Abstract

We quantify the benefits of intra-channel nonlinear compensation in meshed optical networks, in view of network configuration, fibre design aspect, and dispersion management. We report that for a WDM optical transport network employing flexible 28Gbaud PM-mQAM transponders with no in-line dispersion compensation, intra-channel nonlinear compensation, for PM-16QAM through traffic, offers significant improvements of up to 4dB in nonlinear tolerance (Q-factor) irrespective of the co-propagating modulation format, and that this benefit is further enhanced (1.5dB) by increasing local link dispersion. For dispersion managed links, we further report that advantages of intra-channel nonlinear compensation increase with in-line dispersion compensation ratio, with 1.5dB improvements after 95% in-line dispersion compensation, compared to uncompensated transmission.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ellis, J. Zhao, and D. Cotter, “Approaching the Non-Linear Shannon Limit,” J. Lightwave Technol.28(4), 423–433 (2010).
    [CrossRef]
  2. P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, “Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM,” J. Lightwave Technol.28(4), 547–556 (2010).
    [CrossRef]
  3. M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, “Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission,” Electron. Lett.31(23), 2027–2029 (1995).
    [CrossRef]
  4. C. Fürst, C. Scheerer, and G. Mohs, J. -. Elbers, and C. Glingener, “Influence of the dispersion map on limitations due to cross-phase modulation in WDM multispan transmission systems,” Optical Fiber Communication Conference, OFC ’01, MF4 (2001).
  5. A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Optical vs. Electronic Chromatic Dispersion Compensation in WDM Coherent PM-QPSK Systems at 111 Gbit/s,” Optical Fiber Communication Conference, OFC ’08, JThA57 (2008).
  6. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express16(2), 880–888 (2008).
    [CrossRef] [PubMed]
  7. D. Rafique, J. Zhao, and A. D. Ellis, “Digital back-propagation for spectrally efficient WDM 112 Gbit/s PM m-ary QAM transmission,” Opt. Express19(6), 5219–5224 (2011).
    [CrossRef] [PubMed]
  8. S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of Interchannel Nonlinearities on a Split-Step Intrachannel Nonlinear Equalizer,” IEEE Photon. Technol. Lett.22(10), 673–675 (2010).
    [CrossRef]
  9. X. Zhou, E. F. Mateo, and G. Li, “Fiber Nonlinearity Management-from Carrier Perspective,” Optical Fiber Communication Conference, OFC ’11, NThB4 (2011).
  10. A. Nag, M. Tornatore, and B. Mukherjee, “Optical Network Design With Mixed Line Rates and Multiple Modulation Formats,” J. Lightwave Technol.28(4), 466–475 (2010).
    [CrossRef]
  11. C. Meusburger, D. A. Schupke, and A. Lord, “Optimizing the Migration of Channels with Higher Bitrates,” J. Lightwave Technol.28(4), 608–615 (2010).
    [CrossRef]
  12. D. Rafique and A. D. Ellis, “Nonlinear Penalties in Dynamic Optical Networks Employing Autonomous Transponders,” IEEE Photon. Technol. Lett.23(17), 1213–1215 (2011).
    [CrossRef]
