Abstract

Optical sampling by cavity tuning (OSCAT) enables cost-effective realization of fast tunable optical delay using a single femtosecond laser. We report here a dynamic model of OSCAT, taking into account the continuous modulation of laser repetition rates. This allows us to evaluate the delay scan depth under high interferometer imbalance and high scan rates, which cannot be described by the previous static model. We also report the demonstration of remote motion tracking based on fast OSCAT. Target vibration as small as 15 µm peak to peak and as fast as 50 Hz along line-of-sight has been successfully detected at an equivalent free-space distance of more than 2 km.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Valdmanis and G. Mourou, “Subpicosecond electrooptic sampling: principles and applications,” IEEE J. Quantum Electron.22(1), 69–78 (1986).
    [CrossRef]
  2. W. C. Swann and N. R. Newbury, “Frequency-resolved coherent lidar using a femtosecond fiber laser,” Opt. Lett.31(6), 826–828 (2006).
    [CrossRef] [PubMed]
  3. M. R. Hee, J. A. Izatt, J. M. Jacobson, J. G. Fujimoto, and E. A. Swanson, “Femtosecond transillumination optical coherence tomography,” Opt. Lett.18(12), 950–952 (1993).
    [CrossRef] [PubMed]
  4. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express13(22), 9029–9038 (2005).
    [CrossRef] [PubMed]
  5. N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, “Terahertz polarization imaging,” Opt. Lett.30(20), 2802–2804 (2005).
    [CrossRef] [PubMed]
  6. A. H. Zewail, “Femtochemistry: atomi-scale dynamics of the chemical bond,” J. Phys. Chem. A104(24), 5660–5694 (2000).
    [CrossRef]
  7. V. Sundström, “Femtobiology,” Annu. Rev. Phys. Chem.59(1), 53–77 (2008).
    [CrossRef] [PubMed]
  8. J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, and R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun.154(1-3), 1–4 (1998).
    [CrossRef]
  9. A. L. Oldenburg, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner,” Appl. Opt.42(22), 4606–4611 (2003).
    [CrossRef] [PubMed]
  10. P. A. Elzinga, F. E. Lytle, Y. Jian, G. B. King, and N. M. Laurendeau, “Pump/probe spectroscopy by asynchronous optical sampling,” Appl. Spectrosc.41(1), 2–4 (1987).
    [CrossRef]
  11. C. Janke, M. Först, M. Nagel, H. Kurz, and A. Bartels, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett.30(11), 1405–1407 (2005).
    [CrossRef] [PubMed]
  12. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
    [CrossRef] [PubMed]
  13. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express18(2), 1613–1617 (2010).
    [CrossRef] [PubMed]
  14. R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “OSCAT: Novel technique for time-resolved experiments without moveable optical delay lines,” J. Infrared Milli. Terahz. Waves32(5), 596–602 (2011).
    [CrossRef]
  15. R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. Soc. Am. B28(4), 592–595 (2011).
    [CrossRef]
  16. C. Mohr, A. Romann, A. Ruehl, I. Hartl, and M. E. Fermann, “Fourier transform spectrometry using a single cavity length modulated mode-locked fiber laser,” in Fiber Laser Applications, OSA Technical Digest (CD), paper FWA2.
  17. T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express18(10), 9739–9746 (2010).
    [CrossRef] [PubMed]
  18. P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express17(11), 9300–9313 (2009).
    [CrossRef] [PubMed]
  19. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett.34(13), 1982–1984 (2009).
    [CrossRef] [PubMed]
  20. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009).
    [CrossRef]
  21. J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics4(10), 716–720 (2010).
    [CrossRef]
  22. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1 GHz femtosecond Er-doped fiber lasers,” Appl. Opt.49(29), 5577–5582 (2010).
    [CrossRef] [PubMed]

2011

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “OSCAT: Novel technique for time-resolved experiments without moveable optical delay lines,” J. Infrared Milli. Terahz. Waves32(5), 596–602 (2011).
[CrossRef]

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. Soc. Am. B28(4), 592–595 (2011).
[CrossRef]

2010

2009

2008

V. Sundström, “Femtobiology,” Annu. Rev. Phys. Chem.59(1), 53–77 (2008).
[CrossRef] [PubMed]

2007

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

2006

2005

2003

2000

A. H. Zewail, “Femtochemistry: atomi-scale dynamics of the chemical bond,” J. Phys. Chem. A104(24), 5660–5694 (2000).
[CrossRef]

1998

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, and R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun.154(1-3), 1–4 (1998).
[CrossRef]

1993

1987

1986

J. A. Valdmanis and G. Mourou, “Subpicosecond electrooptic sampling: principles and applications,” IEEE J. Quantum Electron.22(1), 69–78 (1986).
[CrossRef]

Balling, P.

