Abstract

We investigate an atomic entanglement purification protocol based on the coherent state input-output process by working in low-Q cavity in the atom-cavity intermediate coupling region. The information of entangled states are encoded in three-level configured single atoms confined in separated one-side optical micro-cavities. Using the coherent state input-output process, we design a two-qubit parity check module (PCM), which allows the quantum nondemolition measurement for the atomic qubits, and show its use for remote parities to distill a high-fidelity atomic entangled ensemble from an initial mixed state ensemble nonlocally. The proposed scheme can further be used for unknown atomic states entanglement concentration. Also by exploiting the PCM, we describe a modified scheme for atomic entanglement concentration by introducing ancillary single atoms. As the coherent state input-output process is robust and scalable in realistic applications, and the detection in the PCM is based on the intensity of outgoing coherent state, the present protocols may be widely used in large-scaled and solid-based quantum repeater and quantum information processing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993).
    [CrossRef] [PubMed]
  2. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett.69, 2881–2884 (1992).
    [CrossRef] [PubMed]
  3. M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999).
    [CrossRef]
  4. A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A59, 162–168 (1999).
    [CrossRef]
  5. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69, 052307 (2004).
    [CrossRef]
  6. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett.67, 661–663 (1991).
    [CrossRef] [PubMed]
  7. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys.Rev. Lett.68, 557–559 (1992).
    [CrossRef] [PubMed]
  8. X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A78, 022321 (2008).
    [CrossRef]
  9. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A65, 032302 (2002).
    [CrossRef]
  10. F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A68, 042317 (2003).
    [CrossRef]
  11. C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A71, 044305 (2005).
    [CrossRef]
  12. X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A74, 054302 (2006).
    [CrossRef]
  13. H, J. Briegel, W. Dr, J. I. Cirac, and P. Zoller, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. Lett.81, 5932–5935 (1998).
  14. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001).
    [CrossRef] [PubMed]
  15. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett.76, 722–725 (1996).
    [CrossRef] [PubMed]
  16. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
    [CrossRef] [PubMed]
  17. J. W. Pan, C. Simon, and A. Zellinger, “Entanglement purification for quantum communication,” Nature (London)410, 1067–1070 (2001).
    [CrossRef]
  18. J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature423, 417–422 (2003).
    [CrossRef] [PubMed]
  19. C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett.89, 257901 (2002).
    [CrossRef] [PubMed]
  20. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A77, 042308 (2008).
    [CrossRef]
  21. Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A82, 044305 (2010).
    [CrossRef]
  22. X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A82, 044304 (2010).
    [CrossRef]
  23. F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A83, 062316 (2011).
    [CrossRef]
  24. C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput.11, 0988–1002 (2011).
  25. M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A57, R4075–R4078 (1998).
    [CrossRef]
  26. F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A84, 052312 (2011).
    [CrossRef]
  27. C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A53, 2046 (1996).
    [CrossRef] [PubMed]
  28. S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A60, 194–197 (1999).
    [CrossRef]
  29. B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A62, 054301 (2000).
    [CrossRef]
  30. Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A64, 014301 (2001).
    [CrossRef]
  31. T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A64, 012304 (2001).
    [CrossRef]
  32. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A77, 062325 (2008).
    [CrossRef]
  33. Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A85, 012307 (2012).
    [CrossRef]
  34. F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A85, 022311 (2012).
    [CrossRef]
  35. M. Yang, W. Song, and Z. L. Cao, “Entanglement purification for arbitrary unknown ionic states via linear optics,” Phys. Rev. A71, 012308 (2005).
    [CrossRef]
  36. M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A71, 044302 (2005).
    [CrossRef]
  37. X. L. Feng, L. C. Kwek, and C. H. Oh, “Electronic entanglement purification scheme enhanced by charge detections,” Phys. Rev. A71, 064301 (2005).
    [CrossRef]
  38. Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A73, 014303 (2006).
    [CrossRef]
  39. R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature443, 838–841 (2006).
    [CrossRef] [PubMed]
  40. C. D. Ogden, M. Paternostro, and M. S. Kim, “Concentration and purification of entanglement for qubit systems with ancillary cavity fields,” Phys. Rev. A75, 042325 (2007).
    [CrossRef]
  41. C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A84, 032307 (2011).
    [CrossRef]
  42. C. Wang, “Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system,” Phys. Rev. A86, 012323 (2012).
    [CrossRef]
  43. Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, “Atomic and photonic entanglement concentration via photonic Faraday rotation,” Phys. Rev. A86, 034305 (2012).
    [CrossRef]
  44. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565 (2001).
    [CrossRef]
  45. S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett.87, 037902 (2001).
    [CrossRef] [PubMed]
  46. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett.92, 127902 (2004).
    [CrossRef] [PubMed]
  47. Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70, 042314 (2004).
    [CrossRef]
  48. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature (London)436, 87 (2005).
    [CrossRef]
  49. J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett.95, 160501 (2005).
    [CrossRef] [PubMed]
  50. J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature440, 779–782 (2006).
    [CrossRef] [PubMed]
  51. H. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and R. Gerhard, “A single-photon server with just one atom,” Nat. Phys.3, 253–255 (2007).
    [CrossRef]
  52. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science317, 488–490 (2007).
    [CrossRef] [PubMed]
  53. F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A80, 042319 (2009).
    [CrossRef]
  54. C. Y. Hu, A. Young, J. L. OBrien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B78, 085307 (2008).
    [CrossRef]
  55. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009).
    [CrossRef]
  56. Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A79064304 (2009).
    [CrossRef]
  57. Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A82052329 (2010).
    [CrossRef]
  58. J. J. Chen, J. H. An, M. Feng, and G. Liu, “Teleportation of an arbitrary multipartite state via photonic Faraday rotation,” J. Phys. B43, 095505 (2010).
    [CrossRef]
  59. P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett.96, 240501 (2006).
    [CrossRef] [PubMed]
  60. T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys.8, 184 (2006).
    [CrossRef]
  61. F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A82, 052315 (2010).
    [CrossRef]
  62. F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett.91, 10001 (2010).
    [CrossRef]
  63. S. Nuβmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett.95, 173602 (2005).
    [CrossRef]
  64. K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett.98, 233601 (2007).
    [CrossRef] [PubMed]
  65. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature450, 272–276 (2007).
    [CrossRef] [PubMed]
  66. B. Dayan, A. S. Parkins, E. Takao Aoki, P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
    [CrossRef] [PubMed]
  67. J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A69, 051804(R) (2004).
    [CrossRef]
  68. A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett.89, 103001(2002).
    [CrossRef] [PubMed]

