Abstract

Localized surface plasmons-polaritons represent collective behavior of free electrons confined to metal particles. This effect may be used for enhancing efficiency of solar cells and for other opto-electronic applications. Plasmon resonance strongly affects optical properties of ultra-thin, island-like, metal films. In the present work, the Finite Difference Time Domain (FDTD) method is used to model transmittance spectra of thin gold island films grown on a glass substrate. The FDTD calculations were performed for island structure, corresponding to the Volmer-Weber model of thin film growth. The proposed simulation model is based on fitting of experimental data on nanostructure of ultra-thin gold films, reported in several independent studies, to the FDTD simulation setup. The results of FDTD modeling are then compared to the experimentally measured transmittance spectra of prepared thin gold films and found to be in a good agreement with experimental data.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons On Smooth And Rough Surfaces And On Gratings (Springer, 1988).
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys.111(3), 1255–1264 (1999).
    [CrossRef]
  4. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  5. K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
    [CrossRef] [PubMed]
  6. G. Boisde and A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Arthech House, 1996).
  7. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
    [CrossRef] [PubMed]
  8. V. M. Agranovich and D. L. Mills, eds., Surface Polaritons-Electromagnetic Waves at Surfaces and Interfaces (North Holland/Elsevier Science, 1982).
  9. H.-E. Ponath and G. I. Stegeman, eds., Nonlinear Surface Electromagnetic Phenomena (Modern Problems in Condensed Matter Science) (North-Holland, 1991).
  10. O. A. Aktsipetrov, E. M. Dubinina, S. S. Elovikov, E. D. Mishina, A. A. Nikulin, N. N. Novikova, and M. S. Strebkov, “The electromagnetic (classical) mechanism of surface enhanced second harmonic generation and Raman scattering in island films,” Solid State Commun.70(11), 1021–1024 (1989).
    [CrossRef]
  11. J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80(5), 1031–1046 (1993).
    [CrossRef]
  12. A. Karabchevsky, C. Khare, B. Rauschenbach, and I. Abdulhalim, “Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films,” J. Nanophotonics6, 1–12 (2012).
  13. M. Osawa, “Surface-Enhanced Infrared Absorption,” in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer Berlin Heidelberg, 2001), pp. 163–187.
  14. S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical absorption in discontinuous gold films,” Solid State Commun.23(4), 261–265 (1977).
    [CrossRef]
  15. C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B16(8), 3513–3534 (1977).
    [CrossRef]
  16. S. Norman, T. Andersson, and C. G. Granqvist, “Optical properties of discontinuous gold films,” Phys. Rev. B18, 647–695 (1978).
  17. F. Parmigiani, G. Samoggia, and G. P. Ferraris, “Optical properties of sputtered gold clusters,” J. Appl. Phys.57(7), 2524–2528 (1985).
    [CrossRef]
  18. R. Lazari, J. Jupille, and Y. Borensztein, “In situ study of a thin metal film by optical means,” Appl. Surf. Sci.142(1-4), 451–454 (1999).
    [CrossRef]
  19. D. Dalacu and L. Martinu, “Optical properties of discontinuous gold films: finite-size effects,” J. Opt. Soc. Am. B18(1), 85–92 (2001).
    [CrossRef]
  20. I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin gold island films on silanized glass. Morphology and optical properties,” Chem. Mater.16(18), 3476–3483 (2004).
    [CrossRef]
  21. J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett.6(1), 96 (2011).
    [CrossRef] [PubMed]
  22. A. Axelevitch, B. Gorenstein, and G. Golan, “Investigation of optical transmission in thin metal films,” Physics Procedia32, 1–13 (2012).
    [CrossRef]
  23. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966).
    [CrossRef]
  24. J. E. Greene, “Thin film nucleation, growth, and microstructural evolution: an atomic scale view,” in Handbook of Deposition Technologies for Films and Coating, 3rd Ed., Ed. P. M. Martin, ed. (Elsevier, 2010), Chap. 12, pp. 554–620.
  25. M. M. Wind, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate I,” Physica A141(1), 33–57 (1987).
    [CrossRef]
  26. M. M. Wind, A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate II,” Physica A143(1-2), 164–182 (1987).
    [CrossRef]
  27. M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of truncated spheres and oblate spheroids on a substrate: comparison with experimental results,” Thin Solid Films164, 57–62 (1988).
    [CrossRef]
  28. M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “Optical properties of 2D-systems of small particles on a substrate,” Physica A157(1), 269–278 (1989).
    [CrossRef]
  29. I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B61(11), 7722–7733 (2000).
    [CrossRef]
  30. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nano design,” Appl. Phys. B63, 381–384 (1996).
  31. J. Grand, P.-M. Adam, A.-S. Grimault, A. E. Vial, M. L. de la Chapelle, and J.-L. Bijeon JS. Kostcheev and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics1, 135–140 (2006).
  32. http://www.lumerical.com/
  33. Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1998).
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  35. R. W. Berry, P. M. Hall, and M. T. Harris, Thin Film Technology (Van Nostrand, 1968).
  36. N. L. Dmitruk and A. V. Korovin, “Physical nature of anomalous optical transmission of thin absorptive corrugated films,” JETP Lett.89(2), 68–72 (2009).
    [CrossRef]

