Abstract

We present a simple and effective method to compensate the optical frequency tuning nonlinearity of a tunable laser source (TLS) in a long range optical frequency-domain reflectometry (OFDR) by using the deskew filter, where a frequency tuning nonlinear phase obtained from an auxiliary interferometer is used to compensate the nonlinearity effect on the beating signals generated from a main OFDR interferometer. The method can be applied to the entire spatial domain of the OFDR signals at once with a high computational efficiency. With our proposed method we experimentally demonstrated a factor of 93 times improvement in spatial resolution by comparing the results of an OFDR system with and without nonlinearity compensation. In particular we achieved a measurement range of 80 km and a spatial resolution of 20 cm and 1.6 m at distances of 10 km and 80 km, respectively with a short signal processing time of less than 1 s for 5 × 106 data points. The improved performance of the OFDR with a high spatial resolution, a long measurement range and a short process time will lead to practical applications in the real-time monitoring, test and measurement of fiber optical communication networks and sensing systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
    [CrossRef]
  2. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express13(2), 666–674 (2005).
    [CrossRef] [PubMed]
  3. B. Soller, S. Kreger, D. Gifford, M. Wolfe, and M. Froggatt, “Optical frequency domain reflectometry for single- and multi-mode avionics fiber-optics applications,” IEEE Conference Avionics Fiber-Optics and Photonics, 2006 (IEEE, 2006) pp. 38–39.
  4. D. P. Zhou, Z. Qin, W. Li, L. Chen, and X. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express20(12), 13138–13145 (2012).
    [CrossRef] [PubMed]
  5. E. D. Moore and R. R. McLeod, “Correction of sampling errors due to laser tuning rate fluctuations in swept-wavelength interferometry,” Opt. Express16(17), 13139–13149 (2008).
    [CrossRef] [PubMed]
  6. K. Yuksel, M. Wuilpart, and P. Mégret, “Analysis and suppression of nonlinear frequency modulation in an optical frequency-domain reflectometer,” Opt. Express17(7), 5845–5851 (2009).
    [CrossRef] [PubMed]
  7. K. Iiyama, M. Yasuda, and S. Takamiya, “Extended-range high-resolution FMCW reflectometry by means of electronically frequency-multiplied sampling signal generated from auxiliary interferometer,” IEICE Trans. Electron.E89-C, 823–829 (2006).
  8. T. J. Ahn, J. Y. Lee, and D. Y. Kim, “Suppression of nonlinear frequency sweep in an optical frequency-domain reflectometer by use of Hilbert transformation,” Appl. Opt.44(35), 7630–7634 (2005).
    [CrossRef] [PubMed]
  9. S. Vergnole, D. Lévesque, and G. Lamouche, “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Express18(10), 10446–10461 (2010).
    [CrossRef] [PubMed]
  10. Z. Ding, T. Liu, Z. Meng, K. Liu, Q. Chen, Y. Du, D. Li, and X. S. Yao, “Note: Improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform,” Rev. Sci. Instrum.83(6), 066110 (2012).
    [CrossRef] [PubMed]
  11. M. Froggatt, R. G. Seeley, and D. K. Gifford, “High resolution interferometric optical frequency domain reflectometry (OFDR) beyond the laser coherence length, ” U.S. Pat. 7515276 (Jul. 18, 2007).
  12. F. Ito, X. Fan, and Y. Koshikiya, “Long-range coherent OFDR with light source phase noise compensation,” J. Lightwave Technol.30(8), 1015–1024 (2012).
    [CrossRef]
  13. Luna, “Optical backscatter reflectometer (Model OBR 4600)”, http://lunainc.com/wp-content/uploads/2012/11/NEW-OBR4600_Data-Sheet_Rev-03.pdf .
  14. Y. Koshikiya, X. Fan, and F. Ito, “Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser,” J. Lightwave Technol.26(18), 3287–3294 (2008).
    [CrossRef]
  15. M. Burgos-García, C. Castillo, S. Llorente, J. M. Pardo, and J. C. Crespo, “Digital on-line compensation of errors induced by linear distortion in broadband LFM radars,” Electron. Lett.39(1), 116–118 (2003).
    [CrossRef]
  16. A. Meta, P. Hoogeboom, and L. P. Ligthart, “Range non-linearities correction in FMCW SAR,” in IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006 (IEEE, 2006), 403–406.
  17. W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar (Artech House, 1995).
  18. G. Giampieri, R. W. Hellings, M. Tinto, and J. E. Faller, “Algorithms for unequal-arm Michelson interferometers,” Opt. Commun.123(4-6), 669–678 (1996).
    [CrossRef]
  19. S. Venkatesh and W. V. Sorin, “Phase noise consideration in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
    [CrossRef]
  20. J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997).
    [CrossRef]

