Abstract

A hologram display technique that provides speckle-free, shaded reconstructed images is proposed. A three-dimensional object consists of object points; these object points are divided into plural object point groups that are generated in a time-sequential manner. Each object point group consists of a two-dimensional (2D) array of object points that are separated so as to prevent interference among them. Each object point group is generated by displaying a 2D array of zone plates on a high-speed spatial light modulator (SLM). The amplitude distribution of the zone plates is modulated two-dimensionally based on Phong shading to shade the reconstructed images. The 2D amplitude distribution of the zone plates is decomposed into multiple binary patterns that are displayed by the SLM in a time-sequential manner. The proposed method is experimentally verified.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  2. E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am.52(10), 1123–1130 (1962).
    [CrossRef]
  3. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt.44(22), 4607–4614 (2005).
    [CrossRef] [PubMed]
  4. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt.48(34), H54–H63 (2009).
    [CrossRef] [PubMed]
  5. H. Nishi, K. Hayashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE7957, 79571A, 79571A-11 (2011).
    [CrossRef]
  6. T. Kurihara and Y. Takaki, “Shading of a computer-generated hologram by zone plate modulation,” Opt. Express20(4), 3529–3540 (2012).
    [CrossRef] [PubMed]
  7. L. I. Goldfischer, “Autocorrelation function and power spectral density of laser-produced speckle patterns,” J. Opt. Soc. Am.55(3), 247–252 (1965).
    [CrossRef]
  8. H. J. Gerritsen, W. J. Hannan, and E. G. Ramberg, “Elimination of speckle noise in holograms with redundancy,” Appl. Opt.7(11), 2301–2311 (1968).
    [CrossRef] [PubMed]
  9. T. S. McKechnie, “Speckle reduction,” in Laser Speckle and Related Phenomena, J. C.Dainty, ed. (Springer-Verlag, 1975).
  10. M. Matsumura, “Speckle noise reduction by random phase shifters,” Appl. Opt.14(3), 660–665 (1975).
    [CrossRef] [PubMed]
  11. J. M. Huntley and L. Benckert, “Speckle interferometry: noise reduction by correlation fringe averaging,” Appl. Opt.31(14), 2412–2414 (1992).
    [CrossRef] [PubMed]
  12. M. Yamaguchi, H. Endoh, T. Honda, and N. Ohyama, “High-quality recording of a full-parallax holographic sterogram with a digital diffuser,” Opt. Lett.19(2), 135–137 (1994).
    [CrossRef] [PubMed]
  13. J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt.34(17), 3165–3171 (1995).
    [CrossRef] [PubMed]
  14. T. Kozacki, M. Kujawińska, G. Finke, B. Hennelly, and N. Pandey, “Extended viewing angle holographic display system with tilted SLMs in a circular configuration,” Appl. Opt.51(11), 1771–1780 (2012).
    [CrossRef] [PubMed]
  15. F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Appl. Opt.48(34), H48–H53 (2009).
    [CrossRef] [PubMed]
  16. Y. Takaki and M. Yokouchi, “Speckle-free and grayscale hologram reconstruction using time-multiplexing technique,” Opt. Express19(8), 7567–7579 (2011).
    [CrossRef] [PubMed]
  17. N. Pandey and B. Hennelly, “Quantization noise and its reduction in lensless Fourier digital holography,” Appl. Opt.50(7), B58–B70 (2011).
    [CrossRef] [PubMed]
  18. J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett.9(11), 405–407 (1966).
    [CrossRef]
  19. G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature166(4214), 237 (1950).
    [CrossRef] [PubMed]
  20. W. J. Siemens-Wapniarski and M. P. Givens, “The experimental production of synthetic holograms,” Appl. Opt.7(3), 535–538 (1968).
    [CrossRef] [PubMed]
  21. B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM18(6), 311–317 (1975).
    [CrossRef]
  22. O. Bryngdahl and A. Lohmann, “Single-sideband holography,” J. Opt. Soc. Am.58(5), 620–624 (1968).
    [CrossRef]
  23. T. Mishina, F. Okano, and I. Yuyama, “Time-alternating method based on single-sideband holography with half-zone-plate processing for the enlargement of viewing zones,” Appl. Opt.38(17), 3703–3713 (1999).
    [CrossRef] [PubMed]
  24. Y. Takaki and Y. Tanemoto, “Band-limited zone plates for single-sideband holography,” Appl. Opt.48(34), H64–H70 (2009).
    [CrossRef] [PubMed]
  25. Y. Takaki, M. Yokouchi, and N. Okada, “Improvement of grayscale representation of the horizontally scanning holographic display,” Opt. Express18(24), 24926–24936 (2010).
    [CrossRef] [PubMed]
  26. Y. Takaki and N. Okada, “Hologram generation by horizontal scanning of a high-speed spatial light modulator,” Appl. Opt.48, 3255–3260 (2009).
    [CrossRef] [PubMed]
  27. Y. Takaki and Y. Tanemoto, “Modified resolution redistribution system for frameless hologram display module,” Opt. Express18(10), 10294–10300 (2010).
    [CrossRef] [PubMed]
  28. G. J. Ward, “Measuring and modeling anisotropic reflection,” ACM SIGGRAPH Computer Graphics26(2), 265–272 (1992).
    [CrossRef]