2012

A. Karabchevsky, C. Khare, B. Rauschenbach, and I. Abdulhalim, “Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films,” J. Nanophotonics6, 1–12 (2012).

A. Axelevitch, B. Gorenstein, and G. Golan, “Investigation of optical transmission in thin metal films,” Physics Procedia32, 1–13 (2012).
[CrossRef]

2011

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett.6(1), 96 (2011).
[CrossRef] [PubMed]

2009

N. L. Dmitruk and A. V. Korovin, “Physical nature of anomalous optical transmission of thin absorptive corrugated films,” JETP Lett.89(2), 68–72 (2009).
[CrossRef]

2006

J. Grand, P.-M. Adam, A.-S. Grimault, A. E. Vial, M. L. de la Chapelle, and J.-L. Bijeon JS. Kostcheev and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics1, 135–140 (2006).

J. Grand, P.-M. Adam, A.-S. Grimault, A. E. Vial, M. L. de la Chapelle, and J.-L. Bijeon JS. Kostcheev and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics1, 135–140 (2006).

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

2004

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin gold island films on silanized glass. Morphology and optical properties,” Chem. Mater.16(18), 3476–3483 (2004).
[CrossRef]

2003

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

2001

2000

I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B61(11), 7722–7733 (2000).
[CrossRef]

1999

R. Lazari, J. Jupille, and Y. Borensztein, “In situ study of a thin metal film by optical means,” Appl. Surf. Sci.142(1-4), 451–454 (1999).
[CrossRef]

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys.111(3), 1255–1264 (1999).
[CrossRef]

1996

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nano design,” Appl. Phys. B63, 381–384 (1996).

1993

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80(5), 1031–1046 (1993).
[CrossRef]

1989

O. A. Aktsipetrov, E. M. Dubinina, S. S. Elovikov, E. D. Mishina, A. A. Nikulin, N. N. Novikova, and M. S. Strebkov, “The electromagnetic (classical) mechanism of surface enhanced second harmonic generation and Raman scattering in island films,” Solid State Commun.70(11), 1021–1024 (1989).
[CrossRef]

M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “Optical properties of 2D-systems of small particles on a substrate,” Physica A157(1), 269–278 (1989).
[CrossRef]

1988

M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of truncated spheres and oblate spheroids on a substrate: comparison with experimental results,” Thin Solid Films164, 57–62 (1988).
[CrossRef]

1987

M. M. Wind, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate I,” Physica A141(1), 33–57 (1987).
[CrossRef]

M. M. Wind, A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate II,” Physica A143(1-2), 164–182 (1987).
[CrossRef]

1985

F. Parmigiani, G. Samoggia, and G. P. Ferraris, “Optical properties of sputtered gold clusters,” J. Appl. Phys.57(7), 2524–2528 (1985).
[CrossRef]

1978

S. Norman, T. Andersson, and C. G. Granqvist, “Optical properties of discontinuous gold films,” Phys. Rev. B18, 647–695 (1978).

1977

S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical absorption in discontinuous gold films,” Solid State Commun.23(4), 261–265 (1977).
[CrossRef]

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B16(8), 3513–3534 (1977).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

1966

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966).
[CrossRef]

Abdulhalim, I.

