Abstract

We experimentally demonstrate tunable comb spacing of an original 10-GHz periodic frequency comb by spectral Talbot effect over an unprecedented range of even and odd comb spacing division factors, from 2 to 9. The implementation has been achieved by periodic electro-optic (EO) temporal phase modulation of the original comb (conventional mode-locked optical pulse train) with multilevel modulation functions, produced by an arbitrary waveform generator (AWG). These comb spacing division processes have been observed through the use of a high-resolution (20-MHz) optical spectrum analyzer. Comb spacing tuning is achieved without essentially affecting the spectral bandwidth and total energy of the original comb signal. Our results also confirm that the spectral Talbot method does not require carrier-envelope phase stabilization in the input frequency comb. Numerical studies on the impact of deviations in the applied phase modulation functions confirm the robustness of the technique, in agreement with the experimental results.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Chan, G. Q. Xia, and J. M. Liu, “Optical generation of a precise microwave frequency comb by harmonic frequency locking,” Opt. Lett.32(13), 1917–1919 (2007).
    [CrossRef] [PubMed]
  2. Y. Ben M'Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett.23(7), 453–455 (2011).
    [CrossRef]
  3. A. Alatawi, R. P. Gollapalli, and L. Duan, “Radio-frequency clock delivery via free-space frequency comb transmission,” Opt. Lett.34(21), 3346–3348 (2009).
    [CrossRef] [PubMed]
  4. P. J. Delfyett, S. Gee, M.-T. Choi, H. Izadpanah, W. Lee, S. Ozharar, F. Quinlan, and T. Yilmaz, “Optical Frequency Combs From Semiconductor Lasers and Applications in Ultrawideband Signal Processing and Communications,” J. Lightwave Technol.24(7), 2701–2719 (2006).
    [CrossRef]
  5. A. Malacarne, R. Ashrafi, M. Li, S. LaRochelle, J. Yao, and J. Azaña, “Single-shot photonic time-intensity integration based on a time-spectrum convolution system,” Opt. Lett.37(8), 1355–1357 (2012).
    [CrossRef] [PubMed]
  6. L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, and P. Cancio, “Optical frequency comb assisted laser system for multiplex precision spectroscopy,” Opt. Express19(4), 3155–3162 (2011).
    [CrossRef] [PubMed]
  7. F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-Enhanced Direct Frequency Comb Spectroscopy: Technology and Applications,” Annu Rev Anal Chem (Palo Alto Calif)3(1), 175–205 (2010).
    [CrossRef] [PubMed]
  8. P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
    [CrossRef]
  9. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
    [CrossRef] [PubMed]
  10. J. Azaña, “Spectral Talbot phenomena of frequency combs induced by cross-phase modulation in optical fibers,” Opt. Lett.30(3), 227–229 (2005).
    [CrossRef] [PubMed]
  11. J. Caraquitena, M. Beltrán, R. Llorente, J. Martí, and M. A. Muriel, “Spectral self-imaging effect by time-domain multilevel phase modulation of a periodic pulse train,” Opt. Lett.36(6), 858–860 (2011).
    [CrossRef] [PubMed]
  12. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett.35(19), 3234–3236 (2010).
    [CrossRef] [PubMed]
  13. M. Beltran, J. Caraquitena, R. Llorente, and J. Marti, “Reconfigurable Multiwavelength Source Based on Electrooptic Phase Modulation of a Pulsed Laser,” IEEE Photon. Technol. Lett.23(16), 1175–1177 (2011).
    [CrossRef]

2012

2011

L. Consolino, G. Giusfredi, P. De Natale, M. Inguscio, and P. Cancio, “Optical frequency comb assisted laser system for multiplex precision spectroscopy,” Opt. Express19(4), 3155–3162 (2011).
[CrossRef] [PubMed]

Y. Ben M'Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett.23(7), 453–455 (2011).
[CrossRef]

J. Caraquitena, M. Beltrán, R. Llorente, J. Martí, and M. A. Muriel, “Spectral self-imaging effect by time-domain multilevel phase modulation of a periodic pulse train,” Opt. Lett.36(6), 858–860 (2011).
[CrossRef] [PubMed]