  13. T. Wuth, M. W. Chbat, and V. F. Kamalov, “Multi-rate (100G/40G/10G) Transport Over Deployed Optical Networks,” Optical Fiber Communication Conference, OFC’08, NTuB3, (2008).
  14. D.v.d Borne, C.R.S. Fludger, T. Duthel, T. Wuth, E.D. Schmidt, C. Schulien, E. Gottwald,G.D. Khoe, and H. de Waardt, “Carrier phase estimation for coherent equalization of 43-Gb/s POLMUX-NRZDQPSK transmission with 10.7-Gb/s NRZ neughbours,” ECOC'07, 7.2.3 (2007).
  15. C. Fürst, J. Elbers, H. Wernz, H. Griesser, S. Herbst, M. Camera, F. Cavaliere, A. Ehrhardt, D. Breuer, D. Fritzsche, S. Vorbeck, M. Schneiders, W. Weiershausen, R. Leppla, J. Wendler, M. Schroedel, T. Wuth, C. Fludger, T. Duthel, B. Milivojevic, and C. Schulien, “Analysis of Crosstalk in Mixed 43 Gb/s RZ-DQPSK and 10.7 Gb/s DWDM Systems at 50 GHz Channel Spacing,” Optical Fiber Communication Conference, OFC’07, OThS2 (2007).
  16. R.-J. Essiambre, G. Raybon, and B. Mikkelsen, Optical Fiber Telecommunications IV (Academic, 2002), chap.6.
  17. C. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, Khoe Giok-Djan, and H. de Waardt, “Coherent Equalization and POLMUX-RZ-DQPSK for Robust 100-GE Transmission,” J. Lightwave Technol.26(1), 64–72 (2008).
    [CrossRef]
  18. D. Rafique and A. D. Ellis, “Nonlinear penalties in long-haul optical networks employing dynamic transponders,” Opt. Express19(10), 9044–9049 (2011).
    [CrossRef] [PubMed]
  19. D. Rafique and A. D. Ellis, “Nonlinear and ROADM induced penalties in 28 Gbaud dynamic optical mesh networks employing electronic signal processing,” Opt. Express19(18), 16739–16748 (2011).
    [CrossRef] [PubMed]
  20. J. Tang, “The multispan effects of Kerr nonlinearity and amplifier noises on Shannon channel capacity of a dispersion-free nonlinear optical fiber,” J. Lightwave Technol.19(8), 1110–1115 (2001).
    [CrossRef]
  21. K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” OFC3(5), 292–339 (2006).
  22. D. Rafique, M. Mussolin, M. Forzati, J. Mårtensson, M. N. Chugtai, and A. D. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express19(10), 9453–9460 (2011).
    [CrossRef] [PubMed]
  23. L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Implementation Efficient Nonlinear Equalizer Based on Correlated Digital Backpropagation,” Optical Fiber Communication Conference, OFC ‘11, OWW3 (2011).
  24. L. Zhu and G. Li, “Nonlinearity compensation using dispersion-folded digital backward propagation,” Opt. Express20(13), 14362–14370 (2012).
    [CrossRef] [PubMed]
  25. D. Rafique and A. D. Ellis, “Various Nonlinearity Mitigation Techniques Employing Optical and Electronic Approaches,” IEEE Photon. Technol. Lett.23(23), 1838–1840 (2011).
    [CrossRef]
  26. T. Tanimura, S. Oda, T. Hoshida, L. Li, Z. Tao, and J. C. Rasmussen, “Experimental Characterization of Nonlinearity Mitigation by Digital Back Propagation and Nonlinear Polarization Crosstalk Canceller under High PMD condition,” Optical Fiber Communication Conference, OFC’11, JWA020 (2011).
  27. L. B. Du and A. J. Lowery, “Experimental Demonstration of XPM Compensation for CO-OFDM Systems with Periodic Dispersion Maps,” Optical Fiber Communication Conference, OFC’11, OWW2 (2011).