A. Karabchevsky, C. Khare, B. Rauschenbach, and I. Abdulhalim, “Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films,” J. Nanophotonics6, 1–12 (2012).

Adam, P.-M.

J. Grand, P.-M. Adam, A.-S. Grimault, A. E. Vial, M. L. de la Chapelle, and J.-L. Bijeon JS. Kostcheev and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics1, 135–140 (2006).

Aktsipetrov, O. A.

O. A. Aktsipetrov, E. M. Dubinina, S. S. Elovikov, E. D. Mishina, A. A. Nikulin, N. N. Novikova, and M. S. Strebkov, “The electromagnetic (classical) mechanism of surface enhanced second harmonic generation and Raman scattering in island films,” Solid State Commun.70(11), 1021–1024 (1989).
[CrossRef]

Andersson, T.

S. Norman, T. Andersson, and C. G. Granqvist, “Optical properties of discontinuous gold films,” Phys. Rev. B18, 647–695 (1978).

S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical absorption in discontinuous gold films,” Solid State Commun.23(4), 261–265 (1977).
[CrossRef]

Aussenegg, F. R.

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nano design,” Appl. Phys. B63, 381–384 (1996).

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80(5), 1031–1046 (1993).
[CrossRef]

Axelevitch, A.

A. Axelevitch, B. Gorenstein, and G. Golan, “Investigation of optical transmission in thin metal films,” Physics Procedia32, 1–13 (2012).
[CrossRef]

Barkay, Z.

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin gold island films on silanized glass. Morphology and optical properties,” Chem. Mater.16(18), 3476–3483 (2004).
[CrossRef]

Bedeaux, D.

M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “Optical properties of 2D-systems of small particles on a substrate,” Physica A157(1), 269–278 (1989).
[CrossRef]

M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of truncated spheres and oblate spheroids on a substrate: comparison with experimental results,” Thin Solid Films164, 57–62 (1988).
[CrossRef]

M. M. Wind, A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate II,” Physica A143(1-2), 164–182 (1987).
[CrossRef]

M. M. Wind, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate I,” Physica A141(1), 33–57 (1987).
[CrossRef]

Bijeon, J.-L.

J. Grand, P.-M. Adam, A.-S. Grimault, A. E. Vial, M. L. de la Chapelle, and J.-L. Bijeon JS. Kostcheev and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics1, 135–140 (2006).

Bobbert, A.

M. M. Wind, A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate II,” Physica A143(1-2), 164–182 (1987).
[CrossRef]

Bobbert, P. A.

M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “Optical properties of 2D-systems of small particles on a substrate,” Physica A157(1), 269–278 (1989).
[CrossRef]

M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of truncated spheres and oblate spheroids on a substrate: comparison with experimental results,” Thin Solid Films164, 57–62 (1988).
[CrossRef]

Borensztein, Y.

R. Lazari, J. Jupille, and Y. Borensztein, “In situ study of a thin metal film by optical means,” Appl. Surf. Sci.142(1-4), 451–454 (1999).
[CrossRef]

Brunner, H.

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80(5), 1031–1046 (1993).
[CrossRef]

Burda, C.

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys.111(3), 1255–1264 (1999).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Dalacu, D.

de la Chapelle, M. L.

J. Grand, P.-M. Adam, A.-S. Grimault, A. E. Vial, M. L. de la Chapelle, and J.-L. Bijeon JS. Kostcheev and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics1, 135–140 (2006).

Dmitruk, N. L.

N. L. Dmitruk and A. V. Korovin, “Physical nature of anomalous optical transmission of thin absorptive corrugated films,” JETP Lett.89(2), 68–72 (2009).
[CrossRef]

Doron-Mor, I.

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin gold island films on silanized glass. Morphology and optical properties,” Chem. Mater.16(18), 3476–3483 (2004).
[CrossRef]

Dubinina, E. M.

O. A. Aktsipetrov, E. M. Dubinina, S. S. Elovikov, E. D. Mishina, A. A. Nikulin, N. N. Novikova, and M. S. Strebkov, “The electromagnetic (classical) mechanism of surface enhanced second harmonic generation and Raman scattering in island films,” Solid State Commun.70(11), 1021–1024 (1989).
[CrossRef]

Elovikov, S. S.

