Abstract

A proof-of-concept for a new and entirely CMOS compatible tunable nanobeam cavity is demonstrated in this paper. Preliminary results show that a compact nanobeam cavity (~20 μm2) with high Q-factor (~50,000) and integrated with a micro-heater atop, is able of tuning the resonant wavelength up to 15 nm with low power consumption (0.35nm/mW), and of attaining high modulation depth with only ~100 μW. Additionally, a tunable bi-stable behavior is reported.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and G. Guillot, (Optical Interconnects - the silicon approach) (Springer-Verlag, 2006).
  2. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]
  3. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol.23(8), 2455–2461 (2005).
    [CrossRef]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  5. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express19(12), 11507–11516 (2011).
    [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  7. W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express19(13), 12727–12739 (2011).
    [CrossRef] [PubMed]
  8. W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express20(13), 14722–14733 (2012).
    [CrossRef] [PubMed]
  9. L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater.12(2), 108–113 (2012).
    [CrossRef] [PubMed]
  10. X. Wang, T. Liu, V. R. de Almeida, and R. R. Panepucci, “On-chip silicon photonic wavelength control of optical fiber lasers,” Opt. Express16(20), 15671–15676 (2008).
    [CrossRef] [PubMed]
  11. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express15(19), 11934–11941 (2007).
    [CrossRef] [PubMed]
  12. T. Claes, W. Bogaerts, and P. Bienstman, “Vernier-cascade label-free biosensor with integrated arrayed waveguide grating for wavelength interrogation with low-cost broadband source,” Opt. Lett.36(17), 3320–3322 (2011).
    [CrossRef] [PubMed]
  13. B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nano-cavity in a Silicon waveguide for ultra-sensitive detection,” Appl. Phys. Lett.85, 4854–4856 (2004).
  14. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
    [CrossRef] [PubMed]
  15. C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express13(1), 245–255 (2005).
    [CrossRef] [PubMed]
  16. M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16(23), 19136–19145 (2008).
    [CrossRef] [PubMed]
  17. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
    [CrossRef]
  18. W. S. Fegadolli, J. E. B. Oliveira, and V. R. Almeida, “Highly linear electro-optic modulator based on ring resonator,” Microw. Opt. Technol. Lett.53(10), 2375–2378 (2011).
    [CrossRef]
  19. P.B. Deotare, I.B. Bulu, I.W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “Broadband Reconfiguration of OptoMechanical Filters,” Nat, Commun. 846 (2012).
  20. I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express18(8), 8705–8712 (2010).
    [CrossRef] [PubMed]
  21. R. Perahia, J. D. Cohen, S. Meenehan, T. P. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
    [CrossRef]
  22. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
    [CrossRef]
  23. L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17(23), 21108–21117 (2009).
    [CrossRef] [PubMed]
  24. H. Gibbs, “Optical Bistability: Controlling Light with Light,” Academic Press, Orlando, (1985).
  25. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
    [CrossRef] [PubMed]
  26. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett.29(20), 2387–2389 (2004).
    [CrossRef] [PubMed]

2012 (3)

W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express20(13), 14722–14733 (2012).
[CrossRef] [PubMed]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater.12(2), 108–113 (2012).
[CrossRef] [PubMed]

P.B. Deotare, I.B. Bulu, I.W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “Broadband Reconfiguration of OptoMechanical Filters,” Nat, Commun. 846 (2012).

2011 (5)

2010 (2)

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express18(8), 8705–8712 (2010).
[CrossRef] [PubMed]

R. Perahia, J. D. Cohen, S. Meenehan, T. P. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
[CrossRef]

2009 (2)

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17(23), 21108–21117 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (1)

2005 (4)

2004 (3)

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett.29(20), 2387–2389 (2004).
[CrossRef] [PubMed]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nano-cavity in a Silicon waveguide for ultra-sensitive detection,” Appl. Phys. Lett.85, 4854–4856 (2004).

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

2003 (1)

1997 (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Alegre, T. P.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
[CrossRef]

Almeida, V.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nano-cavity in a Silicon waveguide for ultra-sensitive detection,” Appl. Phys. Lett.85, 4854–4856 (2004).

Almeida, V. R.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater.12(2), 108–113 (2012).
[CrossRef] [PubMed]

W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express20(13), 14722–14733 (2012).
[CrossRef] [PubMed]

W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express19(13), 12727–12739 (2011).
[CrossRef] [PubMed]

W. S. Fegadolli, J. E. B. Oliveira, and V. R. Almeida, “Highly linear electro-optic modulator based on ring resonator,” Microw. Opt. Technol. Lett.53(10), 2375–2378 (2011).
[CrossRef]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett.29(20), 2387–2389 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Barea, L. A. M.

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Bienstman, P.

Bogaerts, W.

Bulu, I.B.