2012 (4)

Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A85, 012307 (2012).
[CrossRef]

F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A85, 022311 (2012).
[CrossRef]

C. Wang, “Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system,” Phys. Rev. A86, 012323 (2012).
[CrossRef]

Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, “Atomic and photonic entanglement concentration via photonic Faraday rotation,” Phys. Rev. A86, 034305 (2012).
[CrossRef]

2011 (4)

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A84, 032307 (2011).
[CrossRef]

F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A83, 062316 (2011).
[CrossRef]

C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput.11, 0988–1002 (2011).

F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A84, 052312 (2011).
[CrossRef]

2010 (6)

Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A82, 044305 (2010).
[CrossRef]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A82, 044304 (2010).
[CrossRef]

Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A82052329 (2010).
[CrossRef]

J. J. Chen, J. H. An, M. Feng, and G. Liu, “Teleportation of an arbitrary multipartite state via photonic Faraday rotation,” J. Phys. B43, 095505 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A82, 052315 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett.91, 10001 (2010).
[CrossRef]

2009 (3)

F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A80, 042319 (2009).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A79064304 (2009).
[CrossRef]

2008 (5)

C. Y. Hu, A. Young, J. L. OBrien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B78, 085307 (2008).
[CrossRef]

B. Dayan, A. S. Parkins, E. Takao Aoki, P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A77, 062325 (2008).
[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A77, 042308 (2008).
[CrossRef]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A78, 022321 (2008).
[CrossRef]

2007 (5)

C. D. Ogden, M. Paternostro, and M. S. Kim, “Concentration and purification of entanglement for qubit systems with ancillary cavity fields,” Phys. Rev. A75, 042325 (2007).
[CrossRef]

H. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and R. Gerhard, “A single-photon server with just one atom,” Nat. Phys.3, 253–255 (2007).
[CrossRef]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science317, 488–490 (2007).
[CrossRef] [PubMed]

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett.98, 233601 (2007).
[CrossRef] [PubMed]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature450, 272–276 (2007).
[CrossRef] [PubMed]

2006 (6)

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature440, 779–782 (2006).
[CrossRef] [PubMed]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett.96, 240501 (2006).
[CrossRef] [PubMed]

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys.8, 184 (2006).
[CrossRef]

Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A73, 014303 (2006).
[CrossRef]

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature443, 838–841 (2006).
[CrossRef] [PubMed]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A74, 054302 (2006).
[CrossRef]

2005 (7)

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A71, 044305 (2005).
[CrossRef]

M. Yang, W. Song, and Z. L. Cao, “Entanglement purification for arbitrary unknown ionic states via linear optics,” Phys. Rev. A71, 012308 (2005).
[CrossRef]

M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A71, 044302 (2005).
[CrossRef]

X. L. Feng, L. C. Kwek, and C. H. Oh, “Electronic entanglement purification scheme enhanced by charge detections,” Phys. Rev. A71, 064301 (2005).
[CrossRef]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature (London)436, 87 (2005).
[CrossRef]

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett.95, 160501 (2005).
[CrossRef] [PubMed]

S. Nuβmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett.95, 173602 (2005).
[CrossRef]

2004 (4)

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A69, 051804(R) (2004).
[CrossRef]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett.92, 127902 (2004).
[CrossRef] [PubMed]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69, 052307 (2004).
[CrossRef]

2003 (2)

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A68, 042317 (2003).
[CrossRef]

J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature423, 417–422 (2003).
[CrossRef] [PubMed]

2002 (3)

C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett.89, 257901 (2002).
[CrossRef] [PubMed]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A65, 032302 (2002).
[CrossRef]

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett.89, 103001(2002).
[CrossRef] [PubMed]

2001 (6)

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565 (2001).
[CrossRef]

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett.87, 037902 (2001).
[CrossRef] [PubMed]

J. W. Pan, C. Simon, and A. Zellinger, “Entanglement purification for quantum communication,” Nature (London)410, 1067–1070 (2001).
[CrossRef]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001).
[CrossRef] [PubMed]

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A64, 014301 (2001).
[CrossRef]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A64, 012304 (2001).
[CrossRef]

2000 (1)

B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A62, 054301 (2000).
[CrossRef]

1999 (3)

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A60, 194–197 (1999).
[CrossRef]

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999).
[CrossRef]

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A59, 162–168 (1999).
[CrossRef]

1998 (2)

H, J. Briegel, W. Dr, J. I. Cirac, and P. Zoller, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. Lett.81, 5932–5935 (1998).

M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A57, R4075–R4078 (1998).
[CrossRef]

1996 (3)

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A53, 2046 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett.76, 722–725 (1996).
[CrossRef] [PubMed]

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

1993 (1)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993).
[CrossRef] [PubMed]

1992 (2)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett.69, 2881–2884 (1992).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys.Rev. Lett.68, 557–559 (1992).
[CrossRef] [PubMed]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett.67, 661–663 (1991).
[CrossRef] [PubMed]

Ahmadi, P.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett.98, 233601 (2007).
[CrossRef] [PubMed]

An, J. H.

J. J. Chen, J. H. An, M. Feng, and G. Liu, “Teleportation of an arbitrary multipartite state via photonic Faraday rotation,” J. Phys. B43, 095505 (2010).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

Auffeves, A.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett.87, 037902 (2001).
[CrossRef] [PubMed]

Becher, C.