O. A. Aktsipetrov, E. M. Dubinina, S. S. Elovikov, E. D. Mishina, A. A. Nikulin, N. N. Novikova, and M. S. Strebkov, “The electromagnetic (classical) mechanism of surface enhanced second harmonic generation and Raman scattering in island films,” Solid State Commun.70(11), 1021–1024 (1989).
[CrossRef]

El-Sayed, M. A.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys.111(3), 1255–1264 (1999).
[CrossRef]

Ferraris, G. P.

F. Parmigiani, G. Samoggia, and G. P. Ferraris, “Optical properties of sputtered gold clusters,” J. Appl. Phys.57(7), 2524–2528 (1985).
[CrossRef]

Filip-Granit, N.

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin gold island films on silanized glass. Morphology and optical properties,” Chem. Mater.16(18), 3476–3483 (2004).
[CrossRef]

Golan, G.

A. Axelevitch, B. Gorenstein, and G. Golan, “Investigation of optical transmission in thin metal films,” Physics Procedia32, 1–13 (2012).
[CrossRef]

Gorenstein, B.

A. Axelevitch, B. Gorenstein, and G. Golan, “Investigation of optical transmission in thin metal films,” Physics Procedia32, 1–13 (2012).
[CrossRef]

Gotschy, W.

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nano design,” Appl. Phys. B63, 381–384 (1996).

Grand, J.

J. Grand, P.-M. Adam, A.-S. Grimault, A. E. Vial, M. L. de la Chapelle, and J.-L. Bijeon JS. Kostcheev and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics1, 135–140 (2006).

Granqvist, C. G.

S. Norman, T. Andersson, and C. G. Granqvist, “Optical properties of discontinuous gold films,” Phys. Rev. B18, 647–695 (1978).

S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical absorption in discontinuous gold films,” Solid State Commun.23(4), 261–265 (1977).
[CrossRef]

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B16(8), 3513–3534 (1977).
[CrossRef]

Grimault, A.-S.

J. Grand, P.-M. Adam, A.-S. Grimault, A. E. Vial, M. L. de la Chapelle, and J.-L. Bijeon JS. Kostcheev and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics1, 135–140 (2006).

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
[CrossRef] [PubMed]

Hunderi, O.

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B16(8), 3513–3534 (1977).
[CrossRef]

S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical absorption in discontinuous gold films,” Solid State Commun.23(4), 261–265 (1977).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Jupille, J.

I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B61(11), 7722–7733 (2000).
[CrossRef]

R. Lazari, J. Jupille, and Y. Borensztein, “In situ study of a thin metal film by optical means,” Appl. Surf. Sci.142(1-4), 451–454 (1999).
[CrossRef]

Karabchevsky, A.

A. Karabchevsky, C. Khare, B. Rauschenbach, and I. Abdulhalim, “Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films,” J. Nanophotonics6, 1–12 (2012).

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Khare, C.

A. Karabchevsky, C. Khare, B. Rauschenbach, and I. Abdulhalim, “Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films,” J. Nanophotonics6, 1–12 (2012).

Kolská, Z.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett.6(1), 96 (2011).
[CrossRef] [PubMed]

Korovin, A. V.

N. L. Dmitruk and A. V. Korovin, “Physical nature of anomalous optical transmission of thin absorptive corrugated films,” JETP Lett.89(2), 68–72 (2009).
[CrossRef]

Kostcheev, S.

J. Grand, P.-M. Adam, A.-S. Grimault, A. E. Vial, M. L. de la Chapelle, and J.-L. Bijeon JS. Kostcheev and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics1, 135–140 (2006).

Kümmerlen, J.

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80(5), 1031–1046 (1993).
[CrossRef]

Lazari, R.

R. Lazari, J. Jupille, and Y. Borensztein, “In situ study of a thin metal film by optical means,” Appl. Surf. Sci.142(1-4), 451–454 (1999).
[CrossRef]

Lazzari, R.

I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B61(11), 7722–7733 (2000).
[CrossRef]

Lee, K.-S.

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

Leitner, A.

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nano design,” Appl. Phys. B63, 381–384 (1996).

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80(5), 1031–1046 (1993).
[CrossRef]

Link, S.

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys.111(3), 1255–1264 (1999).
[CrossRef]

Lyutakov, O.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett.6(1), 96 (2011).
[CrossRef] [PubMed]

Martinu, L.