P.B. Deotare, I.B. Bulu, I.W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “Broadband Reconfiguration of OptoMechanical Filters,” Nat, Commun. 846 (2012).

Chen, Y. F.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater.12(2), 108–113 (2012).
[CrossRef] [PubMed]

Claes, T.

Cohen, J. D.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
[CrossRef]

de Almeida, V. R.

Deotare, P. B.

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express18(8), 8705–8712 (2010).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Deotare, P.B.

P.B. Deotare, I.B. Bulu, I.W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “Broadband Reconfiguration of OptoMechanical Filters,” Nat, Commun. 846 (2012).

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Fedeli, J.-M.

Fegadolli, W. S.

W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express20(13), 14722–14733 (2012).
[CrossRef] [PubMed]

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater.12(2), 108–113 (2012).
[CrossRef] [PubMed]

W. S. Fegadolli, J. E. B. Oliveira, and V. R. Almeida, “Highly linear electro-optic modulator based on ring resonator,” Microw. Opt. Technol. Lett.53(10), 2375–2378 (2011).
[CrossRef]

W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express19(13), 12727–12739 (2011).
[CrossRef] [PubMed]

Feng, L.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater.12(2), 108–113 (2012).
[CrossRef] [PubMed]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Fournier, M.

Frank, I. W.

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express18(8), 8705–8712 (2010).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Frank, I.W.

P.B. Deotare, I.B. Bulu, I.W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “Broadband Reconfiguration of OptoMechanical Filters,” Nat, Commun. 846 (2012).

Frateschi, N.

Gardes, F. Y.

Grosse, P.

Haret, L. D.

Hu, Y.

Hugonin, J.

Ilic, R.

P.B. Deotare, I.B. Bulu, I.W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “Broadband Reconfiguration of OptoMechanical Filters,” Nat, Commun. 846 (2012).

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

Kimerling, L. C.

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol.23(8), 2455–2461 (2005).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Kira, G.

Kuramochi, E.

Lalanne, P.

Lecamp, G.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nano-cavity in a Silicon waveguide for ultra-sensitive detection,” Appl. Phys. Lett.85, 4854–4856 (2004).

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett.29(20), 2387–2389 (2004).
[CrossRef] [PubMed]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Liu, T.

Loncar, M.

Lu, M. H.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater.12(2), 108–113 (2012).
[CrossRef] [PubMed]

Manolatou, C.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nano-cavity in a Silicon waveguide for ultra-sensitive detection,” Appl. Phys. Lett.85, 4854–4856 (2004).

Mashanovich, G.

McCutcheon, M. W.

Meenehan, S.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
[CrossRef]

Mitsugi, S.

Notomi, M.

Oliveira, J. E. B.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater.12(2), 108–113 (2012).
[CrossRef] [PubMed]

W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express20(13), 14722–14733 (2012).
[CrossRef] [PubMed]

W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express19(13), 12727–12739 (2011).
[CrossRef] [PubMed]

W. S. Fegadolli, J. E. B. Oliveira, and V. R. Almeida, “Highly linear electro-optic modulator based on ring resonator,” Microw. Opt. Technol. Lett.53(10), 2375–2378 (2011).
[CrossRef]

Painter, O.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
[CrossRef]

Panepucci, R. R.

Perahia, R.

R. Perahia, J. D. Cohen, S. Meenehan, T. P. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Preble, S.

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nano-cavity in a Silicon waveguide for ultra-sensitive detection,” Appl. Phys. Lett.85, 4854–4856 (2004).

Quan, Q.

P.B. Deotare, I.B. Bulu, I.W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “Broadband Reconfiguration of OptoMechanical Filters,” Nat, Commun. 846 (2012).

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

Reed, G. T.

Rooks, M.

Sauvan, C.

Scherer, A.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater.12(2), 108–113 (2012).
[CrossRef] [PubMed]

W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express20(13), 14722–14733 (2012).
[CrossRef] [PubMed]

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nano-cavity in a Silicon waveguide for ultra-sensitive detection,” Appl. Phys. Lett.85, 4854–4856 (2004).

Sekaric, L.

Shinya, A.

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Sparacin, D. K.

Spector, S. J.

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Tanabe, T.

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Thomson, D. J.

Valini, F.

Vargas, G.

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Vlasov, Y.

Wang, X.

Xia, F.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Xu, Y. L.

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater.12(2), 108–113 (2012).
[CrossRef] [PubMed]

Zhang, Y.

P.B. Deotare, I.B. Bulu, I.W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “Broadband Reconfiguration of OptoMechanical Filters,” Nat, Commun. 846 (2012).

Appl. Phys. Lett. (3)

B. Schmidt, V. Almeida, C. Manolatou, S. Preble, and M. Lipson, “Nano-cavity in a Silicon waveguide for ultra-sensitive detection,” Appl. Phys. Lett.85, 4854–4856 (2004).

