohen, J. W. Fleischer, and M. Segev, “Observation of Second-Band Vortex Solitons in 2D Photonic Lattices,” Phys. Rev. Lett.95(5), 053904 (2005).
[CrossRef] [PubMed]

T. Schwartz, T. Carmon, H. Buljan, and M. Segev, “Spontaneous pattern formation with incoherent white light,” Phys. Rev. Lett.93(22), 223901 (2004).
[CrossRef] [PubMed]

H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete Solitons and Soliton-Induced Dislocations in Partially Coherent Photonic Lattices,” Phys. Rev. Lett.92(12), 123902 (2004).
[CrossRef] [PubMed]

Other (3)

W. E. Shimmell, “Controlling Polymer Microstructure Through the Coherence of Light,” M.Sc. thesis, (2009)

M. Born and E. Wolf, Principles of Optics, Electromagnetic theory of propagation, interference and diffraction of light, 7th ed. (Cambridge University Press, UK, 2002), Ch. 7.

K. Kasala and K. Saravanamuttu, “Optochemical self-organization in a spatially modulated incandescent field: a single-step route to black and bright polymer lattices” (submitted)

Supplementary Material (2)

» Media 1: AVI (1883 KB)     
» Media 2: AVI (3679 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Scheme of assembly used to generate optical and waveguide lattices within a photopolymer. (b) Inset of sample region, depicting configuration Xz + Y + Z.

Fig. 2
Fig. 2

Introducing increasing degrees of spatial order of MI-induced filaments. Lattice formation achieved with configurations (a) Zy, (b) Xz + Zy and (c) Xz + Yx + Zy Each scheme in (a-c) traces the evolution of the lattice from the initial (linear) propagation of the beam(s) to the formation of bright lamellae (Stage 1) and finally, MI and emergence of stable filaments (Stage 2). Experimentally acquired spatial intensity profiles of the (001) face of the final lattice (Stage 2) are included in each case. For intensity profile, 1 pixel = 9 μm.

Fig. 3
Fig. 3

Optochemical organization of an incoherent white light lattice and waveguide lattice with primitive cubic symmetry (see also Media 1 in Supporting Information). (a) Spatial intensity distributions of the (001) face of the lattice (after a propagation distance = 10.0 mm) trace the three stages of lattice formation from linear divergence, to the intersections of lamellae (Stage 1) to the formation of stable 2-D periodic filaments (Stage 2) (1 pixel = 9 μm). Scanning electron micrographs of the corresponding waveguide lattice show that (b) (100), (c) (010) and (d) (001) faces of the lattice show a square array of filaments, which confirmed by FFTs that are included as insets.

Fig. 4
Fig. 4

Photographs of (a) optochemically organized cubic lattice in a 1 cm3 cuvette. The streak of light propagating through the lattice corresponds to a self-trapped incandescent beam (vide infra) and (b) output of the lattice (from (001) face) from a 632.8 nm laser beam.

Fig. 5
Fig. 5

Self-trapped incoherent white light beam in a primitive cubic lattice. 3-D and 2-D spatial intensity profiles tracing the temporal evolution of a narrow white light beam propagating through an optochemically organized primitive cubic lattice. Intensity profiles were acquired of the (001) face at a propagation distance = 10.0 mm. The intensity scale in the 3-D images is the same; the scale in the 2-D image in (a) was normalized to the maximum peak intensity for clarity (1 pixel = 9 μm). (Media 2)

Metrics