Mishina, E. D.

O. A. Aktsipetrov, E. M. Dubinina, S. S. Elovikov, E. D. Mishina, A. A. Nikulin, N. N. Novikova, and M. S. Strebkov, “The electromagnetic (classical) mechanism of surface enhanced second harmonic generation and Raman scattering in island films,” Solid State Commun.70(11), 1021–1024 (1989).
[CrossRef]

Nikulin, A. A.

O. A. Aktsipetrov, E. M. Dubinina, S. S. Elovikov, E. D. Mishina, A. A. Nikulin, N. N. Novikova, and M. S. Strebkov, “The electromagnetic (classical) mechanism of surface enhanced second harmonic generation and Raman scattering in island films,” Solid State Commun.70(11), 1021–1024 (1989).
[CrossRef]

Norman, S.

S. Norman, T. Andersson, and C. G. Granqvist, “Optical properties of discontinuous gold films,” Phys. Rev. B18, 647–695 (1978).

Norrman, S.

S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical absorption in discontinuous gold films,” Solid State Commun.23(4), 261–265 (1977).
[CrossRef]

Novikova, N. N.

O. A. Aktsipetrov, E. M. Dubinina, S. S. Elovikov, E. D. Mishina, A. A. Nikulin, N. N. Novikova, and M. S. Strebkov, “The electromagnetic (classical) mechanism of surface enhanced second harmonic generation and Raman scattering in island films,” Solid State Commun.70(11), 1021–1024 (1989).
[CrossRef]

Parmigiani, F.

F. Parmigiani, G. Samoggia, and G. P. Ferraris, “Optical properties of sputtered gold clusters,” J. Appl. Phys.57(7), 2524–2528 (1985).
[CrossRef]

Rauschenbach, B.

A. Karabchevsky, C. Khare, B. Rauschenbach, and I. Abdulhalim, “Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films,” J. Nanophotonics6, 1–12 (2012).

Roux, S.

I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B61(11), 7722–7733 (2000).
[CrossRef]

Royer, P.

J. Grand, P.-M. Adam, A.-S. Grimault, A. E. Vial, M. L. de la Chapelle, and J.-L. Bijeon JS. Kostcheev and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics1, 135–140 (2006).

Rubinstein, I.

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin gold island films on silanized glass. Morphology and optical properties,” Chem. Mater.16(18), 3476–3483 (2004).
[CrossRef]

Rybka, V.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett.6(1), 96 (2011).
[CrossRef] [PubMed]

Samoggia, G.

F. Parmigiani, G. Samoggia, and G. P. Ferraris, “Optical properties of sputtered gold clusters,” J. Appl. Phys.57(7), 2524–2528 (1985).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Siegel, J.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett.6(1), 96 (2011).
[CrossRef] [PubMed]

Simonsen, I.

I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B61(11), 7722–7733 (2000).
[CrossRef]

Strebkov, M. S.

O. A. Aktsipetrov, E. M. Dubinina, S. S. Elovikov, E. D. Mishina, A. A. Nikulin, N. N. Novikova, and M. S. Strebkov, “The electromagnetic (classical) mechanism of surface enhanced second harmonic generation and Raman scattering in island films,” Solid State Commun.70(11), 1021–1024 (1989).
[CrossRef]

Svorcík, V.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett.6(1), 96 (2011).
[CrossRef] [PubMed]

Vaskevich, A.

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin gold island films on silanized glass. Morphology and optical properties,” Chem. Mater.16(18), 3476–3483 (2004).
[CrossRef]

Vial, A. E.

J. Grand, P.-M. Adam, A.-S. Grimault, A. E. Vial, M. L. de la Chapelle, and J.-L. Bijeon JS. Kostcheev and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics1, 135–140 (2006).

Vlieger, J.

M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “Optical properties of 2D-systems of small particles on a substrate,” Physica A157(1), 269–278 (1989).
[CrossRef]

M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of truncated spheres and oblate spheroids on a substrate: comparison with experimental results,” Thin Solid Films164, 57–62 (1988).
[CrossRef]

M. M. Wind, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate I,” Physica A141(1), 33–57 (1987).
[CrossRef]

M. M. Wind, A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate II,” Physica A143(1-2), 164–182 (1987).
[CrossRef]

Vonmetz, K.