2012 (3)

D. P. Zhou, Z. Qin, W. Li, L. Chen, and X. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express20(12), 13138–13145 (2012).
[CrossRef] [PubMed]

Z. Ding, T. Liu, Z. Meng, K. Liu, Q. Chen, Y. Du, D. Li, and X. S. Yao, “Note: Improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform,” Rev. Sci. Instrum.83(6), 066110 (2012).
[CrossRef] [PubMed]

F. Ito, X. Fan, and Y. Koshikiya, “Long-range coherent OFDR with light source phase noise compensation,” J. Lightwave Technol.30(8), 1015–1024 (2012).
[CrossRef]

2010 (1)

2009 (1)

2008 (2)

2006 (1)

K. Iiyama, M. Yasuda, and S. Takamiya, “Extended-range high-resolution FMCW reflectometry by means of electronically frequency-multiplied sampling signal generated from auxiliary interferometer,” IEICE Trans. Electron.E89-C, 823–829 (2006).

2005 (2)

2003 (1)

M. Burgos-García, C. Castillo, S. Llorente, J. M. Pardo, and J. C. Crespo, “Digital on-line compensation of errors induced by linear distortion in broadband LFM radars,” Electron. Lett.39(1), 116–118 (2003).
[CrossRef]

1997 (1)

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997).
[CrossRef]

1996 (1)

G. Giampieri, R. W. Hellings, M. Tinto, and J. E. Faller, “Algorithms for unequal-arm Michelson interferometers,” Opt. Commun.123(4-6), 669–678 (1996).
[CrossRef]

1993 (1)

S. Venkatesh and W. V. Sorin, “Phase noise consideration in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
[CrossRef]

1981 (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
[CrossRef]

Ahn, T. J.

Bao, X.

Burgos-García, M.

M. Burgos-García, C. Castillo, S. Llorente, J. M. Pardo, and J. C. Crespo, “Digital on-line compensation of errors induced by linear distortion in broadband LFM radars,” Electron. Lett.39(1), 116–118 (2003).
[CrossRef]

Castillo, C.

M. Burgos-García, C. Castillo, S. Llorente, J. M. Pardo, and J. C. Crespo, “Digital on-line compensation of errors induced by linear distortion in broadband LFM radars,” Electron. Lett.39(1), 116–118 (2003).
[CrossRef]

Chen, L.

Chen, Q.

Z. Ding, T. Liu, Z. Meng, K. Liu, Q. Chen, Y. Du, D. Li, and X. S. Yao, “Note: Improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform,” Rev. Sci. Instrum.83(6), 066110 (2012).
[CrossRef] [PubMed]

Crespo, J. C.

M. Burgos-García, C. Castillo, S. Llorente, J. M. Pardo, and J. C. Crespo, “Digital on-line compensation of errors induced by linear distortion in broadband LFM radars,” Electron. Lett.39(1), 116–118 (2003).
[CrossRef]

Ding, Z.

Z. Ding, T. Liu, Z. Meng, K. Liu, Q. Chen, Y. Du, D. Li, and X. S. Yao, “Note: Improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform,” Rev. Sci. Instrum.83(6), 066110 (2012).
[CrossRef] [PubMed]

Du, Y.

Z. Ding, T. Liu, Z. Meng, K. Liu, Q. Chen, Y. Du, D. Li, and X. S. Yao, “Note: Improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform,” Rev. Sci. Instrum.83(6), 066110 (2012).
[CrossRef] [PubMed]

Eickhoff, W.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
[CrossRef]

Faller, J. E.

