Abstract

Novel plasmonic power splitters constructed from a rectangular ring resonator with direct-connected input and output waveguides are presented and numerically investigated. An analytical model and systematic approach for obtaining the appropriate design parameters are developed by designing an equivalent lumped circuit model for the transmission lines and applying it to plasmonic waveguides. This approach can dramatically reduce simulation times required for determining the desired locations of the output waveguides. Three examples are shown, the 1 × 3, 1 × 4, and 1 × 5 equal-power splitters, with the design method being easily extended to any number of output ports.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  2. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7–8), 20–27 (2006).
    [CrossRef]
  3. T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express13(24), 9652–9659 (2005).
    [CrossRef] [PubMed]
  4. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
    [CrossRef]
  5. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9(1), 21–25 (2010).
    [CrossRef] [PubMed]
  6. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
    [CrossRef]
  7. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett.33(23), 2874–2876 (2008).
    [CrossRef] [PubMed]
  8. J. Tao, X. G. Huang, X. S. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express17(16), 13989–13994 (2009).
    [CrossRef] [PubMed]
  9. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express16(7), 4888–4894 (2008).
    [CrossRef] [PubMed]
  10. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express14(23), 11318–11323 (2006).
    [CrossRef] [PubMed]
  11. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express16(19), 14369–14379 (2008).
    [CrossRef] [PubMed]
  12. N. Nozhat and N. Granpayeh, “Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits,” Opt. Commun.284(13), 3449–3455 (2011).
    [CrossRef]
  13. Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun.278(1), 199–203 (2007).
    [CrossRef]
  14. Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011).
    [CrossRef] [PubMed]
  15. J. Liu, H. Zhao, Y. Zhang, and S. Liu, “Resonant cavity based antireflection structures for surface plasmon waveguides,” Appl. Phys. B98(4), 797–802 (2010).
    [CrossRef]
  16. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express15(11), 6762–6767 (2007).
    [CrossRef] [PubMed]
  17. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008).
    [CrossRef]
  18. K. Chang and L. H. Hsieh, Microwave Ring Circuits and Related Structures (Wiley, 2004).
  19. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]

2011 (2)

N. Nozhat and N. Granpayeh, “Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits,” Opt. Commun.284(13), 3449–3455 (2011).
[CrossRef]

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011).
[CrossRef] [PubMed]

2010 (2)

J. Liu, H. Zhao, Y. Zhang, and S. Liu, “Resonant cavity based antireflection structures for surface plasmon waveguides,” Appl. Phys. B98(4), 797–802 (2010).
[CrossRef]

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9(1), 21–25 (2010).
[CrossRef] [PubMed]

2009 (2)

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
[CrossRef]

J. Tao, X. G. Huang, X. S. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express17(16), 13989–13994 (2009).
[CrossRef] [PubMed]

2008 (4)

2007 (2)

Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun.278(1), 199–203 (2007).
[CrossRef]

P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express15(11), 6762–6767 (2007).
[CrossRef] [PubMed]

2006 (3)

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express14(23), 11318–11323 (2006).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7–8), 20–27 (2006).
[CrossRef]

2005 (2)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express13(24), 9652–9659 (2005).
[CrossRef] [PubMed]

1998 (1)

Borghs, G.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
[CrossRef]

Brongersma, M. L.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7–8), 20–27 (2006).
[CrossRef]

Brunets, I.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9(1), 21–25 (2010).
[CrossRef] [PubMed]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7–8), 20–27 (2006).
[CrossRef]

Chichkov, B.

De Vlaminck, I.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
[CrossRef]

Djurisic, A. B.

Elazar, J. M.

Fan, S.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

Ginzburg, P.

Granpayeh, N.

N. Nozhat and N. Granpayeh, “Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits,” Opt. Commun.284(13), 3449–3455 (2011).
[CrossRef]

Gray, S.

Guo, Y.

Guo, Z.

Han, Z.

Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun.278(1), 199–203 (2007).
[CrossRef]

He, M. D.

He, S.

Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun.278(1), 199–203 (2007).
[CrossRef]

Hosseini, A.

Huang, W. Q.

Huang, X. G.

Jin, X.

Kiyan, R.

Kocabas, S. E.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008).
[CrossRef]

Lagae, L.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
[CrossRef]

Lee, T. W.

Li, H.

Lin, X. S.

Liu, J.

J. Liu, H. Zhao, Y. Zhang, and S. Liu, “Resonant cavity based antireflection structures for surface plasmon waveguides,” Appl. Phys. B98(4), 797–802 (2010).
[CrossRef]

Liu, J. Q.

Liu, S.

