Abstract

We present investigation and optimization of a newly proposed plasmonic organic solar cell geometry based on the incorporation of nanovoids into conventional rectangular backplane gratings. Hybridization of strongly localized plasmonic modes of the nanovoids with Fabry-Perot cavity modes originating from surface plasmon reflection at the grating elements is shown to significantly boost performance in the long wavelength regime. This constitutes improved broadband operation while maintaining absorption enhancements at short wavelengths derived from conventional rectangular grating. Our calculations predict a figure of merit enhancement of up to 41% compared to when the nanovoid indented grating is absent. This is a significant improvement over the previously considered rectangular grating structures, which is further shown to be maintained over the entire angular range.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kietzke, “Recent advances in organic solar cells,” Adv. Optoelectron.2007, 40285 (2007).
    [CrossRef]
  2. P. E. Shaw, A. Ruseckas, and D. W. Samuel, “Exciton diffusion measurements in Poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008).
    [CrossRef]
  3. G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett.9(12), 4037–4041 (2009).
    [CrossRef] [PubMed]
  4. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1986).
  6. V. E. Ferry, J. N. Munday, and H. A. Atwater, “design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
    [CrossRef] [PubMed]
  7. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
    [CrossRef]
  8. N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett.32(19), 2825–2827 (2007).
    [CrossRef] [PubMed]
  9. J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010).
    [CrossRef] [PubMed]
  10. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
    [CrossRef]
  11. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105–093108 (2007).
    [CrossRef]
  12. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys.106(7), 073109 (2009).
    [CrossRef]
  13. N. N. Lal, B. F. Soares, J. K. Sinha, F. Huang, S. Mahajan, P. N. Bartlett, N. C. Greenham, and J. J. Baumberg, “Enhancing solar cells with localized plasmons in nanovoids,” Opt. Express19(12), 11256–11263 (2011).
    [CrossRef] [PubMed]
  14. R. B. Dunbar, H. C. Hesse, D. S. Lembke, and L. Schmidt-Mende, “Light-trapping plasmonic nanovoid arrays,” Phys. Rev. B85(3), 035301 (2012).
    [CrossRef]
  15. H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19(S6Suppl 6), A1202–A1210 (2011).
    [CrossRef] [PubMed]
  16. X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012).
    [CrossRef] [PubMed]
  17. X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater.n/a (2013), doi:.
    [CrossRef]
  18. W. E. Sha, W. C. H. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express18(6), 5993–6007 (2010).
    [CrossRef] [PubMed]
  19. Comsol Multiphysics, http://www.comsol.com .
  20. M. A. Sefunc, A. K. Okyay, and H. V. Demir, “Plasmonic backcontact grating for P3HT:PCBM organic solar cells enabling strong optical absorption increased in all polarizations,” Opt. Express19(15), 14200–14209 (2011).
    [CrossRef] [PubMed]
  21. C.-W. Cheng, M. N. Abbas, Z.-C. Chang, M. H. Shih, C.-M. Wang, M. C. Wu, and Y.-C. Chang, “Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO₂/Ag T-shaped array,” Opt. Lett.36(8), 1440–1442 (2011).
    [CrossRef] [PubMed]
  22. Y. C. Chang, C. M. Wang, M. N. Abbas, M.-H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express17(16), 13526–13531 (2009).
    [CrossRef] [PubMed]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  24. C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett.97(7), 071110 (2010).
    [CrossRef]
  25. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009).
    [CrossRef]

2013 (1)

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater.n/a (2013), doi:.
[CrossRef]

2012 (2)

R. B. Dunbar, H. C. Hesse, D. S. Lembke, and L. Schmidt-Mende, “Light-trapping plasmonic nanovoid arrays,” Phys. Rev. B85(3), 035301 (2012).
[CrossRef]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

2011 (4)

2010 (6)

W. E. Sha, W. C. H. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express18(6), 5993–6007 (2010).
[CrossRef] [PubMed]

J.-Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express18(10), 10078–10087 (2010).
[CrossRef] [PubMed]

C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett.97(7), 071110 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

2009 (5)

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett.9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys.106(7), 073109 (2009).
[CrossRef]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009).
[CrossRef]

Y. C. Chang, C. M. Wang, M. N. Abbas, M.-H. Shih, and D. P. Tsai, “T-shaped plasmonic array as a narrow-band thermal emitter or biosensor,” Opt. Express17(16), 13526–13531 (2009).
[CrossRef] [PubMed]

2008 (1)

P. E. Shaw, A. Ruseckas, and D. W. Samuel, “Exciton diffusion measurements in Poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008).
[CrossRef]

2007 (3)

T. Kietzke, “Recent advances in organic solar cells,” Adv. Optoelectron.2007, 40285 (2007).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105–093108 (2007).
[CrossRef]

N. C. Panoiu and R. M. Osgood., “Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes,” Opt. Lett.32(19), 2825–2827 (2007).
[CrossRef] [PubMed]

Abbas, M. N.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Bartlett, P. N.