G. Giampieri, R. W. Hellings, M. Tinto, and J. E. Faller, “Algorithms for unequal-arm Michelson interferometers,” Opt. Commun.123(4-6), 669–678 (1996).
[CrossRef]

Fan, X.

Froggatt, M.

Giampieri, G.

G. Giampieri, R. W. Hellings, M. Tinto, and J. E. Faller, “Algorithms for unequal-arm Michelson interferometers,” Opt. Commun.123(4-6), 669–678 (1996).
[CrossRef]

Gifford, D.

Gisin, N.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997).
[CrossRef]

Hellings, R. W.

G. Giampieri, R. W. Hellings, M. Tinto, and J. E. Faller, “Algorithms for unequal-arm Michelson interferometers,” Opt. Commun.123(4-6), 669–678 (1996).
[CrossRef]

Iiyama, K.

K. Iiyama, M. Yasuda, and S. Takamiya, “Extended-range high-resolution FMCW reflectometry by means of electronically frequency-multiplied sampling signal generated from auxiliary interferometer,” IEICE Trans. Electron.E89-C, 823–829 (2006).

Ito, F.

Kim, D. Y.

Koshikiya, Y.

Lamouche, G.

Lee, J. Y.

Lévesque, D.

Li, D.

Z. Ding, T. Liu, Z. Meng, K. Liu, Q. Chen, Y. Du, D. Li, and X. S. Yao, “Note: Improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform,” Rev. Sci. Instrum.83(6), 066110 (2012).
[CrossRef] [PubMed]

Li, W.

Liu, K.

Z. Ding, T. Liu, Z. Meng, K. Liu, Q. Chen, Y. Du, D. Li, and X. S. Yao, “Note: Improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform,” Rev. Sci. Instrum.83(6), 066110 (2012).
[CrossRef] [PubMed]

Liu, T.

Z. Ding, T. Liu, Z. Meng, K. Liu, Q. Chen, Y. Du, D. Li, and X. S. Yao, “Note: Improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform,” Rev. Sci. Instrum.83(6), 066110 (2012).
[CrossRef] [PubMed]

Llorente, S.

M. Burgos-García, C. Castillo, S. Llorente, J. M. Pardo, and J. C. Crespo, “Digital on-line compensation of errors induced by linear distortion in broadband LFM radars,” Electron. Lett.39(1), 116–118 (2003).
[CrossRef]

McLeod, R. R.

Mégret, P.

Meng, Z.

Z. Ding, T. Liu, Z. Meng, K. Liu, Q. Chen, Y. Du, D. Li, and X. S. Yao, “Note: Improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform,” Rev. Sci. Instrum.83(6), 066110 (2012).
[CrossRef] [PubMed]

Moore, E. D.

Mussi, G.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997).
[CrossRef]

Pardo, J. M.

M. Burgos-García, C. Castillo, S. Llorente, J. M. Pardo, and J. C. Crespo, “Digital on-line compensation of errors induced by linear distortion in broadband LFM radars,” Electron. Lett.39(1), 116–118 (2003).
[CrossRef]

Passy, R.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997).
[CrossRef]

Qin, Z.

Soller, B.

Sorin, W. V.

S. Venkatesh and W. V. Sorin, “Phase noise consideration in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
[CrossRef]

Takamiya, S.

K. Iiyama, M. Yasuda, and S. Takamiya, “Extended-range high-resolution FMCW reflectometry by means of electronically frequency-multiplied sampling signal generated from auxiliary interferometer,” IEICE Trans. Electron.E89-C, 823–829 (2006).

Tinto, M.

G. Giampieri, R. W. Hellings, M. Tinto, and J. E. Faller, “Algorithms for unequal-arm Michelson interferometers,” Opt. Commun.123(4-6), 669–678 (1996).
[CrossRef]

Ulrich, R.

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
[CrossRef]

Venkatesh, S.