2012 (1)

2011 (6)

2010 (5)

2008 (2)

2006 (1)

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” OFC3(5), 292–339 (2006).

2001 (1)

1995 (1)

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, “Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission,” Electron. Lett.31(23), 2027–2029 (1995).
[CrossRef]

Akiba, S.

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, “Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission,” Electron. Lett.31(23), 2027–2029 (1995).
[CrossRef]

Buhl, L. L.

Chen, X.

Chugtai, M. N.

Cotter, D.

De Man, E.

de Waardt, H.

Doerr, C. R.

Duthel, T.

Edagawa, N.

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, “Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission,” Electron. Lett.31(23), 2027–2029 (1995).
[CrossRef]

Ellis, A. D.

Fludger, C. S.

Forzati, M.

Gavioli, G.

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of Interchannel Nonlinearities on a Split-Step Intrachannel Nonlinear Equalizer,” IEEE Photon. Technol. Lett.22(10), 673–675 (2010).
[CrossRef]

Geyer, J.

Gnauck, A. H.

Goldfarb, G.

Imamura, K.

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” OFC3(5), 292–339 (2006).

Khoe Giok-Djan,

Kim, I.

Kokura, K.

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” OFC3(5), 292–339 (2006).

Li, G.

Li, X.

Lord, A.

Magarini, M.

Mårtensson, J.

Mateo, E.

Meusburger, C.

Morita, I.

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, “Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission,” Electron. Lett.31(23), 2027–2029 (1995).
[CrossRef]

Mukasa, K.

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” OFC3(5), 292–339 (2006).

Mukherjee, B.

Mussolin, M.

Nag, A.

Poggiolini, P.

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of Interchannel Nonlinearities on a Split-Step Intrachannel Nonlinear Equalizer,” IEEE Photon. Technol. Lett.22(10), 673–675 (2010).
[CrossRef]

Rafique, D.

Savory, S. J.

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of Interchannel Nonlinearities on a Split-Step Intrachannel Nonlinear Equalizer,” IEEE Photon. Technol. Lett.22(10), 673–675 (2010).
[CrossRef]

Schmidt, E.-D.

Schulien, C.

Schupke, D. A.

Shimotakahara, I.

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” OFC3(5), 292–339 (2006).

Suzuki, M.

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, “Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission,” Electron. Lett.31(23), 2027–2029 (1995).
[CrossRef]

Taga, H.

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, “Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission,” Electron. Lett.31(23), 2027–2029 (1995).
[CrossRef]

Tang, J.

Tornatore, M.

Torrengo, E.

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of Interchannel Nonlinearities on a Split-Step Intrachannel Nonlinear Equalizer,” IEEE Photon. Technol. Lett.22(10), 673–675 (2010).
[CrossRef]

van den Borne, D.

Winzer, P. J.

Wuth, T.

Yagi, T.

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” OFC3(5), 292–339 (2006).

Yamamoto, S.

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, “Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission,” Electron. Lett.31(23), 2027–2029 (1995).
[CrossRef]

Yaman, F.

Zhao, J.

Zhu, L.

Electron. Lett. (1)

M. Suzuki, I. Morita, N. Edagawa, S. Yamamoto, H. Taga, and S. Akiba, “Reduction of Gordon-Haus timing jitter by periodic dispersion compensation in soliton transmission,” Electron. Lett.31(23), 2027–2029 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of Interchannel Nonlinearities on a Split-Step Intrachannel Nonlinear Equalizer,” IEEE Photon. Technol. Lett.22(10), 673–675 (2010).
[CrossRef]

D. Rafique and A. D. Ellis, “Nonlinear Penalties in Dynamic Optical Networks Employing Autonomous Transponders,” IEEE Photon. Technol. Lett.23(17), 1213–1215 (2011).
[CrossRef]

D. Rafique and A. D. Ellis, “Various Nonlinearity Mitigation Techniques Employing Optical and Electronic Approaches,” IEEE Photon. Technol. Lett.23(23), 1838–1840 (2011).
[CrossRef]

J. Lightwave Technol. (6)

OFC (1)

K. Mukasa, K. Imamura, I. Shimotakahara, T. Yagi, and K. Kokura, “Dispersion compensating fiber used as a transmission fiber: inverse/reverse dispersion fiber,” OFC3(5), 292–339 (2006).

Opt. Express (6)

Other (10)

T. Wuth, M. W. Chbat, and V. F. Kamalov, “Multi-rate (100G/40G/10G) Transport Over Deployed Optical Networks,” Optical Fiber Communication Conference, OFC’08, NTuB3, (2008).

D.v.d Borne, C.R.S. Fludger, T. Duthel, T. Wuth, E.D. Schmidt, C. Schulien, E. Gottwald,G.D. Khoe, and H. de Waardt, “Carrier phase estimation for coherent equalization of 43-Gb/s POLMUX-NRZDQPSK transmission with 10.7-Gb/s NRZ neughbours,” ECOC'07, 7.2.3 (2007).

