Abstract

The nonlinear response of amorphous silicon waveguides is reported and compared to silicon-on-insulator (SOI) samples. The real part of the nonlinear coefficient γ is measured by four-wave-mixing and the imaginary part of γ is characterized by measuring the nonlinear loss at different peak powers. The combination of both results yields a two-photon-absorption figure of merit of 4.9, which is more than 7 times higher than for the SOI samples. Time-resolved measurements and simulations confirm the measured nonlinear coefficient γ and show the absence of slow free-carrier effects versus ns free-carrier lifetimes in the SOI samples.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004).
    [CrossRef] [PubMed]
  2. B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett.21, 182–184 (2009).
    [CrossRef]
  3. B. Kuyken, S. K. Selvaraja, W. Bogaerts, D. Van, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36, 552–554 (2011).
    [CrossRef] [PubMed]
  4. V. Mizrahi, K. W. Delong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett.14, 1140–1142 (1989).
    [CrossRef] [PubMed]
  5. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides.” Opt. Express18, 8998–9005 (2010).
    [CrossRef] [PubMed]
  6. S. K. OLeary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys.82, 3334 (1997).
    [CrossRef]
  7. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19, B146–B153 (2011).
    [CrossRef]
  8. T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express17, 17357–17368 (2009).
    [CrossRef] [PubMed]
  9. T. Kung, C. Chang, J. Dung, and S. Chi, “Four-wave mixing between pump and signal in a distributed Raman amplifier,” J. Lightwave Technol.21, 1164–1170 (2003).
    [CrossRef]
  10. M. Wu and W. I. Way, “Fiber Nonlinearity Limitations in Ultra-Dense WDM Systems,” J. Lightwave Technol.22, 1483–1498 (2004).
    [CrossRef]
  11. S. Mas, J. Matres, J. Martí, and C. J. Oton, “Accurate chromatic dispersion characterization of photonic integrated circuits,” IEEE Photon. J.4, 825–831 (2012).
    [CrossRef]
  12. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express16, 170–178 (2008).
    [CrossRef] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  14. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15, 16604–16644 (2007).
    [CrossRef] [PubMed]
  15. J. Matres, C. Lacava, G. C. Ballesteros, P. Minzioni, I. Cristiani, J. M. Fédéli, J. Martí, and C. J. Oton, “Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides,” Opt. Express20, 23838–23845 (2012).
    [CrossRef]
  16. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express15, 5976–5990 (2007).
    [CrossRef] [PubMed]
  17. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Effective mode area and its optimization in silicon-nanocrystal waveguides,” Opt. Lett.37, 2295–2297 (2012).
    [CrossRef] [PubMed]
  18. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3, 1–4 (2009).
    [CrossRef]

2012 (3)

2011 (2)

2010 (1)

2009 (3)

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express17, 17357–17368 (2009).
[CrossRef] [PubMed]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3, 1–4 (2009).
[CrossRef]

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett.21, 182–184 (2009).
[CrossRef]

2008 (1)

2007 (2)

2004 (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004).
[CrossRef] [PubMed]

M. Wu and W. I. Way, “Fiber Nonlinearity Limitations in Ultra-Dense WDM Systems,” J. Lightwave Technol.22, 1483–1498 (2004).
[CrossRef]

2003 (1)

1997 (1)

S. K. OLeary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys.82, 3334 (1997).
[CrossRef]

1989 (1)

Agrawal, G. P.

Alloatti, L.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004).
[CrossRef] [PubMed]

Andrejco, M. J.

Baets, R.

Ballesteros, G. C.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004).
[CrossRef] [PubMed]

Bergman, K.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett.21, 182–184 (2009).
[CrossRef]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3, 1–4 (2009).
[CrossRef]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express17, 17357–17368 (2009).
[CrossRef] [PubMed]

Biberman, A.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett.21, 182–184 (2009).
[CrossRef]

Bimberg, D.

Bogaerts, W.

