Abstract

We demonstrate coherent spectral beam combining and femtosecond pulse spectral synthesis using three parallel fiber chirped pulse amplifiers, each amplifying different ultrashort-pulse spectra. This proof-of-concept experiment opens a path to simultaneously overcome individual-amplifier energy and power limitations, as well as limitations on amplified pulse spectra due to the gain narrowing in a single fiber amplifier.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspective,” J. Opt. Soc. Am. B27(11), B63–B92 (2010).
    [CrossRef]
  2. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett.35(2), 94–96 (2010).
    [CrossRef] [PubMed]
  3. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett.32(24), 3495–3497 (2007).
    [CrossRef] [PubMed]
  4. L. A. Siiman, W. Z. Chang, T. Zhou, and A. Galvanauskas, “Coherent femtosecond pulse combining of multiple parallel chirped pulse fiber amplifiers,” Opt. Express20(16), 18097–18116 (2012).
    [CrossRef] [PubMed]
  5. A. Klenke, E. Seise, S. Demmler, J. Rothhardt, S. Breitkopf, J. Limpert, and A. Tünnermann, “Coherently-combined two channel femtosecond fiber CPA system producing 3 mJ pulse energy,” Opt. Express19(24), 24280–24285 (2011).
    [CrossRef] [PubMed]
  6. L. Daniault, M. Hanna, L. Lombard, Y. Zaouter, E. Mottay, D. Goular, P. Bourdon, F. Druon, and P. Georges, “Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers,” Opt. Lett.36(5), 621–623 (2011).
    [CrossRef] [PubMed]
  7. R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
    [CrossRef] [PubMed]
  8. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
    [CrossRef]
  9. S. W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics5(8), 475–479 (2011).
    [CrossRef]
  10. T. M. Shay, “Theory of electronically phased coherent beam combination without a reference beam,” Opt. Express14(25), 12188–12195 (2006).
    [CrossRef] [PubMed]
  11. T. M. Shay, V. Benham, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron.13(3), 480–486 (2007).
    [CrossRef]
  12. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11(3), 567–577 (2005).
    [CrossRef]
  13. T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, “522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality,” Opt. Lett.32(4), 349–351 (2007).
    [CrossRef] [PubMed]
  14. O. Andrusyak, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “Applications of volume Bragg gratings for spectral control and beam combining of high power fiber lasers,” SPIE7195, 71951Q, 71951Q-11 (2009).
    [CrossRef]
  15. K. Regelskis, K. Hou, G. Raciukaitis, and A. Galvanauskas, “Spatial-dispersion-free spectral beam combining of high power pulsed Yb-doped fiber lasers,” CLEO, CMA4 (2008)

2012 (1)

2011 (3)

2010 (3)

2009 (1)

O. Andrusyak, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “Applications of volume Bragg gratings for spectral control and beam combining of high power fiber lasers,” SPIE7195, 71951Q, 71951Q-11 (2009).
[CrossRef]

2007 (3)

2006 (1)

2005 (1)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11(3), 567–577 (2005).
[CrossRef]

2001 (1)

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Andersen, T. V.

Andrusyak, O.

O. Andrusyak, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “Applications of volume Bragg gratings for spectral control and beam combining of high power fiber lasers,” SPIE7195, 71951Q, 71951Q-11 (2009).
[CrossRef]

Benham, V.

T. M. Shay, V. Benham, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron.13(3), 480–486 (2007).
[CrossRef]

Bhardwaj, S.

S. W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics5(8), 475–479 (2011).
[CrossRef]

Birge, J. R.

S. W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics5(8), 475–479 (2011).
[CrossRef]

Bourdon, P.

Breitkopf, S.

Cerullo, G.

S. W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics5(8), 475–479 (2011).
[CrossRef]

Chang, W. Z.

Chen, L. J.

S. W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics5(8), 475–479 (2011).
[CrossRef]

Cirmi, G.

S. W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics5(8), 475–479 (2011).
[CrossRef]

Clarkson, W. A.

Daniault, L.

Demmler, S.

Druon, F.

Eggert, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Eggleton, B. J.

S. W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics5(8), 475–479 (2011).
[CrossRef]

Eidam, T.

Fan, T. Y.

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11(3), 567–577 (2005).
[CrossRef]

Gabler, T.

Galvanauskas, A.

Georges, P.

Glebov, L.

O. Andrusyak, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “Applications of volume Bragg gratings for spectral control and beam combining of high power fiber lasers,” SPIE7195, 71951Q, 71951Q-11 (2009).
[CrossRef]

Goular, D.