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett.89, 103001(2002).
[CrossRef] [PubMed]

Bennett, C. H.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett.76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A53, 2046 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys.Rev. Lett.68, 557–559 (1992).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett.69, 2881–2884 (1992).
[CrossRef] [PubMed]

Bernstein, H. J.

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A53, 2046 (1996).
[CrossRef] [PubMed]

Bertet, P.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett.87, 037902 (2001).
[CrossRef] [PubMed]

Berthiaume, A.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999).
[CrossRef]

Beugnon, J.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature440, 779–782 (2006).
[CrossRef] [PubMed]

Birnbaum, K. M.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature (London)436, 87 (2005).
[CrossRef]

Blakestad, R. B.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature443, 838–841 (2006).
[CrossRef] [PubMed]

Blatt, R.

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett.89, 103001(2002).
[CrossRef] [PubMed]

Boca, A.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature (London)436, 87 (2005).
[CrossRef]

Boozer, A. D.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature (London)436, 87 (2005).
[CrossRef]

Bose, S.

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A60, 194–197 (1999).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett.76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys.Rev. Lett.68, 557–559 (1992).
[CrossRef] [PubMed]

Briegel, J.

H, J. Briegel, W. Dr, J. I. Cirac, and P. Zoller, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. Lett.81, 5932–5935 (1998).

Britton, J.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature443, 838–841 (2006).
[CrossRef] [PubMed]

Browaeys, A.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature440, 779–782 (2006).
[CrossRef] [PubMed]

Brune, M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565 (2001).
[CrossRef]

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett.87, 037902 (2001).
[CrossRef] [PubMed]

Buzek, V.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999).
[CrossRef]

Cao, Z. L.

Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A73, 014303 (2006).
[CrossRef]

M. Yang, W. Song, and Z. L. Cao, “Entanglement purification for arbitrary unknown ionic states via linear optics,” Phys. Rev. A71, 012308 (2005).
[CrossRef]

M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A71, 044302 (2005).
[CrossRef]

Chang, M. S.

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A69, 051804(R) (2004).
[CrossRef]

Chapman, M. S.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett.98, 233601 (2007).
[CrossRef] [PubMed]

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A69, 051804(R) (2004).
[CrossRef]

Chen, J. J.

J. J. Chen, J. H. An, M. Feng, and G. Liu, “Teleportation of an arbitrary multipartite state via photonic Faraday rotation,” J. Phys. B43, 095505 (2010).
[CrossRef]

Chen, Q.

Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A82052329 (2010).
[CrossRef]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A79064304 (2009).
[CrossRef]

Cho, J.

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett.95, 160501 (2005).
[CrossRef] [PubMed]

Cirac, J. I.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001).
[CrossRef] [PubMed]

H, J. Briegel, W. Dr, J. I. Cirac, and P. Zoller, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. Lett.81, 5932–5935 (1998).

Colombe, Y.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature450, 272–276 (2007).
[CrossRef] [PubMed]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993).
[CrossRef] [PubMed]

Darqui, B.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature440, 779–782 (2006).
[CrossRef] [PubMed]

Dayan, B.

B. Dayan, A. S. Parkins, E. Takao Aoki, P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Deng, F. G.

F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A85, 022311 (2012).
[CrossRef]

F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A84, 052312 (2011).
[CrossRef]

F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A83, 062316 (2011).
[CrossRef]

Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A82, 044305 (2010).
[CrossRef]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A78, 022321 (2008).
[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A77, 062325 (2008).
[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A77, 042308 (2008).
[CrossRef]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A74, 054302 (2006).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A71, 044305 (2005).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69, 052307 (2004).
[CrossRef]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A68, 042317 (2003).
[CrossRef]

Deutsch, D.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

Dingjan, J.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature440, 779–782 (2006).
[CrossRef] [PubMed]

Dr, W.

H, J. Briegel, W. Dr, J. I. Cirac, and P. Zoller, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. Lett.81, 5932–5935 (1998).

Duan, L. M.

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett.92, 127902 (2004).
[CrossRef] [PubMed]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001).
[CrossRef] [PubMed]

Dubois, G.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature450, 272–276 (2007).
[CrossRef] [PubMed]

Ekert, A.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett.67, 661–663 (1991).
[CrossRef] [PubMed]

Eschner, J.

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett.89, 103001(2002).
[CrossRef] [PubMed]

Feng, M.

J. J. Chen, J. H. An, M. Feng, and G. Liu, “Teleportation of an arbitrary multipartite state via photonic Faraday rotation,” J. Phys. B43, 095505 (2010).
[CrossRef]

Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A82052329 (2010).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A79064304 (2009).
[CrossRef]

F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A80, 042319 (2009).
[CrossRef]

Feng, X. L.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett.91, 10001 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A82, 052315 (2010).
[CrossRef]

X. L. Feng, L. C. Kwek, and C. H. Oh, “Electronic entanglement purification scheme enhanced by charge detections,” Phys. Rev. A71, 064301 (2005).
[CrossRef]

Fortier, K. M.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett.98, 233601 (2007).
[CrossRef] [PubMed]

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A69, 051804(R) (2004).
[CrossRef]

Gao, J.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

Gasparonl, S.

J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature423, 417–422 (2003).
[CrossRef] [PubMed]

Gerhard, R.

H. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and R. Gerhard, “A single-photon server with just one atom,” Nat. Phys.3, 253–255 (2007).
[CrossRef]

Gibbons, M. J.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett.98, 233601 (2007).
[CrossRef] [PubMed]

Grangier, P.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature440, 779–782 (2006).
[CrossRef] [PubMed]

Guo, G. C.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A62, 054301 (2000).
[CrossRef]

H,

H, J. Briegel, W. Dr, J. I. Cirac, and P. Zoller, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. Lett.81, 5932–5935 (1998).

Hamley, C. D.

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A69, 051804(R) (2004).
[CrossRef]

Han, Z. F.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

Haroche, S.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565 (2001).
[CrossRef]

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett.87, 037902 (2001).
[CrossRef] [PubMed]

Hijlkema, H.

H. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and R. Gerhard, “A single-photon server with just one atom,” Nat. Phys.3, 253–255 (2007).
[CrossRef]

Hijlkema, M.

S. Nuβmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett.95, 173602 (2005).
[CrossRef]

Hillery, M.

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999).
[CrossRef]

Hu, C. Y.

C. Y. Hu, A. Young, J. L. OBrien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B78, 085307 (2008).
[CrossRef]

Hunger, D.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature450, 272–276 (2007).
[CrossRef] [PubMed]

Imoto, N.

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A64, 012304 (2001).
[CrossRef]

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A59, 162–168 (1999).
[CrossRef]

Jiang, Y. K.

B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A62, 054301 (2000).
[CrossRef]

Jin, G. S.

C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput.11, 0988–1002 (2011).

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A84, 032307 (2011).
[CrossRef]

Jones, M. P. A.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature440, 779–782 (2006).
[CrossRef] [PubMed]

Jost, J. D.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature443, 838–841 (2006).
[CrossRef] [PubMed]

Jozsa, R.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993).
[CrossRef] [PubMed]

Karlsson, A.

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A59, 162–168 (1999).
[CrossRef]

Kim, M. S.

C. D. Ogden, M. Paternostro, and M. S. Kim, “Concentration and purification of entanglement for qubit systems with ancillary cavity fields,” Phys. Rev. A75, 042325 (2007).
[CrossRef]

Kim, S. Y.

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett.98, 233601 (2007).
[CrossRef] [PubMed]

Kimble, H. J.

B. Dayan, A. S. Parkins, E. Takao Aoki, P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature (London)436, 87 (2005).
[CrossRef]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett.92, 127902 (2004).
[CrossRef] [PubMed]

Knight, P. L.

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A60, 194–197 (1999).
[CrossRef]

M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A57, R4075–R4078 (1998).
[CrossRef]

Knill, E.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature443, 838–841 (2006).
[CrossRef] [PubMed]

Koashi, M.

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A64, 012304 (2001).
[CrossRef]

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A59, 162–168 (1999).
[CrossRef]

Kreuter, A.

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett.89, 103001(2002).
[CrossRef] [PubMed]

Kuang, L. M.

Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, “Atomic and photonic entanglement concentration via photonic Faraday rotation,” Phys. Rev. A86, 034305 (2012).
[CrossRef]

Kuhn, A.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science317, 488–490 (2007).
[CrossRef] [PubMed]

H. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and R. Gerhard, “A single-photon server with just one atom,” Nat. Phys.3, 253–255 (2007).
[CrossRef]

S. Nuβmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett.95, 173602 (2005).
[CrossRef]

Kwek, L. C.

X. L. Feng, L. C. Kwek, and C. H. Oh, “Electronic entanglement purification scheme enhanced by charge detections,” Phys. Rev. A71, 064301 (2005).
[CrossRef]

Ladd, T. D.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett.96, 240501 (2006).
[CrossRef] [PubMed]

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys.8, 184 (2006).
[CrossRef]

Langer, C.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature443, 838–841 (2006).
[CrossRef] [PubMed]

Lee, H. W.

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett.95, 160501 (2005).
[CrossRef] [PubMed]

Leibfried, D.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature443, 838–841 (2006).
[CrossRef] [PubMed]

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett.89, 103001(2002).
[CrossRef] [PubMed]

Li, X. H.

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A82, 044304 (2010).
[CrossRef]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A78, 022321 (2008).
[CrossRef]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A74, 054302 (2006).
[CrossRef]

Li, Y. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A71, 044305 (2005).
[CrossRef]

Lin, X. M.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

Linke, F.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature450, 272–276 (2007).
[CrossRef] [PubMed]

Liu, G.

J. J. Chen, J. H. An, M. Feng, and G. Liu, “Teleportation of an arbitrary multipartite state via photonic Faraday rotation,” J. Phys. B43, 095505 (2010).
[CrossRef]

Liu, X. J.

Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, “Atomic and photonic entanglement concentration via photonic Faraday rotation,” Phys. Rev. A86, 034305 (2012).
[CrossRef]

Liu, X. S.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A71, 044305 (2005).
[CrossRef]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A68, 042317 (2003).
[CrossRef]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A65, 032302 (2002).
[CrossRef]

Long, G. L.

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A71, 044305 (2005).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69, 052307 (2004).
[CrossRef]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A68, 042317 (2003).
[CrossRef]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A65, 032302 (2002).
[CrossRef]

Lukin, M. D.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001).
[CrossRef] [PubMed]

Macchiavello, C.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

Maioli, P.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett.87, 037902 (2001).
[CrossRef] [PubMed]

Mei, F.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett.91, 10001 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A82, 052315 (2010).
[CrossRef]

F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A80, 042319 (2009).
[CrossRef]

Mermin, N. D.

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys.Rev. Lett.68, 557–559 (1992).
[CrossRef] [PubMed]

Messin, G.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature440, 779–782 (2006).
[CrossRef] [PubMed]

Miller, R.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature (London)436, 87 (2005).
[CrossRef]

Mundt, A. B.

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett.89, 103001(2002).
[CrossRef] [PubMed]

Munro, W. J.

C. Y. Hu, A. Young, J. L. OBrien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B78, 085307 (2008).
[CrossRef]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett.96, 240501 (2006).
[CrossRef] [PubMed]

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys.8, 184 (2006).
[CrossRef]

Murao, M.

M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A57, R4075–R4078 (1998).
[CrossRef]

Nemoto, K.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett.96, 240501 (2006).
[CrossRef] [PubMed]

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys.8, 184 (2006).
[CrossRef]

Northup, T. E.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature (London)436, 87 (2005).
[CrossRef]

Nußmann, S.

S. Nuβmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett.95, 173602 (2005).
[CrossRef]

OBrien, J. L.

C. Y. Hu, A. Young, J. L. OBrien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B78, 085307 (2008).
[CrossRef]

Ogden, C. D.