S. Venkatesh and W. V. Sorin, “Phase noise consideration in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
[CrossRef]

Vergnole, S.

von der Weid, J. P.

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997).
[CrossRef]

Wolfe, M.

Wuilpart, M.

Yao, X. S.

Z. Ding, T. Liu, Z. Meng, K. Liu, Q. Chen, Y. Du, D. Li, and X. S. Yao, “Note: Improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform,” Rev. Sci. Instrum.83(6), 066110 (2012).
[CrossRef] [PubMed]

Yasuda, M.

K. Iiyama, M. Yasuda, and S. Takamiya, “Extended-range high-resolution FMCW reflectometry by means of electronically frequency-multiplied sampling signal generated from auxiliary interferometer,” IEICE Trans. Electron.E89-C, 823–829 (2006).

Yuksel, K.

Zhou, D. P.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

W. Eickhoff and R. Ulrich, “Optical frequency domain reflectometry in single mode fiber,” Appl. Phys. Lett.39(9), 693–695 (1981).
[CrossRef]

Electron. Lett. (1)

M. Burgos-García, C. Castillo, S. Llorente, J. M. Pardo, and J. C. Crespo, “Digital on-line compensation of errors induced by linear distortion in broadband LFM radars,” Electron. Lett.39(1), 116–118 (2003).
[CrossRef]

IEICE Trans. Electron. (1)

K. Iiyama, M. Yasuda, and S. Takamiya, “Extended-range high-resolution FMCW reflectometry by means of electronically frequency-multiplied sampling signal generated from auxiliary interferometer,” IEICE Trans. Electron.E89-C, 823–829 (2006).

J. Lightwave Technol. (4)

S. Venkatesh and W. V. Sorin, “Phase noise consideration in coherent optical FMCW reflectometry,” J. Lightwave Technol.11(10), 1694–1700 (1993).
[CrossRef]

J. P. von der Weid, R. Passy, G. Mussi, and N. Gisin, “On the characterization of optical fiber network components with optical frequency domain reflectometry,” J. Lightwave Technol.15(7), 1131–1141 (1997).
[CrossRef]

Y. Koshikiya, X. Fan, and F. Ito, “Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser,” J. Lightwave Technol.26(18), 3287–3294 (2008).
[CrossRef]

F. Ito, X. Fan, and Y. Koshikiya, “Long-range coherent OFDR with light source phase noise compensation,” J. Lightwave Technol.30(8), 1015–1024 (2012).
[CrossRef]

Opt. Commun. (1)

G. Giampieri, R. W. Hellings, M. Tinto, and J. E. Faller, “Algorithms for unequal-arm Michelson interferometers,” Opt. Commun.123(4-6), 669–678 (1996).
[CrossRef]

Opt. Express (5)

Rev. Sci. Instrum. (1)

Z. Ding, T. Liu, Z. Meng, K. Liu, Q. Chen, Y. Du, D. Li, and X. S. Yao, “Note: Improving spatial resolution of optical frequency-domain reflectometry against frequency tuning nonlinearity using non-uniform fast Fourier transform,” Rev. Sci. Instrum.83(6), 066110 (2012).
[CrossRef] [PubMed]

Other (5)

M. Froggatt, R. G. Seeley, and D. K. Gifford, “High resolution interferometric optical frequency domain reflectometry (OFDR) beyond the laser coherence length, ” U.S. Pat. 7515276 (Jul. 18, 2007).

Luna, “Optical backscatter reflectometer (Model OBR 4600)”, http://lunainc.com/wp-content/uploads/2012/11/NEW-OBR4600_Data-Sheet_Rev-03.pdf .

A. Meta, P. Hoogeboom, and L. P. Ligthart, “Range non-linearities correction in FMCW SAR,” in IEEE International Conference on Geoscience and Remote Sensing Symposium, 2006. IGARSS 2006 (IEEE, 2006), 403–406.

W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar (Artech House, 1995).

