Abstract

Metamaterials have been previously studied for their ability to tailor the dispersive infrared (IR) emissivity of a surface. Here, we investigate metamaterial coatings based on an electromagnetic band-gap surface for use as near-IR emitters with custom polarization selectivity. A genetic algorithm is successfully employed to optimize the metamaterial structures to exhibit custom linear, circular, and elliptical polarization. A study is also conducted on a bi-anisotropic slab, showing that anisotropic chirality is required in the metamaterial structure in order to achieve circular or elliptical emissivity polarization.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ginn, D. Shelton, P. Krenz, B. Lail, and G. Boreman, “Polarized infrared emission using frequency selective surfaces,” Opt. Express18(5), 4557–4563 (2010).
    [CrossRef] [PubMed]
  2. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
    [CrossRef] [PubMed]
  3. M. D. Griffin and J. R. French, Space Vehicle Design, 2nd ed. (AIAA, Weston, VA, 2004).
  4. S. L. Wadsworth, P. G. Clem, E. D. Branson, and G. Boreman, “Broadband circularly-polarized infrared emission from multilayer metamaterials,” Opt. Mater. Express1(3), 466–479 (2011).
    [CrossRef]
  5. W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, MA, 1962).
  6. E. C. Zimmermann and A. Dalcher, “Incoherent radiative properties of an opaque body,” J. Opt. Soc. Am. A8(12), 1947–1954 (1991).
    [CrossRef]
  7. Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
    [CrossRef] [PubMed]
  8. R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley, Hoboken, NJ, 2007).
  9. D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultra-thin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett.48(12), 2468–2471 (2006).
    [CrossRef]
  10. T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag.47(5), 843–850 (1999).
    [CrossRef]
  11. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  12. Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92(26), 263106 (2008).
    [CrossRef]
  13. J. L. Tsalamengas, “Interaction of electromagnetic waves with general bianisotropic slabs,” IEEE Trans. Microw. Theory Tech.40(10), 1870–1878 (1992).
    [CrossRef]

2011 (3)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

S. L. Wadsworth, P. G. Clem, E. D. Branson, and G. Boreman, “Broadband circularly-polarized infrared emission from multilayer metamaterials,” Opt. Mater. Express1(3), 466–479 (2011).
[CrossRef]

2010 (1)

2008 (1)

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92(26), 263106 (2008).
[CrossRef]

2006 (1)

D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultra-thin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett.48(12), 2468–2471 (2006).
[CrossRef]

1999 (1)

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag.47(5), 843–850 (1999).
[CrossRef]

1998 (1)

1992 (1)

J. L. Tsalamengas, “Interaction of electromagnetic waves with general bianisotropic slabs,” IEEE Trans. Microw. Theory Tech.40(10), 1870–1878 (1992).
[CrossRef]

1991 (1)

Boreman, G.

Bossard, J. A.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92(26), 263106 (2008).
[CrossRef]

Branson, E. D.

Clem, P. G.

Dalcher, A.

Djurišic, A. B.

Eibert, T. F.

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag.47(5), 843–850 (1999).
[CrossRef]

Elazar, J. M.

Ginn, J.

Jackson, D. R.

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag.47(5), 843–850 (1999).
[CrossRef]

Jiang, Z. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Kern, D. J.

D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultra-thin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett.48(12), 2468–2471 (2006).
[CrossRef]

Krenz, P.

Lail, B.

Liu, X.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Majewski, M. L.

Mayer, T. S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92(26), 263106 (2008).
[CrossRef]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Rakic, A. D.

Shelton, D.

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Tang, Y.

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92(26), 263106 (2008).
[CrossRef]

Toor, F.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Tsalamengas, J. L.

J. L. Tsalamengas, “Interaction of electromagnetic waves with general bianisotropic slabs,” IEEE Trans. Microw. Theory Tech.40(10), 1870–1878 (1992).
[CrossRef]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Volakis, J. L.

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag.47(5), 843–850 (1999).
[CrossRef]

Wadsworth, S. L.

Werner, D. H.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92(26), 263106 (2008).
[CrossRef]

D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultra-thin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett.48(12), 2468–2471 (2006).
[CrossRef]

Wilton, D. R.