Bartels, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

C. Janke, M. Först, M. Nagel, H. Kurz, and A. Bartels, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett.30(11), 1405–1407 (2005).
[CrossRef] [PubMed]

Bhattacharya, N.

Bleuler, H.

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, and R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun.154(1-3), 1–4 (1998).
[CrossRef]

Boppart, S. A.

Braat, J. J. M.

Brehm, M.

Briles, T. C.

Byun, H.

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Cingöz, A.

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009).
[CrossRef]

Cui, M.

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Delachenal, N.

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, and R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun.154(1-3), 1–4 (1998).
[CrossRef]

Elzinga, P. A.

Först, M.

Fujimoto, J. G.

Gianotti, R.

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, and R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun.154(1-3), 1–4 (1998).
[CrossRef]

Hee, M. R.

Hochrein, T.

Holzwarth, R.

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Ippen, E. P.

Izatt, J. A.

Jacobson, J. M.

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

C. Janke, M. Först, M. Nagel, H. Kurz, and A. Bartels, “Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors,” Opt. Lett.30(11), 1405–1407 (2005).
[CrossRef] [PubMed]

Jian, Y.

Kärtner, F. X.

Keilmann, F.

Kim, S. W.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics4(10), 716–720 (2010).
[CrossRef]

Kim, Y. J.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics4(10), 716–720 (2010).
[CrossRef]

King, G. B.

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Koch, M.

Kolodziejski, L. A.

Kren, P.

Krumbholz, N.

Kurz, H.

Laurendeau, N. M.

Lee, J.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics4(10), 716–720 (2010).
[CrossRef]

Lee, K.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics4(10), 716–720 (2010).
[CrossRef]

Lee, S.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics4(10), 716–720 (2010).
[CrossRef]

Lytle, F. E.

Marks, D. L.

Mašika, P.

Mei, M.

Motamedi, A.

Mourou, G.

J. A. Valdmanis and G. Mourou, “Subpicosecond electrooptic sampling: principles and applications,” IEEE J. Quantum Electron.22(1), 69–78 (1986).
[CrossRef]

Nagel, M.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009).
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009).
[CrossRef]

W. C. Swann and N. R. Newbury, “Frequency-resolved coherent lidar using a femtosecond fiber laser,” Opt. Lett.31(6), 826–828 (2006).
[CrossRef] [PubMed]

Oldenburg, A. L.

Petrich, G. S.

Planken, P. C. M.

Reynolds, J. J.

Salathe, R. P.

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, and R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun.154(1-3), 1–4 (1998).
[CrossRef]

Sander, M. Y.

Schibli, T. R.

Schliesser, A.

Shen, H.

Sundström, V.

V. Sundström, “Femtobiology,” Annu. Rev. Phys. Chem.59(1), 53–77 (2008).
[CrossRef] [PubMed]

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009).
[CrossRef]

W. C. Swann and N. R. Newbury, “Frequency-resolved coherent lidar using a femtosecond fiber laser,” Opt. Lett.31(6), 826–828 (2006).
[CrossRef] [PubMed]

Swanson, E. A.

Szydlo, J.

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, and R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun.154(1-3), 1–4 (1998).
[CrossRef]

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Urbach, H. P.

Valdmanis, J. A.

J. A. Valdmanis and G. Mourou, “Subpicosecond electrooptic sampling: principles and applications,” IEEE J. Quantum Electron.22(1), 69–78 (1986).
[CrossRef]

van den Berg, S. A.

van der Marel, W. A. M.

van der Valk, N. C. J.

van der Weide, D. W.

Walti, R.

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, and R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun.154(1-3), 1–4 (1998).
[CrossRef]

Wilk, R.

Ye, J.

Yost, D. C.

Zeitouny, M. G.

Zewail, A. H.

A. H. Zewail, “Femtochemistry: atomi-scale dynamics of the chemical bond,” J. Phys. Chem. A104(24), 5660–5694 (2000).
[CrossRef]

Annu. Rev. Phys. Chem.

V. Sundström, “Femtobiology,” Annu. Rev. Phys. Chem.59(1), 53–77 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Spectrosc.

IEEE J. Quantum Electron.