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nano design,” Appl. Phys. B63, 381–384 (1996).

Wang, Z. L.

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys.111(3), 1255–1264 (1999).
[CrossRef]

Wind, M. M.

M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “Optical properties of 2D-systems of small particles on a substrate,” Physica A157(1), 269–278 (1989).
[CrossRef]

M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of truncated spheres and oblate spheroids on a substrate: comparison with experimental results,” Thin Solid Films164, 57–62 (1988).
[CrossRef]

M. M. Wind, A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate II,” Physica A143(1-2), 164–182 (1987).
[CrossRef]

M. M. Wind, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate I,” Physica A141(1), 33–57 (1987).
[CrossRef]

Wokaun, A.

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80(5), 1031–1046 (1993).
[CrossRef]

Yee, K.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Anal. Bioanal. Chem.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
[CrossRef] [PubMed]

Appl. Phys. B

W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg, “Thin films by regular patterns of metal nanoparticles: tailoring the optical properties by nano design,” Appl. Phys. B63, 381–384 (1996).

Appl. Surf. Sci.

R. Lazari, J. Jupille, and Y. Borensztein, “In situ study of a thin metal film by optical means,” Appl. Surf. Sci.142(1-4), 451–454 (1999).
[CrossRef]

Chem. Mater.

I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, and I. Rubinstein, “Ultrathin gold island films on silanized glass. Morphology and optical properties,” Chem. Mater.16(18), 3476–3483 (2004).
[CrossRef]

IEEE Trans. Antenn. Propag.

K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antenn. Propag.14(3), 302–307 (1966).
[CrossRef]

J. Appl. Phys.

F. Parmigiani, G. Samoggia, and G. P. Ferraris, “Optical properties of sputtered gold clusters,” J. Appl. Phys.57(7), 2524–2528 (1985).
[CrossRef]

J. Chem. Phys.

S. Link, C. Burda, Z. L. Wang, and M. A. El-Sayed, “Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation,” J. Chem. Phys.111(3), 1255–1264 (1999).
[CrossRef]

J. Nanophotonics

A. Karabchevsky, C. Khare, B. Rauschenbach, and I. Abdulhalim, “Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films,” J. Nanophotonics6, 1–12 (2012).

J. Opt. Soc. Am. B

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

JETP Lett.

N. L. Dmitruk and A. V. Korovin, “Physical nature of anomalous optical transmission of thin absorptive corrugated films,” JETP Lett.89(2), 68–72 (2009).
[CrossRef]

Mol. Phys.

J. Kümmerlen, A. Leitner, H. Brunner, F. R. Aussenegg, and A. Wokaun, “Enhanced dye fluorescence over silver island films: analysis of the distance dependence,” Mol. Phys.80(5), 1031–1046 (1993).
[CrossRef]

Nanoscale Res. Lett.

J. Siegel, O. Lyutakov, V. Rybka, Z. Kolská, and V. Svorčík, “Properties of gold nanostructures sputtered on glass,” Nanoscale Res. Lett.6(1), 96 (2011).
[CrossRef] [PubMed]

Phys. Rev. B

I. Simonsen, R. Lazzari, J. Jupille, and S. Roux, “Numerical modeling of the optical response of supported metallic particles,” Phys. Rev. B61(11), 7722–7733 (2000).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

C. G. Granqvist and O. Hunderi, “Optical properties of ultrafine gold particles,” Phys. Rev. B16(8), 3513–3534 (1977).
[CrossRef]

S. Norman, T. Andersson, and C. G. Granqvist, “Optical properties of discontinuous gold films,” Phys. Rev. B18, 647–695 (1978).

Physica A

M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “Optical properties of 2D-systems of small particles on a substrate,” Physica A157(1), 269–278 (1989).
[CrossRef]

M. M. Wind, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate I,” Physica A141(1), 33–57 (1987).
[CrossRef]

M. M. Wind, A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate II,” Physica A143(1-2), 164–182 (1987).
[CrossRef]

Physics Procedia

A. Axelevitch, B. Gorenstein, and G. Golan, “Investigation of optical transmission in thin metal films,” Physics Procedia32, 1–13 (2012).
[CrossRef]

Plasmonics

J. Grand, P.-M. Adam, A.-S. Grimault, A. E. Vial, M. L. de la Chapelle, and J.-L. Bijeon JS. Kostcheev and P. Royer, “Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory,” Plasmonics1, 135–140 (2006).