B. Kuyken, S. K. Selvaraja, W. Bogaerts, D. Van, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36, 552–554 (2011).
[CrossRef] [PubMed]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3, 1–4 (2009).
[CrossRef]

Bogatscher, S.

Bonk, R.

Chang, C.

Chi, S.

Clemmen, S.

Cristiani, I.

Delong, K. W.

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3, 1–4 (2009).
[CrossRef]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express17, 17357–17368 (2009).
[CrossRef] [PubMed]

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3, 1–4 (2009).
[CrossRef]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express17, 17357–17368 (2009).
[CrossRef] [PubMed]

Dung, J.

Emplit, P.

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3, 1–4 (2009).
[CrossRef]

Fédéli, J. M.

Foster, M. A.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett.21, 182–184 (2009).
[CrossRef]

Freude, W.

Gaeta, A. L.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett.21, 182–184 (2009).
[CrossRef]

Galili, M.

Hu, H.

Jacome, L.

Jeppesen, P.

Ji, H.

Johnson, S. R.

S. K. OLeary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys.82, 3334 (1997).
[CrossRef]

Koos, C.

Kung, T.

Kuyken, B.

Lacava, C.

Laemmlin, M.

Lee, B. G.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett.21, 182–184 (2009).
[CrossRef]

Leuthold, J.

Lim, P. K.

S. K. OLeary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys.82, 3334 (1997).
[CrossRef]

Lin, Q.

Lipson, M.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett.21, 182–184 (2009).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004).
[CrossRef] [PubMed]

Martí, J.

Mas, S.

S. Mas, J. Matres, J. Martí, and C. J. Oton, “Accurate chromatic dispersion characterization of photonic integrated circuits,” IEEE Photon. J.4, 825–831 (2012).
[CrossRef]

Massar, S.

Matres, J.

Meuer, C.

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3, 1–4 (2009).
[CrossRef]

Minzioni, P.

Mizrahi, V.

Morthier, G.

Narayanan, K.

OLeary, S. K.

S. K. OLeary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys.82, 3334 (1997).
[CrossRef]

Oton, C. J.

Oxenløwe, L. K.

Painter, O. J.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004).
[CrossRef] [PubMed]

Poulton, C.

Preble, S. F.

Premaratne, M.

Pu, M.

Roelkens, G.

Rukhlenko, I. D.

Saifi, M. A.

Scimeca, M. L.

Selvaraja, S. K.

Stegeman, G. I.

Turner-Foster, A. C.

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett.21, 182–184 (2009).
[CrossRef]

Vallaitis, T.

Van, D.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3, 1–4 (2009).
[CrossRef]

Way, W. I.

Wu, M.

IEEE Photon. J. (1)

S. Mas, J. Matres, J. Martí, and C. J. Oton, “Accurate chromatic dispersion characterization of photonic integrated circuits,” IEEE Photon. J.4, 825–831 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. G. Lee, A. Biberman, A. C. Turner-Foster, M. A. Foster, M. Lipson, A. L. Gaeta, and K. Bergman, “Demonstration of broadband wavelength conversion at 40 Gb/s in silicon waveguides,” IEEE Photon. Technol. Lett.21, 182–184 (2009).
[CrossRef]

J. Appl. Phys. (1)

S. K. OLeary, S. R. Johnson, and P. K. Lim, “The relationship between the distribution of electronic states and the optical absorption spectrum of an amorphous semiconductor: An empirical analysis,” J. Appl. Phys.82, 3334 (1997).
[CrossRef]

J. Lightwave Technol. (2)

Nat. Photonics (1)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon organic hybrid slot waveguides,” Nat. Photonics3, 1–4 (2009).
[CrossRef]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431, 1081–1084 (2004).
[CrossRef] [PubMed]

Opt. Express (7)

J. Matres, C. Lacava, G. C. Ballesteros, P. Minzioni, I. Cristiani, J. M. Fédéli, J. Martí, and C. J. Oton, “Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides,” Opt. Express20, 23838–23845 (2012).
[CrossRef]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19, B146–B153 (2011).
[CrossRef]