Hall, J. L.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Hanf, S.

Hanke, T.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Hanna, M.

Hoffman, P. R.

Honea, E.

Hong, K. H.

S. W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics5(8), 475–479 (2011).
[CrossRef]

Huang, S. W.

S. W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics5(8), 475–479 (2011).
[CrossRef]

Huber, R.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Kapteyn, H. C.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Kartner, F. X.

S. W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics5(8), 475–479 (2011).
[CrossRef]

Klenke, A.

Krauss, G.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Leitenstorfer, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Li, E.

S. W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics5(8), 475–479 (2011).
[CrossRef]

Limpert, J.

Liu, A.

Loftus, T. H.

Lohss, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Lombard, L.

Lu, C. A.

T. M. Shay, V. Benham, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron.13(3), 480–486 (2007).
[CrossRef]

Ma, L. S.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Moses, J.

S. W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics5(8), 475–479 (2011).
[CrossRef]

Mottay, E.

Murnane, M. M.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Nilsson, J.

Norsen, M.

Pilkington, D.

T. M. Shay, V. Benham, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron.13(3), 480–486 (2007).
[CrossRef]

Richardson, D. J.

Röser, F.

Rothhardt, J.

Royse, R.

Sanchez, A. D.

T. M. Shay, V. Benham, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron.13(3), 480–486 (2007).
[CrossRef]

Schimpf, D. N.

Schmidt, O.

Schreiber, T.

Seise, E.

Sell, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

Shay, T. M.

T. M. Shay, V. Benham, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron.13(3), 480–486 (2007).
[CrossRef]

T. M. Shay, “Theory of electronically phased coherent beam combination without a reference beam,” Opt. Express14(25), 12188–12195 (2006).
[CrossRef] [PubMed]

Shelton, R. K.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Siiman, L. A.

Smirnov, V.

O. Andrusyak, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “Applications of volume Bragg gratings for spectral control and beam combining of high power fiber lasers,” SPIE7195, 71951Q, 71951Q-11 (2009).
[CrossRef]

Thomas, A. M.

Tünnermann, A.

Venus, G.

O. Andrusyak, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “Applications of volume Bragg gratings for spectral control and beam combining of high power fiber lasers,” SPIE7195, 71951Q, 71951Q-11 (2009).
[CrossRef]

Vorobiev, N.

O. Andrusyak, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “Applications of volume Bragg gratings for spectral control and beam combining of high power fiber lasers,” SPIE7195, 71951Q, 71951Q-11 (2009).
[CrossRef]

Wirth, C.

Ye, J.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

Zaouter, Y.

Zhou, T.

IEEE J. Sel. Top. Quantum Electron. (2)

T. M. Shay, V. Benham, A. D. Sanchez, D. Pilkington, and C. A. Lu, “Self-synchronous and self-referenced coherent beam combination for large optical arrays,” IEEE J. Sel. Top. Quantum Electron.13(3), 480–486 (2007).
[CrossRef]

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron.11(3), 567–577 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010).
[CrossRef]

S. W. Huang, G. Cirmi, J. Moses, K. H. Hong, S. Bhardwaj, J. R. Birge, L. J. Chen, E. Li, B. J. Eggleton, G. Cerullo, and F. X. Kartner, “High-energy pulse synthesis with sub-cycle waveform control for strong-field physics,” Nat. Photonics5(8), 475–479 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Science (1)

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, J. L. Hall, and J. Ye, “Phase-coherent optical pulse synthesis from separate femtosecond lasers,” Science293(5533), 1286–1289 (2001).
[CrossRef] [PubMed]

SPIE (1)

O. Andrusyak, V. Smirnov, G. Venus, N. Vorobiev, and L. Glebov, “Applications of volume Bragg gratings for spectral control and beam combining of high power fiber lasers,” SPIE7195, 71951Q, 71951Q-11 (2009).
[CrossRef]

Other (1)

K. Regelskis, K. Hou, G. Raciukaitis, and A. Galvanauskas, “Spatial-dispersion-free spectral beam combining of high power pulsed Yb-doped fiber lasers,” CLEO, CMA4 (2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Two alternative architectures of coherently-spectrally combined fiber CPA arrays. Layout in (a) uses a single pulse stretcher and a single compressor, thus being suitable for pulse synthesis, but limited in pulse energy scaling. Layout in (b) shows architecture with individual pulse stretchers and compressors in each channel. This permits pulse energy scaling. Here Δϕi indicates ith channel phase error with respect to the reference channel (channel #1 in this example).