Baumberg, J. J.

Beck, F. J.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

Bienstman, P.

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys.106(7), 073109 (2009).
[CrossRef]

Bozhevolnyi, S. I.

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009).
[CrossRef]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Burkhard, G. F.

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett.9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Catchpole, K. R.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105–093108 (2007).
[CrossRef]

Chang, Y. C.

Chang, Y.-C.

Chang, Z.-C.

Cheng, C.-W.

Chew, W. C.

Choy, W. C. H.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater.n/a (2013), doi:.
[CrossRef]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

W. E. Sha, W. C. H. Choy, and W. C. Chew, “A comprehensive study for the plasmonic thin-film solar cell with periodic structure,” Opt. Express18(6), 5993–6007 (2010).
[CrossRef] [PubMed]

Demir, H. V.

Ding, B.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Dunbar, R. B.

R. B. Dunbar, H. C. Hesse, D. S. Lembke, and L. Schmidt-Mende, “Light-trapping plasmonic nanovoid arrays,” Phys. Rev. B85(3), 035301 (2012).
[CrossRef]

Ferry, V. E.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105–093108 (2007).
[CrossRef]

Greenham, N. C.

Guo, X.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Hesse, H. C.

R. B. Dunbar, H. C. Hesse, D. S. Lembke, and L. Schmidt-Mende, “Light-trapping plasmonic nanovoid arrays,” Phys. Rev. B85(3), 035301 (2012).
[CrossRef]

Ho, A. H. P.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater.n/a (2013), doi:.
[CrossRef]

Hoke, E. T.

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett.9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Hou, J.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Huang, F.

Huo, L.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Jung, J.

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009).
[CrossRef]

Kietzke, T.

T. Kietzke, “Recent advances in organic solar cells,” Adv. Optoelectron.2007, 40285 (2007).
[CrossRef]

Lal, N. N.

Lee, J.-Y.

Lembke, D. S.

R. B. Dunbar, H. C. Hesse, D. S. Lembke, and L. Schmidt-Mende, “Light-trapping plasmonic nanovoid arrays,” Phys. Rev. B85(3), 035301 (2012).
[CrossRef]

Li, X.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater.n/a (2013), doi:.
[CrossRef]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Li, Y.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Lin, C.

C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett.97(7), 071110 (2010).
[CrossRef]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Lu, H.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater.n/a (2013), doi:.
[CrossRef]

Maes, B.

H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19(S6Suppl 6), A1202–A1210 (2011).
[CrossRef] [PubMed]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys.106(7), 073109 (2009).
[CrossRef]

Mahajan, S.

McGehee, M. D.

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett.9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Mokkapati, S.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

Munday, J. N.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

Okyay, A. K.

Osgood, R. M.

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Panoiu, N. C.

Peumans, P.

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105–093108 (2007).
[CrossRef]

Polman, A.

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Povinelli, M. L.

C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett.97(7), 071110 (2010).
[CrossRef]

Ruseckas, A.

P. E. Shaw, A. Ruseckas, and D. W. Samuel, “Exciton diffusion measurements in Poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008).
[CrossRef]

Samuel, D. W.

P. E. Shaw, A. Ruseckas, and D. W. Samuel, “Exciton diffusion measurements in Poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008).
[CrossRef]

Schmidt-Mende, L.

R. B. Dunbar, H. C. Hesse, D. S. Lembke, and L. Schmidt-Mende, “Light-trapping plasmonic nanovoid arrays,” Phys. Rev. B85(3), 035301 (2012).
[CrossRef]

Scully, S. R.

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett.9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Sefunc, M. A.

Sha, W. E.

Sha, W. E. I.

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater.n/a (2013), doi:.
[CrossRef]

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Shaw, P. E.

P. E. Shaw, A. Ruseckas, and D. W. Samuel, “Exciton diffusion measurements in Poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008).
[CrossRef]

Shen, H.