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag.47(5), 843–850 (1999).
[CrossRef]

Yun, S.

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Zimmermann, E. C.

ACS Nano (1)

Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, “Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating,” ACS Nano5(6), 4641–4647 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Tang, J. A. Bossard, D. H. Werner, and T. S. Mayer, “Single-layer metallodielectric nanostructures as dual-band midinfrared filters,” Appl. Phys. Lett.92(26), 263106 (2008).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

T. F. Eibert, J. L. Volakis, D. R. Wilton, and D. R. Jackson, “Hybrid FE/BI modeling of 3-D doubly periodic structures utilizing triangular prismatic elements and an MPIE formulation accelerated by the Ewald transformation,” IEEE Trans. Antenn. Propag.47(5), 843–850 (1999).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

J. L. Tsalamengas, “Interaction of electromagnetic waves with general bianisotropic slabs,” IEEE Trans. Microw. Theory Tech.40(10), 1870–1878 (1992).
[CrossRef]

J. Opt. Soc. Am. A (1)

Microw. Opt. Technol. Lett. (1)

D. J. Kern and D. H. Werner, “Magnetic loading of EBG AMC ground planes and ultra-thin absorbers for improved bandwidth performance and reduced size,” Microw. Opt. Technol. Lett.48(12), 2468–2471 (2006).
[CrossRef]

Opt. Express (1)

Opt. Mater. Express (1)

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011).
[CrossRef] [PubMed]

Other (3)

M. D. Griffin and J. R. French, Space Vehicle Design, 2nd ed. (AIAA, Weston, VA, 2004).

W. A. Shurcliff, Polarized Light (Harvard U. Press, Cambridge, MA, 1962).

R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley, Hoboken, NJ, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Illustration of the wave polarization traces for the Stokes-vector components. (a) Trace illustrations for the linear components, Q and U, and the circular component V. (b) Wave traces illustrating right-handed elliptical (top) and left-handed circular (bottom) polarization with Stokes vectors of [I, Q, U, V] = [1, 0, −0.5, −0.5] and [I, Q, U, V] = [1, 0, 0, 1], respectively.

Fig. 2
Fig. 2

Flowchart showing the genetic algorithm synthesis procedure used to evolve polarization-selective emitter designs.

Fig. 3
Fig. 3

Illustration of a pixellized EBG unit cell with no symmetry constraint. The chromosome encoding for the unit cell overlays the geometry.

Fig. 4
Fig. 4

Synthesized EBG structures used to achieve custom polarized emissivity targeting (a) linear, (b) circular, and (c) elliptical polarization.

Fig. 5
Fig. 5

Polarization traces for the EBG emitter designs shown in Fig. 4. The targeted polarization trace is shown by a dashed curve, and the predicted metamaterial emissivity is shown by the solid trace. These curves illustrate (a) linear, (b) circular, and (c) elliptical polarization.

Fig. 6
Fig. 6

Theoretical homogeneous bi-anisotropic slab backed by a PEC ground plane. This slab was optimized by a GA to achieve circularly polarized emissivity.

Fig. 7
Fig. 7

Near-IR emissivity polarization for a PEC-backed bi-anisotropic slab. (a) Azimuth dependence of the emissivity Stokes vector and (b) polarization trace showing near complete circular polarization.

Fig. 8
Fig. 8

Simplified EBG emitter screen geometry for circular polarization. (a) Two-fold rotational symmetry is enforced on the screen geometry. (b) The top half of the unit cell is encoded in the chromosome, while the bottom half is generated by rotating the top half by 180°.

Fig. 9
Fig. 9

GA optimized Au and polyimide EBG emitter with two-fold rotationally symmetric screen geometry that is optimized to have high circularly polarized emission. (a) 3D unit cell and (b) 3x3 tiling.

Fig. 10
Fig. 10

Near-IR emissivity polarization at λ = 1.55µm for the EBG emitter design in Fig. 9. (a) Azimuth dependence of the emissivity Stokes vector and (b) polarization trace showing near complete circular polarization.

Fig. 11
Fig. 11

Field plots for the EBG emitter design in Fig. 9 when illuminated by a TE wave at λ = 1.55µm. (a) x-y plane cut through the center of the top Au layer. (b) x-z plane cut through the center of the unit cell.