C. D. Ogden, M. Paternostro, and M. S. Kim, “Concentration and purification of entanglement for qubit systems with ancillary cavity fields,” Phys. Rev. A75, 042325 (2007).
[CrossRef]

Oh, C. H.

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A82, 052315 (2010).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

X. L. Feng, L. C. Kwek, and C. H. Oh, “Electronic entanglement purification scheme enhanced by charge detections,” Phys. Rev. A71, 064301 (2005).
[CrossRef]

Osnaghi, S.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett.87, 037902 (2001).
[CrossRef] [PubMed]

Ostby, P.

B. Dayan, A. S. Parkins, E. Takao Aoki, P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Ozeri, R.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature443, 838–841 (2006).
[CrossRef] [PubMed]

Pan, J. W.

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69, 052307 (2004).
[CrossRef]

J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature423, 417–422 (2003).
[CrossRef] [PubMed]

C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett.89, 257901 (2002).
[CrossRef] [PubMed]

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A64, 014301 (2001).
[CrossRef]

J. W. Pan, C. Simon, and A. Zellinger, “Entanglement purification for quantum communication,” Nature (London)410, 1067–1070 (2001).
[CrossRef]

Parkins, A. S.

B. Dayan, A. S. Parkins, E. Takao Aoki, P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Paternostro, M.

C. D. Ogden, M. Paternostro, and M. S. Kim, “Concentration and purification of entanglement for qubit systems with ancillary cavity fields,” Phys. Rev. A75, 042325 (2007).
[CrossRef]

Peng, Z. H.

Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, “Atomic and photonic entanglement concentration via photonic Faraday rotation,” Phys. Rev. A86, 034305 (2012).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993).
[CrossRef] [PubMed]

Plenio, M. B.

M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A57, R4075–R4078 (1998).
[CrossRef]

Popescu, S.

M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A57, R4075–R4078 (1998).
[CrossRef]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A53, 2046 (1996).
[CrossRef] [PubMed]

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett.76, 722–725 (1996).
[CrossRef] [PubMed]

Raimond, J. M.

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565 (2001).
[CrossRef]

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett.87, 037902 (2001).
[CrossRef] [PubMed]

Rarity, J. G.

C. Y. Hu, A. Young, J. L. OBrien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B78, 085307 (2008).
[CrossRef]

Reichel, J.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature450, 272–276 (2007).
[CrossRef] [PubMed]

Reichle, R.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature443, 838–841 (2006).
[CrossRef] [PubMed]

Rempe, G.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science317, 488–490 (2007).
[CrossRef] [PubMed]

S. Nuβmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett.95, 173602 (2005).
[CrossRef]

Rohde, F.

S. Nuβmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett.95, 173602 (2005).
[CrossRef]

Sanaka, K.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett.96, 240501 (2006).
[CrossRef] [PubMed]

Sanpera, A.

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

Sauer, J. A.

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A69, 051804(R) (2004).
[CrossRef]

Schmidt-Kaler, F.

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett.89, 103001(2002).
[CrossRef] [PubMed]

Schumacher, B.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett.76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A53, 2046 (1996).
[CrossRef] [PubMed]

Seidelin, S.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature443, 838–841 (2006).
[CrossRef] [PubMed]

Sheng, Y. B.

Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A85, 012307 (2012).
[CrossRef]

Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A82, 044305 (2010).
[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A77, 062325 (2008).
[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A77, 042308 (2008).
[CrossRef]

Shi, B. S.

B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A62, 054301 (2000).
[CrossRef]

Simon, C.

C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett.89, 257901 (2002).
[CrossRef] [PubMed]

J. W. Pan, C. Simon, and A. Zellinger, “Entanglement purification for quantum communication,” Nature (London)410, 1067–1070 (2001).
[CrossRef]

Smolin, J. A.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett.76, 722–725 (1996).
[CrossRef] [PubMed]

Song, W.

M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A71, 044302 (2005).
[CrossRef]

M. Yang, W. Song, and Z. L. Cao, “Entanglement purification for arbitrary unknown ionic states via linear optics,” Phys. Rev. A71, 012308 (2005).
[CrossRef]

Specht, H. P.

H. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and R. Gerhard, “A single-photon server with just one atom,” Nat. Phys.3, 253–255 (2007).
[CrossRef]

Steinmetz, T.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature450, 272–276 (2007).
[CrossRef] [PubMed]

Takao Aoki, E.

B. Dayan, A. S. Parkins, E. Takao Aoki, P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

Ursin, R.

J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature423, 417–422 (2003).
[CrossRef] [PubMed]

Vahala, K. J.

B. Dayan, A. S. Parkins, E. Takao Aoki, P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

van Loock, P.

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys.8, 184 (2006).
[CrossRef]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett.96, 240501 (2006).
[CrossRef] [PubMed]

Vedral, V.

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A60, 194–197 (1999).
[CrossRef]

M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A57, R4075–R4078 (1998).
[CrossRef]

Wang, C.

C. Wang, “Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system,” Phys. Rev. A86, 012323 (2012).
[CrossRef]

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A84, 032307 (2011).
[CrossRef]

C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput.11, 0988–1002 (2011).

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A71, 044305 (2005).
[CrossRef]

Weber, B.

H. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and R. Gerhard, “A single-photon server with just one atom,” Nat. Phys.3, 253–255 (2007).
[CrossRef]

S. Nuβmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett.95, 173602 (2005).
[CrossRef]

Webster, S. C.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science317, 488–490 (2007).
[CrossRef] [PubMed]

H. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and R. Gerhard, “A single-photon server with just one atom,” Nat. Phys.3, 253–255 (2007).
[CrossRef]

Weihs, G.

J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature423, 417–422 (2003).
[CrossRef] [PubMed]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett.69, 2881–2884 (1992).
[CrossRef] [PubMed]

Wilk, T.

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science317, 488–490 (2007).
[CrossRef] [PubMed]

Wineland, D. J.