Fig. 2
Fig. 2

(a) Wavelength-dependent normalized transmission T(λ) at a spectral edge of a filter. Normalization is with respect to the peak value of the filter’s absolute transmission. (b) An example of spectral transmission characteristics of LWP filters used as spectral combiners. Three curves correspond to three different input-beam incidence angles, as indicated in the figure.

Fig. 3
Fig. 3

Numerically simulated histograms of the statistics of the TPA responses for different overall inter-channel phasing-error magnitudes, as indicated by different values of variance σ.

Fig. 4
Fig. 4

Experimental setup for three-channel pulse synthesis.

Fig. 5
Fig. 5

Schematic and 3D rendering of the micro-optic delay line with spectral filter.

Fig. 6
Fig. 6

Results for that case of partially overlapping spectra. (a) Measured spectra of the individual-channel and combined signals; (b) normalized autocorrelation traces for the individual-channel and combined signals. The dash line shows the calculated transform-limited autocorrelation of the combined spectrum in 6(a).

Fig. 7
Fig. 7

Results for the case of non-overlapping spectra. (a) Spectra for the individual-channel and combined signals; (b) normalized autocorrelation traces for the individual-channel and combined signals. The dash line shows the calculated transform-limited autocorrelation of the combined spectrum in 7(a).

Fig. 8
Fig. 8

Locked and unlocked intensity variations measured using (a) the linear detector in a system with partial spectral overlap between the channels, and (b) the TPA detector in a system without any spectral overlap between the channels.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

η= ( I 1 T(λ) + I 2 ( 1T(λ) ) ) 2 I 1 + I 2 .
E comb. Σ k ( t )= 1 [ E comb. Σ k ( ω ) ]= 1 [ j=1,N E j ( ω ) e i ϕ j ],
S TPA Σ k ( t ) [ E TPA Σ k ( t )( E TPA Σ k ( t ) )* ] 2 .
p( ϕ j )= 1 2π σ e 1 2 ( ϕ j σ ) 2 .
η TPA Σ k = S TPA Σ k ( t ) S TPA BL ( t ) .
E T (t)= E 1 cos( ω L t+ ϕ 1 )+ i=2 N E i cos( ω L t+ ϕ i + β i sin( ω i t)),
i TPA (t)=q P T 2 =q A 2 ε 0 μ 0 | E T | 4 ,
S i = 1 T 0 T i TPA (t)sin( ω i t)dt .
cos( β i sin( ω i t))= J 0 ( β i )+2 n=1 J 2n ( β i )cos(2n ω i t), sin( β i sin( ω i t))=2 n=1 J 2n1 ( β i )sin(2(n1) ω i t),
S i =q A 2 ε 0 μ 0 { 1 2 E i 2 ( j=2 ji N E j ) 2 cos( ϕ i ϕ j )sin( ϕ i ϕ j ) J 0 ( β i ) J 1 ( β i )( 2 n=1 J 2n1 2 ( β j )( J 0 2 ( β j )+2 n=1 J 2n 2 ( β j ) ) ) 1 2 E i 3 ( j=2 ji N E j )sin( ϕ i ϕ j ) J 1 ( β i ) J 0 ( β j ) +2 E 1 2 E i 2 cos( ϕ i ϕ 1 )sin( ϕ i ϕ 1 ) J 0 ( β i ) J 1 ( β i ) 1 2 E 1 2 E i ( j=2 ji N E j )sin( ϕ i ϕ j ) J 1 ( β i ) J 0 ( β j )+ E 1 3 E i sin( ϕ i ϕ 1 ) J 1 ( β i ) + E 1 E i 2 j=2 ji N E j [ cos( ϕ i ϕ j )sin( ϕ i ϕ 1 )cos( ϕ i ϕ 1 )sin( ϕ i ϕ j ) ] J 0 ( β i ) J 1 ( β i ) J 0 ( β j ) + E 1 E i 3 sin( ϕ i ϕ j ) J 1 ( β i ) }.
1 T 0 T cos( β i sin( ω i t))sin( ω k t)dt= 1 T 0 T cos 2 ( β i sin( ω i t))sin( ω k t)dt= 0 1 T 0 T sin( β i sin( ω i t))sin( ω k t)dt= 1 T 0 T sin 2 ( β i sin( ω i t))sin( ω k t)dt= 0,
S k,i = 1 T 0 T i TPA (t)sin( ω k t)dt =0.

Metrics