R. Perahia, J. D. Cohen, S. Meenehan, T. P. Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett.97(19), 191112 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009).
[CrossRef]

J. Lightwave Technol. (1)

Microw. Opt. Technol. Lett. (1)

W. S. Fegadolli, J. E. B. Oliveira, and V. R. Almeida, “Highly linear electro-optic modulator based on ring resonator,” Microw. Opt. Technol. Lett.53(10), 2375–2378 (2011).
[CrossRef]

Nat. Mater. (1)

L. Feng, Y. L. Xu, W. S. Fegadolli, M. H. Lu, J. E. B. Oliveira, V. R. Almeida, Y. F. Chen, and A. Scherer, “Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies,” Nat. Mater.12(2), 108–113 (2012).
[CrossRef] [PubMed]

Nature (3)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435(7040), 325–327 (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature390(6656), 143–145 (1997).
[CrossRef]

Opt. Express (11)

I. W. Frank, P. B. Deotare, M. W. McCutcheon, and M. Lončar, “Programmable photonic crystal nanobeam cavities,” Opt. Express18(8), 8705–8712 (2010).
[CrossRef] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005).
[CrossRef] [PubMed]

L. D. Haret, T. Tanabe, E. Kuramochi, and M. Notomi, “Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity,” Opt. Express17(23), 21108–21117 (2009).
[CrossRef] [PubMed]

W. S. Fegadolli, V. R. Almeida, and J. E. B. Oliveira, “Reconfigurable silicon thermo-optical device based on spectral tuning of ring resonators,” Opt. Express19(13), 12727–12739 (2011).
[CrossRef] [PubMed]

W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express20(13), 14722–14733 (2012).
[CrossRef] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19(19), 18529–18542 (2011).
[CrossRef] [PubMed]

C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express13(1), 245–255 (2005).
[CrossRef] [PubMed]

M. W. McCutcheon and M. Loncar, “Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal,” Opt. Express16(23), 19136–19145 (2008).
[CrossRef] [PubMed]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express19(12), 11507–11516 (2011).
[CrossRef] [PubMed]

X. Wang, T. Liu, V. R. de Almeida, and R. R. Panepucci, “On-chip silicon photonic wavelength control of optical fiber lasers,” Opt. Express16(20), 15671–15676 (2008).
[CrossRef] [PubMed]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express15(19), 11934–11941 (2007).
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (3)

H. Gibbs, “Optical Bistability: Controlling Light with Light,” Academic Press, Orlando, (1985).

L. Pavesi and G. Guillot, (Optical Interconnects - the silicon approach) (Springer-Verlag, 2006).

P.B. Deotare, I.B. Bulu, I.W. Frank, Q. Quan, Y. Zhang, R. Ilic, and M. Lončar, “Broadband Reconfiguration of OptoMechanical Filters,” Nat, Commun. 846 (2012).

Supplementary Material (1)

» Media 1: MOV (1260 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic representation and optical response for typical ring resonator and regular nanobeam cavity.

Fig. 2
Fig. 2

Schematic representation of the proposed device.

Fig. 3
Fig. 3

Mirror section (a) transmission and (b) reflection as a function of number of holes and wavelength.

Fig. 4
Fig. 4

Normalized 3D-FDTD simulated optical response, transmission and reflected power: (a) for the whole device and the taper + mirror section, ranging from 1300nm to 1800nm; and (b) for the whole device only, ranging from 1550nm to 1700nm.

Fig. 5
Fig. 5

Normalized (a) transmission and (b) back reflection optical response for different temperature variations and (c) behavior of the resonant mode as a function of the temperature variation.

Fig. 6
Fig. 6

(a) Theoretical thermal mode profile for the device’s cross section overlapping silicon waveguides and (b) theoretical resonant shift as a function of the temperature variation.

Fig. 7
Fig. 7

(a) and (b) device’s micrographs took from SEM, showing the device after exposed and etched, (c) final device passivated with silicon dioxide layer and integrated with micro-heater and pad contacts atop.

Fig. 8
Fig. 8

(a) Device’s optical response for several electrical power values applied to the heater; (b) modulation depth as a function of electrical power.

Fig. 9
Fig. 9

Resonant shift as a function of the (a) electrical current applied on micro-heater (Media 1) and (b) electrical power.

Fig. 10
Fig. 10

Modulated and detected signal for λ = 1570.38 nm, (a) interval from 0 to 500 μs, and (b) from 0 to 100μs.

Fig. 11
Fig. 11

(a) Device’s optical response for different input optical power showing the transition between linear and non-linear behavior; (b) tunable devices optical response under non-linear regime for different values of electrical current.

Tables (1)

Tables Icon

Table 1 Design Parameters

Metrics