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature443, 838–841 (2006).
[CrossRef] [PubMed]

Wootters, W. K.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett.76, 722–725 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993).
[CrossRef] [PubMed]

Xiao, L.

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69, 052307 (2004).
[CrossRef]

Xiao, Y. F.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

Xiao, Y. J.

Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, “Atomic and photonic entanglement concentration via photonic Faraday rotation,” Phys. Rev. A86, 034305 (2012).
[CrossRef]

Yamaguchi, F.

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett.96, 240501 (2006).
[CrossRef] [PubMed]

Yamamoto, T.

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A64, 012304 (2001).
[CrossRef]

Yamamoto, Y.

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys.8, 184 (2006).
[CrossRef]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett.96, 240501 (2006).
[CrossRef] [PubMed]

Yang, M.

Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A73, 014303 (2006).
[CrossRef]

M. Yang, W. Song, and Z. L. Cao, “Entanglement purification for arbitrary unknown ionic states via linear optics,” Phys. Rev. A71, 012308 (2005).
[CrossRef]

M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A71, 044302 (2005).
[CrossRef]

Yang, Y.

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

Young, A.

C. Y. Hu, A. Young, J. L. OBrien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B78, 085307 (2008).
[CrossRef]

Yu, Y. F.

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A82, 052315 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett.91, 10001 (2010).
[CrossRef]

F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A80, 042319 (2009).
[CrossRef]

zellinger, A.

J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature423, 417–422 (2003).
[CrossRef] [PubMed]

J. W. Pan, C. Simon, and A. Zellinger, “Entanglement purification for quantum communication,” Nature (London)410, 1067–1070 (2001).
[CrossRef]

Zhan, M. S.

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A64, 014301 (2001).
[CrossRef]

Zhang, L. H.

Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A73, 014303 (2006).
[CrossRef]

Zhang, Y.

C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput.11, 0988–1002 (2011).

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A84, 032307 (2011).
[CrossRef]

Zhang, Z. M.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett.91, 10001 (2010).
[CrossRef]

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A82, 052315 (2010).
[CrossRef]

F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A80, 042319 (2009).
[CrossRef]

Zhao, S. M.

Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A85, 012307 (2012).
[CrossRef]

Zhao, Y.

M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A71, 044302 (2005).
[CrossRef]

Zhao, Z.

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A64, 014301 (2001).
[CrossRef]

Zheng, B. Y.

Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A85, 012307 (2012).
[CrossRef]

Zhou, H. Y.

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A78, 022321 (2008).
[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A77, 062325 (2008).
[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A77, 042308 (2008).
[CrossRef]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A74, 054302 (2006).
[CrossRef]

Zhou, L.

Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A85, 012307 (2012).
[CrossRef]

Zhu, S. L.

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett.91, 10001 (2010).
[CrossRef]

Zoller, P.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001).
[CrossRef] [PubMed]

H, J. Briegel, W. Dr, J. I. Cirac, and P. Zoller, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. Lett.81, 5932–5935 (1998).

Zou, J.

Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, “Atomic and photonic entanglement concentration via photonic Faraday rotation,” Phys. Rev. A86, 034305 (2012).
[CrossRef]

Europhys. Lett. (1)

F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett.91, 10001 (2010).
[CrossRef]

J. Phys. B (1)

J. J. Chen, J. H. An, M. Feng, and G. Liu, “Teleportation of an arbitrary multipartite state via photonic Faraday rotation,” J. Phys. B43, 095505 (2010).
[CrossRef]

Nat. Phys. (1)

H. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, and R. Gerhard, “A single-photon server with just one atom,” Nat. Phys.3, 253–255 (2007).
[CrossRef]

Nature (5)

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature450, 272–276 (2007).
[CrossRef] [PubMed]

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature440, 779–782 (2006).
[CrossRef] [PubMed]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414, 413–418 (2001).
[CrossRef] [PubMed]

R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature443, 838–841 (2006).
[CrossRef] [PubMed]

J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature423, 417–422 (2003).
[CrossRef] [PubMed]

Nature (London) (2)

J. W. Pan, C. Simon, and A. Zellinger, “Entanglement purification for quantum communication,” Nature (London)410, 1067–1070 (2001).
[CrossRef]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, “Photon blockade in an optical cavity with one trapped atom,” Nature (London)436, 87 (2005).
[CrossRef]

New J. Phys. (1)

T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys.8, 184 (2006).
[CrossRef]

Phys. Rev. A (37)

F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A82, 052315 (2010).
[CrossRef]

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A79, 032303 (2009).
[CrossRef]

Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A79064304 (2009).
[CrossRef]

Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A82052329 (2010).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A70, 042314 (2004).
[CrossRef]

F. Mei, M. Feng, Y. F. Yu, and Z. M. Zhang, “Scalable quantum information processing with atomic ensembles and flying photons,” Phys. Rev. A80, 042319 (2009).
[CrossRef]

J. A. Sauer, K. M. Fortier, M. S. Chang, C. D. Hamley, and M. S. Chapman, “Cavity QED with optically transported atoms,” Phys. Rev. A69, 051804(R) (2004).
[CrossRef]

C. D. Ogden, M. Paternostro, and M. S. Kim, “Concentration and purification of entanglement for qubit systems with ancillary cavity fields,” Phys. Rev. A75, 042325 (2007).
[CrossRef]

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A84, 032307 (2011).
[CrossRef]

C. Wang, “Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system,” Phys. Rev. A86, 012323 (2012).
[CrossRef]

Z. H. Peng, J. Zou, X. J. Liu, Y. J. Xiao, and L. M. Kuang, “Atomic and photonic entanglement concentration via photonic Faraday rotation,” Phys. Rev. A86, 034305 (2012).
[CrossRef]

M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A57, R4075–R4078 (1998).
[CrossRef]

F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A84, 052312 (2011).
[CrossRef]

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A53, 2046 (1996).
[CrossRef] [PubMed]

S. Bose, V. Vedral, and P. L. Knight, “Purification via entanglement swapping and conserved entanglement,” Phys. Rev. A60, 194–197 (1999).
[CrossRef]