J. Liu, H. Zhao, Y. Zhang, and S. Liu, “Resonant cavity based antireflection structures for surface plasmon waveguides,” Appl. Phys. B98(4), 797–802 (2010).
[CrossRef]

Luo, B.

Luo, X.

Majewski, M. L.

Massoud, Y.

Miller, D. A. B.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008).
[CrossRef]

Neutens, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
[CrossRef]

Nozhat, N.

N. Nozhat and N. Granpayeh, “Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits,” Opt. Commun.284(13), 3449–3455 (2011).
[CrossRef]

Ohrt, C.

Orenstein, M.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pan, W.

Passinger, S.

Polman, A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9(1), 21–25 (2010).
[CrossRef] [PubMed]

Rakic, A. D.

Reinhardt, C.

Schmitz, J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9(1), 21–25 (2010).
[CrossRef] [PubMed]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7–8), 20–27 (2006).
[CrossRef]

Seidel, A.

Stepanov, A.

Tao, J.

Van Dorpe, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
[CrossRef]

van Loon, R. V. A.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9(1), 21–25 (2010).
[CrossRef] [PubMed]

Veronis, G.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

Walters, R. J.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9(1), 21–25 (2010).
[CrossRef] [PubMed]

Wang, D.

Wang, L. L.

Wen, K.

Wen, S.

Yan, L.

Zhang, Q.

Zhang, Y.

J. Liu, H. Zhao, Y. Zhang, and S. Liu, “Resonant cavity based antireflection structures for surface plasmon waveguides,” Appl. Phys. B98(4), 797–802 (2010).
[CrossRef]

Zhao, H.

J. Liu, H. Zhao, Y. Zhang, and S. Liu, “Resonant cavity based antireflection structures for surface plasmon waveguides,” Appl. Phys. B98(4), 797–802 (2010).
[CrossRef]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7–8), 20–27 (2006).
[CrossRef]

Zou, B. S.

Appl. Opt. (1)

Appl. Phys. B (1)

J. Liu, H. Zhao, Y. Zhang, and S. Liu, “Resonant cavity based antireflection structures for surface plasmon waveguides,” Appl. Phys. B98(4), 797–802 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008).
[CrossRef]

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7–8), 20–27 (2006).
[CrossRef]

Nat. Mater. (1)

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9(1), 21–25 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
[CrossRef]

Opt. Commun. (2)

N. Nozhat and N. Granpayeh, “Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits,” Opt. Commun.284(13), 3449–3455 (2011).
[CrossRef]

Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun.278(1), 199–203 (2007).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Science (1)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other (1)

K. Chang and L. H. Hsieh, Microwave Ring Circuits and Related Structures (Wiley, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the proposed power splitter

Fig. 2
Fig. 2

Equivalent electrical circuit of the proposed structure

Fig. 3
Fig. 3

Simplified circuit model of the proposed splitter for (a) odd N and (b) even N

Fig. 4
Fig. 4

(a) Variation of voltage ratio VR(2) on L2, (b) variation of S11 on L1, (c) layout of the designed 1 × 3 power splitter and the corresponding field evolution and (d) transmission and reflection spectra obtained by the FDTD method (solid lines) and by the TL model (dashed lines). The dotted magenta curve is a straight line of VR(2) = 1. The blue, red and black curves represent the calculated powers at ports 1, 2 and 3, respectively.

Fig. 5
Fig. 5

(a) Variation of voltage ratio VR(2) on L2, (b) variation of S11 on L1, (c) layout of the designed 1 × 5 power splitter and the corresponding field evolution and (d) transmission and reflection spectra obtained by the FDTD method (solid lines) and by the TL model (dashed lines). The blue, red, black and magenta curves represent the calculated powers at ports 1, 2, 3 and 4, respectively.

Fig. 6
Fig. 6

(a) Variation of voltage ratio VR(2) on L2, (b) variation of S11 on L1, (c) layout of the designed 1 × 4 power splitter and the corresponding field evolution and (d) transmission and reflection spectra obtained by the FDTD method (solid lines) and by the TL model (dashed lines). The blue, red and black curves represent the calculated powers at ports 1, 2 and 3, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Z a,m =j Z o tan( β r L m /2 )
Z b,m =j Z o csc( β r L m )
VR(m)= V m+1 V m = Z eq,m+1 Z a,m + Z eq,m+1 Z b,m ||( Z a,m + Z eq,m+1 ) Z a,m + Z b,m ||( Z a,m + Z eq,m+1 ) ,m=2, 3 M
S 11 = Z in Z o Z in + Z o
ε(ω)= ε ω p 2 ω 2 +iγω n=1 5 Δ ε n ω n 2 ω 2 ω n 2 +i γ n ω

Metrics