J. A. Valdmanis and G. Mourou, “Subpicosecond electrooptic sampling: principles and applications,” IEEE J. Quantum Electron.22(1), 69–78 (1986).
[CrossRef]

J. Infrared Milli. Terahz. Waves

R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “OSCAT: Novel technique for time-resolved experiments without moveable optical delay lines,” J. Infrared Milli. Terahz. Waves32(5), 596–602 (2011).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

A. H. Zewail, “Femtochemistry: atomi-scale dynamics of the chemical bond,” J. Phys. Chem. A104(24), 5660–5694 (2000).
[CrossRef]

Nat. Photonics

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics3(6), 351–356 (2009).
[CrossRef]

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics4(10), 716–720 (2010).
[CrossRef]

Opt. Commun.

J. Szydlo, N. Delachenal, R. Gianotti, R. Walti, H. Bleuler, and R. P. Salathe, “Air-turbine driven optical low-coherence reflectometry at 28.6-kHz scan repetition rate,” Opt. Commun.154(1-3), 1–4 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007).
[CrossRef] [PubMed]

Other

C. Mohr, A. Romann, A. Ruehl, I. Hartl, and M. E. Fermann, “Fourier transform spectrometry using a single cavity length modulated mode-locked fiber laser,” in Fiber Laser Applications, OSA Technical Digest (CD), paper FWA2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The basic principle of OSCAT: (a) an imbalanced Mach-Zehnder interferometer creates relative pulse delay at the output port, and (b) a modulation of the pulse repetition rate results in a scan of the pulse delay at the modulation frequency.

Fig. 2
Fig. 2

The scan depth of OSCAT: (a) the dependence of the scan depth (in the unit of cm) on the modulation frequency and the interferometer arm-length imbalance, and (b) scan depth vs. imbalance for three special cases of the modulation frequency: 1 kHz (blue), 10 kHz (red), and 20 kHz (green).

Fig. 3
Fig. 3

Schematic of the experimental system for OSCAT target motion tracking. CPL, optical coupler; DCF, dispersion compensating fiber; SMF, single-mode fiber; and TPAD, two-photon absorption detector.

Fig. 4
Fig. 4

(a) The autocorrelation trace of the delayed pulse after it propagates through the long arm, a 1.38-km dispersion-compensated fiber link, (b) the autocorrelation trace of reference pulse from the short arm, and (c) the second-order cross-correlation trace of the two pulses.

Fig. 5
Fig. 5

Cross-correlation traces with various target displacements from the reference point. There is a clear correlation between the cross-correlation peak separation and the target displacement. The horizontal scale is normalized to the maximum range achievable with the PZT scan. A scan depth of more than 10 mm (or a maximum round-trip delay of more than 20 mm) has been experimentally realized.

Fig. 6
Fig. 6

OSCAT displacement measurement: (a) a sample calibration curve based on experiment (check markers) and theoretical prediction (solid line); (b) OSCAT-measured displacements (check markers) and trajectory prediction (solid line) when the target oscillates at 1 Hz along the line-of-sight direction; and (c) a similar tracking result with the target oscillating at about 2 Hz with a peak-to-peak amplitude of only 15 μm. The 40-μm displacement resolution in (b) is caused by the slow (10 kHz) data sampling rate. Such a limitation is eliminated in (c) by raising the sampling rate to 260 kHz.

Fig. 7
Fig. 7

OSCAT lidar tracks fast target movement: (a) OSCAT detected speaker vibration at 50 Hz; (b) a close look of a part of trace (a) (check marker, red trace) along with the trace from the auxiliary tracking method (green) and the modulation signal to the speaker (light blue).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T N = T 0 + i=1 N 1 f Ri ,
f Ri = f R0 +Δ f R S( t i ),
T N = T 0 + N f R0 Δ f R f R0 2 i=1 N S( t i ) .
T M = T 0 + M f R0 Δ f R f R0 2 i=1 M S( t i ) .
Δ T d =δ T 0 + Δ f R f R0 2 i=M+1 N S( t i ) ,
Δ T d =δ T 0 + Δ f R f R0 i=M+1 N S( t i ) Δ t R0 δ T 0 + Δ f R f R0 t M t N S(t)dt ,
Δ T d ( t M )=δ T 0 + Δ f R f R0 sin(π f m Δ t NM ) π f m sin[ 2π f m ( t M + Δ t NM 2 ) ],
Δ T d (t)δ T 0 + Δ f R Δ T 0 f R0 sin[ 2π f m ( t+ Δ T 0 2 ) ].
Δ l d =(Δ l i / L c0 )Δ L c ,

Metrics