2012 (2)

2011 (3)

2010 (2)

2009 (4)

2005 (1)

1999 (1)

1995 (1)

1994 (1)

1992 (2)

G. J. Ward, “Measuring and modeling anisotropic reflection,” ACM SIGGRAPH Computer Graphics26(2), 265–272 (1992).
[CrossRef]

J. M. Huntley and L. Benckert, “Speckle interferometry: noise reduction by correlation fringe averaging,” Appl. Opt.31(14), 2412–2414 (1992).
[CrossRef] [PubMed]

1975 (2)

M. Matsumura, “Speckle noise reduction by random phase shifters,” Appl. Opt.14(3), 660–665 (1975).
[CrossRef] [PubMed]

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM18(6), 311–317 (1975).
[CrossRef]

1968 (3)

1966 (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett.9(11), 405–407 (1966).
[CrossRef]

1965 (1)

1962 (1)

1950 (1)

G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature166(4214), 237 (1950).
[CrossRef] [PubMed]

1948 (1)

D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Amako, J.

Arima, Y.

H. Nishi, K. Hayashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE7957, 79571A, 79571A-11 (2011).
[CrossRef]

Benckert, L.

Bryngdahl, O.

Endoh, H.

Finke, G.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Gerritsen, H. J.

Givens, M. P.

Goldfischer, L. I.

Hannan, W. J.

Hayashi, K.

H. Nishi, K. Hayashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE7957, 79571A, 79571A-11 (2011).
[CrossRef]

Hennelly, B.

Honda, T.

Huntley, J. M.

Kang, H.

Kozacki, T.

Kujawinska, M.

Kurihara, T.

Leith, E. N.

Lohmann, A.

Matsumura, M.

Matsushima, K.

Mishina, T.

Miura, H.

Nakahara, S.

H. Nishi, K. Hayashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE7957, 79571A, 79571A-11 (2011).
[CrossRef]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt.48(34), H54–H63 (2009).
[CrossRef] [PubMed]

Nishi, H.

H. Nishi, K. Hayashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE7957, 79571A, 79571A-11 (2011).
[CrossRef]

Ohyama, N.

Okada, N.

Okano, F.

Onural, L.

Pandey, N.

Phong, B. T.

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM18(6), 311–317 (1975).
[CrossRef]

Ramberg, E. G.

Rogers, G. L.

G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature166(4214), 237 (1950).
[CrossRef] [PubMed]

Siemens-Wapniarski, W. J.

Sonehara, T.

Takaki, Y.

Tanemoto, Y.

Upatnieks, J.

Ward, G. J.

G. J. Ward, “Measuring and modeling anisotropic reflection,” ACM SIGGRAPH Computer Graphics26(2), 265–272 (1992).
[CrossRef]

Waters, J. P.

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett.9(11), 405–407 (1966).
[CrossRef]

Yamaguchi, M.

Yaras, F.

Yokouchi, M.

Yuyama, I.