M. Beltran, J. Caraquitena, R. Llorente, and J. Marti, “Reconfigurable Multiwavelength Source Based on Electrooptic Phase Modulation of a Pulsed Laser,” IEEE Photon. Technol. Lett.23(16), 1175–1177 (2011).
[CrossRef]

2010

2009

P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

A. Alatawi, R. P. Gollapalli, and L. Duan, “Radio-frequency clock delivery via free-space frequency comb transmission,” Opt. Lett.34(21), 3346–3348 (2009).
[CrossRef] [PubMed]

2007

2006

2005

2002

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Adler, F.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-Enhanced Direct Frequency Comb Spectroscopy: Technology and Applications,” Annu Rev Anal Chem (Palo Alto Calif)3(1), 175–205 (2010).
[CrossRef] [PubMed]

Alatawi, A.

Arcizet, O.

P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Ashrafi, R.

Azaña, J.

Beltran, M.

M. Beltran, J. Caraquitena, R. Llorente, and J. Marti, “Reconfigurable Multiwavelength Source Based on Electrooptic Phase Modulation of a Pulsed Laser,” IEEE Photon. Technol. Lett.23(16), 1175–1177 (2011).
[CrossRef]

Beltrán, M.

Ben M'Sallem, Y.

Y. Ben M'Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett.23(7), 453–455 (2011).
[CrossRef]

Besnard, P.

Y. Ben M'Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett.23(7), 453–455 (2011).
[CrossRef]

Borgne, E.

Y. Ben M'Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett.23(7), 453–455 (2011).
[CrossRef]

Bramerie, L.

Y. Ben M'Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett.23(7), 453–455 (2011).
[CrossRef]

Cancio, P.

Caraquitena, J.

M. Beltran, J. Caraquitena, R. Llorente, and J. Marti, “Reconfigurable Multiwavelength Source Based on Electrooptic Phase Modulation of a Pulsed Laser,” IEEE Photon. Technol. Lett.23(16), 1175–1177 (2011).
[CrossRef]

J. Caraquitena, M. Beltrán, R. Llorente, J. Martí, and M. A. Muriel, “Spectral self-imaging effect by time-domain multilevel phase modulation of a periodic pulse train,” Opt. Lett.36(6), 858–860 (2011).
[CrossRef] [PubMed]

Chan, S. C.

Choi, M.-T.

Consolino, L.

Cossel, K. C.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-Enhanced Direct Frequency Comb Spectroscopy: Technology and Applications,” Annu Rev Anal Chem (Palo Alto Calif)3(1), 175–205 (2010).
[CrossRef] [PubMed]

De Natale, P.

Delfyett, P. J.

Del'Haye, P.

P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Duan, L.

Gee, S.

Giusfredi, G.

Gollapalli, R. P.

Gorodetsky, M. L.

P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Hänsch, T. W.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Holzwarth, R.

P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Inguscio, M.

Izadpanah, H.

Kippenberg, T. J.

P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

LaRochelle, S.

A. Malacarne, R. Ashrafi, M. Li, S. LaRochelle, J. Yao, and J. Azaña, “Single-shot photonic time-intensity integration based on a time-spectrum convolution system,” Opt. Lett.37(8), 1355–1357 (2012).
[CrossRef] [PubMed]

Y. Ben M'Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett.23(7), 453–455 (2011).
[CrossRef]

Le, Q. T.

Y. Ben M'Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett.23(7), 453–455 (2011).
[CrossRef]

Leaird, D. E.

Lee, W.

Lelarge, F.

Y. Ben M'Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett.23(7), 453–455 (2011).
[CrossRef]

Li, M.

Liu, J. M.

Llorente, R.