B. Soller, S. Kreger, D. Gifford, M. Wolfe, and M. Froggatt, “Optical frequency domain reflectometry for single- and multi-mode avionics fiber-optics applications,” IEEE Conference Avionics Fiber-Optics and Photonics, 2006 (IEEE, 2006) pp. 38–39.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The beat signals with the tuning nonlinearity effects. The upper figure shows the instantaneous optical frequency of the LO signal (blue line) and two received test signals (red lines). The lower figure depicts those corresponded two beat signals. The beat frequencies are not constant and their shapes vary with the distance of the reflections. The spreading of the beat signal in a frequency domain is greater for the reflections at a larger distance than that of at the shorter distance. (b) Diagram blocks of the nonlinearity compensation algorithm. The diagrams on the right represent the behavior of the instantaneous beat signals at the different steps for the compensation algorithm.

Fig. 2
Fig. 2

Configuration of the OFDR system. The main interferometer is a modified fiber-based Mach-Zehnder interferometer. The auxiliary interferometer is an unbalanced Michelson interferometer with the 10km reference delay fiber. C1, C2, C3and C4 are 2 × 2 couplers, where C1 is a 1:99 coupler and C2, C3 and C4 are 50:50 couplers. TLS is tunable laser source. FRMs are Faraday rotating mirrors, PC is a polarization controller, PD is a photo-detector, PBS is a polarization beam splitter and DAQ is a data acquisition card.

Fig. 3
Fig. 3

(a) and (b) are measured signals from the auxiliary interferometer in the time domain with 50 m and 10 km reference delay fiber, where only a part of the entire signals are shown. (c) and (d) are local zoom-ins for figures (a) and (b). The signals from 10 km reference delay fiber interferometer is more smooth than that of from 50 m delay fiber interferometer. (e) is the estimated results of the local oscillator lights' nonlinear phase using 10 km reference delay fiber.

Fig. 4
Fig. 4

Measured Rayleigh backscattering and Fresnel reflections for a FUT length of 80-km with APC connections and open APC connector without (a) and with (b) the nonlinearity compensations. Four Fresnel reflections are at locations of 10 km, 30 km, 40 km and 80 km. The Fresnel reflections from APC connections and connector without any nonlinearity compensation cannot be detected. After a nonlinearity compensation, a spatial resolution of these reflections are significantly improved, e.g. by more than 93 times for the far-end Fresnel reflection caused by open APC connector at 80 km as shown in (c) and (f). Their spatial resolutions are 20 cm at 10 km, 50 cm at 40 km and 1.6 m at 80 km, respectively. (c)-(f)'s y axis are transformed a logarithm to a normalized linear coordinate.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E r (t)= E 0 exp{ j[2π f 0 t+πγ t 2 +2πe(t)] },
E s (t)= R(τ) E 0 exp{ j[2π f 0 (tτ)+πγ (tτ) 2 +2πe(tτ) }.
I(t)=2 R(τ) E 0 2 cos{ 2π[ f 0 τ+ f b t+ 1 2 γ τ 2 +e(t)e(tτ)] },
I(t)=2 R(τ) E 0 2 exp[j2π( f 0 τ+ f b t+ 1 2 γ τ 2 )] S e (t) S e * (tτ),
I 1 (t)=I(t) S e * (t)=2 R(τ) E 0 2 exp{j2π[ f 0 τ+ f b t+ 1 2 γ τ 2 e(tτ)]}.
I 2 (t)= F 1 {F{ I 1 (t)}exp(jπ f 2 /γ)},
I 2 (t)=2 R(τ) E 0 2 exp{j2π[ f 0 τ+ f b t]} F 1 { S e * (f)exp(jπ f 2 /γ)}(t),
S(t)= F 1 {F{ S e * (t)}exp(jπ f 2 /γ)}= F 1 { S e * (f)exp(jπ f 2 /γ)},
I 3 (t)= I 2 (t)· S * (t)=2 R(τ) E 0 2 exp{j2π[ f 0 τ+ f b t]}.
I ref (t)=cos{ 2π[ f 0 τ ref +γ τ ref t+ 1 2 γ τ ref 2 +e(t)e(t τ ref )] }.
e(t)e(t τ ref )e(t)' τ ref ,
e ˜ (t)= t e(μ)e(μ τ ref ) τ ref dμ.

Metrics