ACM SIGGRAPH Computer Graphics (1)

G. J. Ward, “Measuring and modeling anisotropic reflection,” ACM SIGGRAPH Computer Graphics26(2), 265–272 (1992).
[CrossRef]

Appl. Opt. (13)

N. Pandey and B. Hennelly, “Quantization noise and its reduction in lensless Fourier digital holography,” Appl. Opt.50(7), B58–B70 (2011).
[CrossRef] [PubMed]

T. Kozacki, M. Kujawińska, G. Finke, B. Hennelly, and N. Pandey, “Extended viewing angle holographic display system with tilted SLMs in a circular configuration,” Appl. Opt.51(11), 1771–1780 (2012).
[CrossRef] [PubMed]

W. J. Siemens-Wapniarski and M. P. Givens, “The experimental production of synthetic holograms,” Appl. Opt.7(3), 535–538 (1968).
[CrossRef] [PubMed]

H. J. Gerritsen, W. J. Hannan, and E. G. Ramberg, “Elimination of speckle noise in holograms with redundancy,” Appl. Opt.7(11), 2301–2311 (1968).
[CrossRef] [PubMed]

M. Matsumura, “Speckle noise reduction by random phase shifters,” Appl. Opt.14(3), 660–665 (1975).
[CrossRef] [PubMed]

T. Mishina, F. Okano, and I. Yuyama, “Time-alternating method based on single-sideband holography with half-zone-plate processing for the enlargement of viewing zones,” Appl. Opt.38(17), 3703–3713 (1999).
[CrossRef] [PubMed]

J. Amako, H. Miura, and T. Sonehara, “Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator,” Appl. Opt.34(17), 3165–3171 (1995).
[CrossRef] [PubMed]

K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt.44(22), 4607–4614 (2005).
[CrossRef] [PubMed]

J. M. Huntley and L. Benckert, “Speckle interferometry: noise reduction by correlation fringe averaging,” Appl. Opt.31(14), 2412–2414 (1992).
[CrossRef] [PubMed]

Y. Takaki and N. Okada, “Hologram generation by horizontal scanning of a high-speed spatial light modulator,” Appl. Opt.48, 3255–3260 (2009).
[CrossRef] [PubMed]

F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Appl. Opt.48(34), H48–H53 (2009).
[CrossRef] [PubMed]

K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt.48(34), H54–H63 (2009).
[CrossRef] [PubMed]

Y. Takaki and Y. Tanemoto, “Band-limited zone plates for single-sideband holography,” Appl. Opt.48(34), H64–H70 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. P. Waters, “Holographic image synthesis utilizing theoretical methods,” Appl. Phys. Lett.9(11), 405–407 (1966).
[CrossRef]

Commun. ACM (1)

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM18(6), 311–317 (1975).
[CrossRef]

J. Opt. Soc. Am. (3)

Nature (2)

G. L. Rogers, “Gabor diffraction microscopy: the hologram as a generalized zone-plate,” Nature166(4214), 237 (1950).
[CrossRef] [PubMed]

D. Gabor, “A new microscopic principle,” Nature161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (1)

H. Nishi, K. Hayashi, Y. Arima, K. Matsushima, and S. Nakahara, “New techniques for wave-field rendering of polygon-based high-definition CGHs,” Proc. SPIE7957, 79571A, 79571A-11 (2011).
[CrossRef]

Other (1)

T. S. McKechnie, “Speckle reduction,” in Laser Speckle and Related Phenomena, J. C.Dainty, ed. (Springer-Verlag, 1975).

Supplementary Material (4)

» Media 1: MOV (2914 KB)     
» Media 2: MOV (2288 KB)     
» Media 3: MOV (2099 KB)     
» Media 4: MOV (2569 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Point-based method and zone plate technique.

Fig. 2
Fig. 2

Rays converging to an object point from the zone plate and variable view vector.

Fig. 3
Fig. 3

Unit vectors in a Phong reflection model.

Fig. 4
Fig. 4

Two-dimensional amplitude modulation of the zone plate based on Phong shading.

Fig. 5
Fig. 5

Object surface consisting of object point groups Gt.

Fig. 6
Fig. 6

Speckle-free generation of object points using the time-multiplexing technique.

Fig. 7
Fig. 7

Grayscale representation of two-dimensionally modulated zone plates by the time-multiplexing technique.

Fig. 8
Fig. 8

4f optical system used for the experiments.

Fig. 9
Fig. 9

Photographs of reconstructed images with the camera focused on (a) left object and (b) right object.

Fig. 10
Fig. 10

Comparison of shading in images generated by (a) CG software and (b) proposed holographic technique.

Fig. 11
Fig. 11

Photographs of reconstructed images when object was illuminated from (a) left and (b) lower right (Media 1).

Fig. 12
Fig. 12

Photographs of reconstructed images when the object had (a) glossy surface (Media 2) and (b) matte surface (Media 3); transition of material parameters is shown in (Media 4).

Metrics