M. Beltran, J. Caraquitena, R. Llorente, and J. Marti, “Reconfigurable Multiwavelength Source Based on Electrooptic Phase Modulation of a Pulsed Laser,” IEEE Photon. Technol. Lett.23(16), 1175–1177 (2011).
[CrossRef]

J. Caraquitena, M. Beltrán, R. Llorente, J. Martí, and M. A. Muriel, “Spectral self-imaging effect by time-domain multilevel phase modulation of a periodic pulse train,” Opt. Lett.36(6), 858–860 (2011).
[CrossRef] [PubMed]

Long, C. M.

Malacarne, A.

Marti, J.

M. Beltran, J. Caraquitena, R. Llorente, and J. Marti, “Reconfigurable Multiwavelength Source Based on Electrooptic Phase Modulation of a Pulsed Laser,” IEEE Photon. Technol. Lett.23(16), 1175–1177 (2011).
[CrossRef]

Martí, J.

Muriel, M. A.

Nguyen, Q.

Y. Ben M'Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett.23(7), 453–455 (2011).
[CrossRef]

Ozharar, S.

Quinlan, F.

Rusch, L. A.

Y. Ben M'Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett.23(7), 453–455 (2011).
[CrossRef]

Shen, A.

Y. Ben M'Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett.23(7), 453–455 (2011).
[CrossRef]

Simon, J.

Y. Ben M'Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett.23(7), 453–455 (2011).
[CrossRef]

Supradeepa, V. R.

Thorpe, M. J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-Enhanced Direct Frequency Comb Spectroscopy: Technology and Applications,” Annu Rev Anal Chem (Palo Alto Calif)3(1), 175–205 (2010).
[CrossRef] [PubMed]

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Weiner, A. M.

Wu, R.

Xia, G. Q.

Yao, J.

Ye, J.

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-Enhanced Direct Frequency Comb Spectroscopy: Technology and Applications,” Annu Rev Anal Chem (Palo Alto Calif)3(1), 175–205 (2010).
[CrossRef] [PubMed]

Yilmaz, T.

Annu Rev Anal Chem (Palo Alto Calif)

F. Adler, M. J. Thorpe, K. C. Cossel, and J. Ye, “Cavity-Enhanced Direct Frequency Comb Spectroscopy: Technology and Applications,” Annu Rev Anal Chem (Palo Alto Calif)3(1), 175–205 (2010).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

M. Beltran, J. Caraquitena, R. Llorente, and J. Marti, “Reconfigurable Multiwavelength Source Based on Electrooptic Phase Modulation of a Pulsed Laser,” IEEE Photon. Technol. Lett.23(16), 1175–1177 (2011).
[CrossRef]

Y. Ben M'Sallem, Q. T. Le, L. Bramerie, Q. Nguyen, E. Borgne, P. Besnard, A. Shen, F. Lelarge, S. LaRochelle, L. A. Rusch, and J. Simon, “Quantum-Dash Mode-Locked Laser as a Source for 56-Gb/s DQPSK Modulation in WDM Multicast Applications,” IEEE Photon. Technol. Lett.23(7), 453–455 (2011).
[CrossRef]

J. Lightwave Technol.

Nat. Photonics

P. Del'Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Nature

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the spectral Talbot effect obtained by time-domain multilevel phase modulation. In this example, m = 2.

Fig. 2
Fig. 2

Experimental setup to achieve fractional spectral Talbot effect. In this example, m = 4.

Fig. 3
Fig. 3

Spectral Talbot results starting from a repetition rate of 10GHz for q = 1 and even values of m (left), odd values of m (right). Input spectrum (bottom). Traces are visualized with a 20MHz-resolution bandwidth OSA and shown in log scale.

Fig. 4
Fig. 4

Experimental phase modulation signals at the AWG output (blue) and ideal one uploaded in the AWG (red), for even (left) and odd (right) values of m, corresponding to each output spectrum in Fig. 3.

Fig. 5
Fig. 5

(a) Average (20 times) maximum-to-minimum harmonics peaks ratio and (b) ratio between the minimum harmonic peak and the maximum of the noise floor versus the phase deviation percentage for each even value of m.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ n =± q m π n 2

Metrics