Solid State Commun.

S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, “Optical absorption in discontinuous gold films,” Solid State Commun.23(4), 261–265 (1977).
[CrossRef]

O. A. Aktsipetrov, E. M. Dubinina, S. S. Elovikov, E. D. Mishina, A. A. Nikulin, N. N. Novikova, and M. S. Strebkov, “The electromagnetic (classical) mechanism of surface enhanced second harmonic generation and Raman scattering in island films,” Solid State Commun.70(11), 1021–1024 (1989).
[CrossRef]

Thin Solid Films

M. M. Wind, P. A. Bobbert, J. Vlieger, and D. Bedeaux, “The polarizability of truncated spheres and oblate spheroids on a substrate: comparison with experimental results,” Thin Solid Films164, 57–62 (1988).
[CrossRef]

Other

J. E. Greene, “Thin film nucleation, growth, and microstructural evolution: an atomic scale view,” in Handbook of Deposition Technologies for Films and Coating, 3rd Ed., Ed. P. M. Martin, ed. (Elsevier, 2010), Chap. 12, pp. 554–620.

http://www.lumerical.com/

Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, 1998).

R. W. Berry, P. M. Hall, and M. T. Harris, Thin Film Technology (Van Nostrand, 1968).

M. Osawa, “Surface-Enhanced Infrared Absorption,” in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, ed. (Springer Berlin Heidelberg, 2001), pp. 163–187.

G. Boisde and A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Arthech House, 1996).

V. M. Agranovich and D. L. Mills, eds., Surface Polaritons-Electromagnetic Waves at Surfaces and Interfaces (North Holland/Elsevier Science, 1982).

H.-E. Ponath and G. I. Stegeman, eds., Nonlinear Surface Electromagnetic Phenomena (Modern Problems in Condensed Matter Science) (North-Holland, 1991).

H. Raether, Surface Plasmons On Smooth And Rough Surfaces And On Gratings (Springer, 1988).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Continuous metal film and island metal film grown on glass substrates.

Fig. 2
Fig. 2

Continuous metal film and spherical metal segments on the flat substrates.

Fig. 3
Fig. 3

Average diameter of gold islands versus nominal thickness (the data extracted from [16], [20], [22]). The dashed curve represents the second-order polynomial fit by Eq. (2).

Fig. 4
Fig. 4

Average height of gold islands versus nominal thickness (the data extracted from [20], [22]). The squares represent AFM imaging data [20, 22] and the triangles represent EM imaging data [20]. The dashed lines show the linear fits for AFM and EM data. The solid line represents linear fit by Eq. (3) (average of linear fits for AFM and EM data).

Fig. 5
Fig. 5

Island's aspect ratio versus the nominal thickness.

Fig. 6
Fig. 6

Evolution of cap's shape with increase of nominal thickness.

Fig. 7
Fig. 7

Density of gold islands versus nominal thickness. The data, extracted from [16], [20] and [22] are marked by squares. The dashed curve represents power fit by Eq. (6).

Fig. 8
Fig. 8

Simulation setup.

Fig. 9
Fig. 9

Calculated transmittance spectra of thin gold films with various nominal thicknesses.

Fig. 10
Fig. 10

Plasmon resonance wavelength versus the nominal thickness. The dashed curve represents exponential fit.

Fig. 11
Fig. 11

Transmittance of thin gold films deposited by thermal evaporation.

Fig. 12
Fig. 12

Two-dimensional distribution of electrical field intensity on the top surface of the glass substrate.

Tables (1)

Tables Icon

Table 1 Average Diameter, Height and Density of Gold Islands Versus Nominal Thickness

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

a(t)= D(t) / h(t) .
D(t)=0.2407 t 2 +3.7928t+0.1938, nm,
h(t)=0.9266t+1.731, nm,
R(t)= D 2 (t) 8h(t) + h(t) 2 ,
d(t)= D 2 (t) 8h(t) h(t) 2 .
N(t)=17850 t 1.8719 , μm 2 ,
t= M 4πρ cosθ r 2 .
ω= kc / ε(ω)

Metrics