C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express15, 5976–5990 (2007).
[CrossRef] [PubMed]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express15, 16604–16644 (2007).
[CrossRef] [PubMed]

T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express16, 170–178 (2008).
[CrossRef] [PubMed]

T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, and J. Leuthold, “Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries,” Opt. Express17, 17357–17368 (2009).
[CrossRef] [PubMed]

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides.” Opt. Express18, 8998–9005 (2010).
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

SEM images of the amorphous silicon (a), TM SOI (b) and TE SOI (c). Air bubbles visible in the SOI samples were generated during facet preparation with HF to increase SEM contrast.

Fig. 2
Fig. 2

With 13 dBm pump power in waveguide a signal to idler conversion efficiency of −29.5 dB was measured in the FWM experiment.

Fig. 3
Fig. 3

Four wave mixing conversion efficiency bandwidth. Pump power: 7.5 dBm (sample a), 14 dBm (sample b), 9 dBm (sample c). Dots are experimental points and the solid line is the fit to Eq. (4).

Fig. 4
Fig. 4

Four wave conversion efficiency versus pump power. Dots: experimental points, solid line: linear fit. The slope of the linear fit in dB represents the power of the conversion efficiency versus pump power, which is close to 2 in all cases.

Fig. 5
Fig. 5

Transmission versus waveguide peak power (note the difference in the y-scale among the three plots). Solid line shows the fit for sech2 pulses using Eq. (10).

Fig. 6
Fig. 6

Time resolved characterization setup. PD: photodiode, PC: polarization controller, AOM: acousto-optic modulator.

Fig. 7
Fig. 7

Time resolved measurements for different peak powers in waveguide. (sample a) 0.8W (—), 0.4W (- -), 0.2W (· ·) (sample b) 6W (—), 3W (- -), 1.5W (· ·) (sample c) 3W (—), 1.5W (- -), 0.75W (· ·)

Fig. 8
Fig. 8

Time resolved measurements (- -) and simulations (—) for 0.4W (sample a), 3W (sample b) and 1.5W (sample c) peak power in waveguide.

Tables (1)

Tables Icon

Table 1 Properties of the amorphous silicon waveguide compared with 445×220 nm and 485×220 nm (TE and TM) SOI waveguides. The dispersion value was obtained through the fit of the FWM conversion bandwidth and its sign simulating the dispersion of the structure. Figure of merit is defined as in paper [16] and Aeff as in [17].

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P i ( L ) = e α 0 L ( η Re { γ } P P ( 0 ) L eff ) 2 P S ( 0 )
η 2 = α 0 2 α 0 2 + Δ β 2 ( 1 + 4 e α 0 L sin 2 ( L Δ β / 2 ) 1 e α 0 L )
Δ β = 2 π c D λ λ p 2 Δ λ 2
P i ( L ) P s ( L ) = ( η Re { γ } P P ( 0 ) L eff ) 2
d P d z = α 0 P ( z ) 2 | Im ( γ ) | P ( z ) 2
P ( L ) = e α 0 L 1 + 2 | Im ( γ ) | L eff P 0 P 0
T N L 1 = T L P T H P = 1 + 2 | Im ( γ ) | L eff P 0
T ˜ = P ( t , L ) d t P 0 ( t ) d t
T ˜ N L 1 = T ˜ L P T ˜ H P = P 0 ( t ) d t P 0 ( t ) 1 + 2 | Im ( γ ) | L eff P 0 ( t ) d t
T ˜ N L 1 = T ˜ L P T ˜ H P | sech 2 shape = δ δ + 1 ln ( δ + δ + 1 ) where δ = 2 | Im ( γ ) | L eff P 0 peak
| T A | e j ϕ = E ref ( τ ) E probe * ( τ ) d τ | E ref ( τ ) | 2 d τ

Metrics