H. Shen and B. Maes, “Combined plasmonic gratings in organic solar cells,” Opt. Express19(S6Suppl 6), A1202–A1210 (2011).
[CrossRef] [PubMed]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys.106(7), 073109 (2009).
[CrossRef]

Shih, M. H.

Shih, M.-H.

Sinha, J. K.

Soares, B. F.

Søndergaard, T.

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105–093108 (2007).
[CrossRef]

Tsai, D. P.

Wang, C. M.

Wang, C.-M.

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Wu, M. C.

Xie, F.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Yang, Y.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

You, J.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles,” Adv. Funct. Mater.n/a (2013), doi:.
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (4)

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater. (Deerfield Beach Fla.)24(22), 3046–3052 (2012).
[CrossRef] [PubMed]

P. E. Shaw, A. Ruseckas, and D. W. Samuel, “Exciton diffusion measurements in Poly(3-hexylthiophene),” Adv. Mater. (Deerfield Beach Fla.)20(18), 3516–3520 (2008).
[CrossRef]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “design considerations for plasmonic photovoltaics,” Adv. Mater. (Deerfield Beach Fla.)22(43), 4794–4808 (2010).
[CrossRef] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. (Deerfield Beach Fla.)21(34), 3504–3509 (2009).
[CrossRef]

Adv. Optoelectron. (1)

T. Kietzke, “Recent advances in organic solar cells,” Adv. Optoelectron.2007, 40285 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett.96(3), 033113 (2010).
[CrossRef]

C. Lin and M. L. Povinelli, “The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays,” Appl. Phys. Lett.97(7), 071110 (2010).
[CrossRef]

J. Appl. Phys. (2)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys.101(9), 093105–093108 (2007).
[CrossRef]

H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys.106(7), 073109 (2009).
[CrossRef]

Nano Lett. (1)

G. F. Burkhard, E. T. Hoke, S. R. Scully, and M. D. McGehee, “Incomplete exciton harvesting from fullerenes in bulk heterojunction solar cells,” Nano Lett.9(12), 4037–4041 (2009).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. B (2)

R. B. Dunbar, H. C. Hesse, D. S. Lembke, and L. Schmidt-Mende, “Light-trapping plasmonic nanovoid arrays,” Phys. Rev. B85(3), 035301 (2012).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B79(3), 035401 (2009).
[CrossRef]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1986).

Comsol Multiphysics, http://www.comsol.com .

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the proposed solar cell with nanovoid indented grating. (b) Real (solid) and imaginary (dash) part of dielectric constants of the polymer active layer (P3HT:PCBM ; red curves) and transparent anode (PEDOT:PSS ; blue curves).

Fig. 2
Fig. 2

(a) FOM enhancement for a rectangular grating, as a function of Period and Fill factor ( = wGrat/Period x 100). (b) Absorption efficiency and enhancement for optimized structure (point A in (a); Period = 300nm, Fill factor = 25%) and long-wavelength enhanced structure (point B in (a); Period = 600nm, Fill factor = 25%). Normalized magnetic field amplitude for optimized structure (point A) at (c) λ = 590nm, (d) λ = 640nm, and for point B at (d) λ = 700nm. All data is for normally incident TM polarization.

Fig. 3
Fig. 3

(a) FOM enhancement as a function of nanovoid dimensions wNV and dNV (dGrat = 50nm, wGrat = 75nm). (b) Absorption efficiency and enhancement for optimized rectangular (blue) and nanovoid indented (red) grating. (c, d) Absorption enhancement at varying dNV (wNV = 12.5nm) and wNV (dNV = 20nm). (e-h) Normalized magnetic field amplitude at respective points E, F, G, and H in (c). All data is for normally incident TM polarization.

Fig. 4
Fig. 4

Normalized magnetic field amplitude at λ = 700nm, and θ = 45° for optimized (a) nanovoid indented and (b) rectangular grating structures (Period = 300nm, wGrat = 75nm, dGrat = 50nm, wNV = 12.5nm, dNV = 20nm). (c) FOM enhancements of both optimized nanovoid indented and rectangular grating structures. All data is for TM polarization.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FOM=( λ min λ max λ hc I(λ)A( λ)dλ )÷( λ min λ max λ hc I(λ) dλ )
A(λ)= P in 1 AL Q av dV = P in 1 AL 1 2 ( 2πc λ ) ε 2 (λ) | E(x,y,λ) | 2 dV

Metrics