B. S. Shi, Y. K. Jiang, and G. C. Guo, “Optimal entanglement purification via entanglement swapping,” Phys. Rev. A62, 054301 (2000).
[CrossRef]

Z. Zhao, J. W. Pan, and M. S. Zhan, “Practical scheme for entanglement concentration,” Phys. Rev. A64, 014301 (2001).
[CrossRef]

T. Yamamoto, M. Koashi, and N. Imoto, “Concentration and purification scheme for two partially entangled photon pairs,” Phys. Rev. A64, 012304 (2001).
[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A77, 062325 (2008).
[CrossRef]

Y. B. Sheng, L. Zhou, S. M. Zhao, and B. Y. Zheng, “Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs,” Phys. Rev. A85, 012307 (2012).
[CrossRef]

F. G. Deng, “Optimal nonlocal multipartite entanglement concentration based on projection measurements,” Phys. Rev. A85, 022311 (2012).
[CrossRef]

M. Yang, W. Song, and Z. L. Cao, “Entanglement purification for arbitrary unknown ionic states via linear optics,” Phys. Rev. A71, 012308 (2005).
[CrossRef]

M. Yang, Y. Zhao, W. Song, and Z. L. Cao, “Entanglement concentration for unknown atomic entangled states via entanglement swapping,” Phys. Rev. A71, 044302 (2005).
[CrossRef]

X. L. Feng, L. C. Kwek, and C. H. Oh, “Electronic entanglement purification scheme enhanced by charge detections,” Phys. Rev. A71, 064301 (2005).
[CrossRef]

Z. L. Cao, L. H. Zhang, and M. Yang, “Concentration for unknown atomic entangled states via cavity decay,” Phys. Rev. A73, 014303 (2006).
[CrossRef]

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A77, 042308 (2008).
[CrossRef]

Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A82, 044305 (2010).
[CrossRef]

X. H. Li, “Deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A82, 044304 (2010).
[CrossRef]

F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A83, 062316 (2011).
[CrossRef]

M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59, 1829–1834 (1999).
[CrossRef]

A. Karlsson, M. Koashi, and N. Imoto, “Quantum entanglement for secret sharing and secret splitting,” Phys. Rev. A59, 162–168 (1999).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69, 052307 (2004).
[CrossRef]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A78, 022321 (2008).
[CrossRef]

G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A65, 032302 (2002).
[CrossRef]

F. G. Deng, G. L. Long, and X. S. Liu, “Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block,” Phys. Rev. A68, 042317 (2003).
[CrossRef]

C. Wang, F. G. Deng, Y. S. Li, X. S. Liu, and G. L. Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Phys. Rev. A71, 044305 (2005).
[CrossRef]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. A74, 054302 (2006).
[CrossRef]

Phys. Rev. B (1)

C. Y. Hu, A. Young, J. L. OBrien, W. J. Munro, and J. G. Rarity, “Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon,” Phys. Rev. B78, 085307 (2008).
[CrossRef]

Phys. Rev. Lett. (14)

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett.95, 160501 (2005).
[CrossRef] [PubMed]

P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett.96, 240501 (2006).
[CrossRef] [PubMed]

S. Nuβmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett.95, 173602 (2005).
[CrossRef]

K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett.98, 233601 (2007).
[CrossRef] [PubMed]

A. B. Mundt, A. Kreuter, C. Becher, D. Leibfried, J. Eschner, F. Schmidt-Kaler, and R. Blatt, “Coupling a single atomic quantum bit to a high finesse optical cavity,” Phys. Rev. Lett.89, 103001(2002).
[CrossRef] [PubMed]

H, J. Briegel, W. Dr, J. I. Cirac, and P. Zoller, “Improving the security of secure direct communication based on the secret transmitting order of particles,” Phys. Rev. Lett.81, 5932–5935 (1998).

A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett.67, 661–663 (1991).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett.76, 722–725 (1996).
[CrossRef] [PubMed]

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett.77, 2818–2821 (1996).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett.70, 1895–1899 (1993).
[CrossRef] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett.69, 2881–2884 (1992).
[CrossRef] [PubMed]

C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett.89, 257901 (2002).
[CrossRef] [PubMed]

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett.87, 037902 (2001).
[CrossRef] [PubMed]

L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett.92, 127902 (2004).
[CrossRef] [PubMed]

Phys.Rev. Lett. (1)

C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bells theorem,” Phys.Rev. Lett.68, 557–559 (1992).
[CrossRef] [PubMed]

Quantum Inf. Comput. (1)

C. Wang, Y. Zhang, and G. S. Jin, “Polarization-entanglement purification and concentration using cross-Kerr nonlinearity,” Quantum Inf. Comput.11, 0988–1002 (2011).

Rev. Mod. Phys. (1)

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565 (2001).
[CrossRef]

Science (2)

B. Dayan, A. S. Parkins, E. Takao Aoki, P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science319, 1062–1065 (2008).
[CrossRef] [PubMed]

T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science317, 488–490 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram showing the principle of a coherent state |α〉 input-output process in low-Q cavity. |e〉, |0〉 and |1〉 are level structures of the atom. g is the coupling between the atom and the micro-cavity.

Fig. 2
Fig. 2

(a) Schematic diagram showing the principle of the atomic EPP based on the coherent state input-output process in low-Q cavity QED system. BS denotes the 50:50 beam splitter, which transforms |α〉 |β〉 to | α β 2 | α + β 2 . Di (i=1,2,3 and 4) is the detector on the ith output port. Delay is time delay setup. The two devices surrounded by the dashed line are two two-qubit parity check modules (PCMs) constructed by Alice and Bob, respectively. (b) The fidelity of the present EPP in each iteration round by iterating the entanglement purification process N (N = 1,2,3 and 4) rounds. F is the initial fidelity of the state |ϕ+〉. It is obvious to see that the new fidelity is large than F when F > 1 2, altered with the increment of N, and approximately approaches to 1 when N ≥ 4.