Fig. 12
Fig. 12

Near-IR emissivity polarization at λ = 1.55µm for the EBG emitter design in Fig. 9 as a function of incidence angle for (a) φ = 0° and (b) φ = 90°.

Fig. 13
Fig. 13

Near-IR emissivity polarization for the EBG emitter design in Fig. 9 as a function of wavelength.

Tables (1)

Tables Icon

Table 1 Fabrication tolerances for each design showing what % change in a layer thickness or unit cell dimension will cause an element in the ɛ Stokes vector to change by ± 0.05 or ± 0.10

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

ε=A=1RT,
I= | E x | 2 + | E y | 2
Q= | E x | 2 | E y | 2
U= | E a | 2 | E b | 2
V= | E l | 2 | E r | 2
Cost= | ε target ε | 2
κ ¯ ¯ =[ 0.357 0.0 0.0 0.0 0.992 0.0 0.0 0.0 0.0 ]
ε ¯ ¯ =[ ε x 0 0 0 ε y 0 0 0 ε z ], μ ¯ ¯ =[ μ x 0 0 0 μ y 0 0 0 μ z ], and  κ ¯ ¯ =[ κ x 0 0 0 κ y 0 0 0 0 ].
P ¯ ¯ =[ 0 k 0 κ y 0 j ς 0 k 0 μ y k 0 κ x 0 j ς 0 k 0 μ x 0 0 j ς 0 1 k 0 ε y 0 k 0 κ y j ς 0 1 k 0 ε x 0 k 0 κ x 0 ],
T ¯ ¯ (z)=exp(z P ¯ ¯ )=[ T 1 ¯ ¯ T 2 ¯ ¯ T 3 ¯ ¯ T 4 ¯ ¯ ],
T ¯ ¯ (z)= C 0 (z) I 4 ¯ ¯ + C 1 (z) P ¯ ¯ + C 2 (z) P ¯ ¯ 2 + C 3 (z) P ¯ ¯ 3
R m ¯ ¯ = [ T 4 ¯ ¯ (d) T 2 ¯ ¯ 1 (d) W ¯ ¯ Q ¯ ¯ ] 1 [ T 4 ¯ ¯ (d) T 2 ¯ ¯ 1 (d) U ¯ ¯ V ¯ ¯ ],
W ¯ ¯ =[ 1 0 0 1 ],  Q ¯ ¯ = 1 ς 0 [ 0 1 1 0 ],  U ¯ ¯ =[ 1 0 0 1 ], and  V ¯ ¯ = 1 ς 0 [ 0 1 1 0 ].
C 1 (d)j k 0 ς 0 μ y + C 3 (d)j k 0 3 ς 0 ( κ y 2 μ x + ε x μ y 2 +2 κ x κ y μ y ) C 2 (d)j k 0 2 ς 0 ( κ x μ y + κ y μ x ) ]
C 1 (d) k 0 κ y C 3 (d) k 0 3 ( κ x κ y 2 + κ x ε y μ y + κ y ε x μ y + κ y ε y μ x ) C 0 (d) C 2 (d) k 0 2 ( κ x κ y + ε y μ x ) ]
T 2 12 ¯ ¯ 1 (d)= T 2 21 ¯ ¯ 1 (d) and  T 4 12 ¯ ¯ (d)= T 4 21 ¯ ¯ (d)
T 2 ¯ ¯ 1 (d)=[ f g g f ] and  T 4 ¯ ¯ (d)=[ h l l h ]
R m ¯ ¯ = 1 ( fhgl ) 2 +( fl+gh+ ς 0 1 ) [ f 2 h 2 g 2 l 2 f 2 l 2 g 2 h 2 + ς 0 2 2 ς 0 1 ( fhgl ) 2 ς 0 1 ( glfh ) f 2 h 2 + g 2 l 2 + f 2 l 2 + g 2 h 2 ς 0 2 ]
T 2 11 ¯ ¯ 1 (d) T 4 11 ¯ ¯ (d)= T 2 12 ¯ ¯ 1 (d) T 4 12 ¯ ¯ (d)
R m 12 ¯ ¯ = R m 21 ¯ ¯ =0

Metrics