C. Fürst, J. Elbers, H. Wernz, H. Griesser, S. Herbst, M. Camera, F. Cavaliere, A. Ehrhardt, D. Breuer, D. Fritzsche, S. Vorbeck, M. Schneiders, W. Weiershausen, R. Leppla, J. Wendler, M. Schroedel, T. Wuth, C. Fludger, T. Duthel, B. Milivojevic, and C. Schulien, “Analysis of Crosstalk in Mixed 43 Gb/s RZ-DQPSK and 10.7 Gb/s DWDM Systems at 50 GHz Channel Spacing,” Optical Fiber Communication Conference, OFC’07, OThS2 (2007).

R.-J. Essiambre, G. Raybon, and B. Mikkelsen, Optical Fiber Telecommunications IV (Academic, 2002), chap.6.

X. Zhou, E. F. Mateo, and G. Li, “Fiber Nonlinearity Management-from Carrier Perspective,” Optical Fiber Communication Conference, OFC ’11, NThB4 (2011).

C. Fürst, C. Scheerer, and G. Mohs, J. -. Elbers, and C. Glingener, “Influence of the dispersion map on limitations due to cross-phase modulation in WDM multispan transmission systems,” Optical Fiber Communication Conference, OFC ’01, MF4 (2001).

A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Optical vs. Electronic Chromatic Dispersion Compensation in WDM Coherent PM-QPSK Systems at 111 Gbit/s,” Optical Fiber Communication Conference, OFC ’08, JThA57 (2008).

L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Implementation Efficient Nonlinear Equalizer Based on Correlated Digital Backpropagation,” Optical Fiber Communication Conference, OFC ‘11, OWW3 (2011).

T. Tanimura, S. Oda, T. Hoshida, L. Li, Z. Tao, and J. C. Rasmussen, “Experimental Characterization of Nonlinearity Mitigation by Digital Back Propagation and Nonlinear Polarization Crosstalk Canceller under High PMD condition,” Optical Fiber Communication Conference, OFC’11, JWA020 (2011).

L. B. Du and A. J. Lowery, “Experimental Demonstration of XPM Compensation for CO-OFDM Systems with Periodic Dispersion Maps,” Optical Fiber Communication Conference, OFC’11, OWW2 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simulation setup for 28Gbaud PM-mQAM. PRBS: Pseudo random bit sequence, IQ: In-phase/Quadrature, DCF: dispersion compensating fibre, LO: local oscillator, PBC/S: polarisation beam combiner/splitter, ADC: analogue-to-digital converter, FIR: finite impulse response

Fig. 2
Fig. 2

(a) Q2 of central PM-16QAM channel vs. launch power of PM-16QAM channel after 3,200km. Circles, Squares, Stars: PM-4QAM/PM-16QAM/PM-64QAM neighbours at 0dBm, Diamonds: PM-4QAM neighbours at 4dBm, Lines: curve fits PM-16QAM neighbours with launch power optimized with test-channel. Solid symbols and solid line: SC-DBP, Open symbols and dashed line: LC, (b) Q2 with LC/SC-DBP, for various cases in (a).

Fig. 3
Fig. 3

(a) Q2 of PM-16QAM channel (with PM-4QAM neighbours at 0dBm) versus local link dispersion after 4,800 km transmission. Circles: Positive dispersion coefficient, Diamonds: Negative dispersion coefficient. Solid symbols: SC-DBP, Open symbols: LC, Lines: guide. (b) Relative improvement from LC to SC-DBP for ± dispersion in (a).

Fig. 4
Fig. 4

(a) Q2 of PM-16QAM channel (with PM-4QAM neighbours), fixed network power of 0dBm for all channels, versus in-line dispersion compensation ratio, after 2,400 km transmission. Squares: 0% dispersion pre-compensation, Triangles: 40% dispersion pre-compensation, Diamonds: 150% dispersion pre-compensation. Solid symbols: SC-DBP, Open symbols: LC, Lines: guide. (b) Relative Q2 improvement from LC to SC-DBP for scenarios in (a).

Metrics