Fig. 3
Fig. 3

(a) Schematic diagram showing the principle of the modified ECP based on coherent state input-output process in low-Q cavity. a2 is an ancillary atom confined in a low-Q cavity A2, whose parameters are same as the atom a1 confined in cavity A1. BS denotes a 50:50 beam splitter, which transforms |α〉 |β〉 to | α β 2 | α + β 2 Di (i = 1, 2) is detector on the ith output port. Delay is time delay setup. (b) The success probability of the modified ECP in each iteration round by iterating the entanglement concentration process N (N=1,2,3 and 4) rounds. m is the coefficient of the initial state. It is obvious to see that the success probability is relatively high when N ≥ 4.

Fig. 4
Fig. 4

The success probability of the present EPP and ECP with respect to γ g = 0.05, 0.1 0.15 and 0.2 when ηD = 0.7, η = 1 3, α = 3, the transmission rate through other optical components is 0.9. Here we only perform the entanglement purification and concentration process one round. The success probability of entanglement purification in an ideal condition is F2 +(1 − F)2. After considering the error probabilities Pe1 and Pe2, the success probability will decrease as shown in Fig. 4(a). The success probability of entanglement concentration is 2|αβ|2, which will decrease such as in Fig. 4(b). As discuss above, the error probabilities Pe1 and Pe2 do not affect the fidelity of the mixed state based on the post-selection principle in the EPP, and the success probabilities in the ECP can be improved further by iterating the modified protocol several rounds.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

r 1 ( ω p ) = [ i ( ω c ω p ) κ 2 ] [ i ( ω 0 ω p ) + γ 2 ] + g 2 [ i ( ω c ω p ) + κ 2 ] [ i ( ω 0 ω p ) + γ 2 ] + g 2 ,
r 0 ( ω p ) = i ( ω c ω p ) κ 2 i ( ω c ω p ) + κ 2 ,
1 2 ( | 0 + | 1 ) | α in 1 2 ( | 0 | α e i θ 0 out + | 1 | α e i θ 1 out ) ,
ρ a b = F | ϕ + a b ϕ + | + ( 1 F ) | ψ + a b ψ + | ,
| ϕ + a 1 b 1 | ϕ + a 2 b 2 | 2 α a | 2 α b 1 2 ( | 0 a 1 | 0 b 1 | 0 a 2 | 0 b 2 + | 1 a 1 | 1 b 1 | 1 a 2 | 1 b 2 ) | 2 α 1 | 0 2 | 2 α 3 | 0 4 + 1 2 ( | 0 a 1 | 0 b 1 | 1 a 2 | 1 b 2 + | 1 a 1 | 1 b 1 | 0 a 2 | 0 b 2 ) | 0 1 | 2 α 2 | 0 3 | 2 α 4 .
| ϕ + a 1 b 1 | ψ + a 2 b 2 | 2 α a | 2 α b 1 2 ( | 0 a 1 | 0 b 1 | 0 a 2 | 1 b 2 + | 1 a 1 | 1 b 1 | 1 a 2 | 0 b 2 ) | 2 α 1 | 0 2 | 0 3 | 2 α 4 + 1 2 ( | 0 a 1 | 0 b 1 | 1 a 2 | 0 b 2 + | 1 a 1 | 1 b 1 | 0 a 2 | 1 b 2 ) | 0 1 | 2 α 2 | 2 α 3 | 0 4 ,
| ψ + a 1 b 1 | ϕ + a 2 b 2 | 2 α a | 2 α b 1 2 ( | 0 a 1 | 1 b 1 | 0 a 2 | 0 b 2 + | 1 a 1 | 0 b 1 | 1 a 2 | 1 b 2 ) | 2 α 1 | 0 2 | 0 3 | 2 α 4 + 1 2 ( | 0 a 1 | 1 b 1 | 1 a 2 | 1 b 2 + | 1 a 1 | 0 b 1 | 0 a 2 | 0 b 2 ) | 0 1 | 2 α 2 | 2 α 3 | 0 4 ,
| ψ + a 1 b 1 | ψ + a 2 b 2 | 2 α a | 2 α b 1 2 ( | 0 a 1 | 1 b 1 | 0 a 2 | 1 b 2 + | 1 a 1 | 0 b 1 | 1 a 2 | 0 b 2 ) | 2 α 1 | 0 2 | 2 α 3 | 0 4 + 1 2 ( | 0 a 1 | 1 b 1 | 1 a 2 | 0 b 2 + | 1 a 1 | 0 b 1 | 0 a 2 | 1 b 2 ) | 0 1 | 2 α 2 | 0 3 | 2 α 4 .
| ϕ + a 1 b 1 = m | 0 a 1 | 0 b 1 + n | 1 a 1 | 1 b 1 , | ϕ + a 2 b 2 = m | 0 a 2 | 0 b 2 + n | 1 a 2 | 1 b 2 ,
| ϕ + a 1 b 1 | ϕ + a 2 b 2 | 2 α a | 2 α b ( m 2 | 0 a 1 | 0 b 1 | 0 a 2 | 0 b 2 + n 2 | 1 a 1 | 1 b 1 | 1 a 2 | 1 b 2 ) | 2 α 1 | 0 2 | 2 α 3 | 0 4 + m n ( | 0 a 1 | 0 b 1 | 1 a 2 | 1 b 2 + | 1 a 1 | 1 b 1 | 0 a 2 | 0 b 2 ) | 0 1 | 2 α 2 | 0 3 | 2 α 4 .
| ϕ a 2 = m | 1 a 2 + n | 0 a 2 .
| ϕ + a 1 b 1 | ϕ a 2 | 2 α ( m 2 | 0 a 1 | 0 b 1 | 1 a 2 + n 2 | 1 a 1 | 1 b 1 | 0 a 2 ) | 0 1 | 2 α 2 + m n ( | 0 a 1 | 0 b 1 | 0 a 2 + | 1 a 1 | 1 b 1 | 1 a 2 ) | 2 α 1 | 0 2 .
g ( r ) = g 0 cos ( k z c ) exp [ r 2 / ω c 2 ] ,

Metrics