Abstract

We present measurements of the nonlinear distortions of a traveling-wave silicon Mach-Zehnder modulator based on the carrier depletion effect. Spurious free dynamic range for second harmonic distortion of 82 dB·Hz1/2 is seen, and 97 dB·Hz2/3 is measured for intermodulation distortion. This measurement represents an improvement of 20 dB over the previous best result in silicon. We also show that the linearity of a silicon traveling wave Mach-Zehnder modulator can be improved by differentially driving it. These results suggest silicon may be a suitable platform for analog optical applications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
    [CrossRef]
  2. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
    [CrossRef]
  3. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
    [CrossRef]
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
    [CrossRef] [PubMed]
  5. S. J. Spector, M. W. Geis, G.-R. Zhou, M. E. Grein, F. Gan, M. A. Popović, J. U. Yoon, D. M. Lennon, E. P. Ippen, F. Z. Kärtner, and T. M. Lyszczarz, “CMOS-compatible dual-output silicon modulator for analog signal processing,” Opt. Express16(15), 11027–11031 (2008).
    [CrossRef] [PubMed]
  6. T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. G. Teo, G. Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
    [CrossRef] [PubMed]
  7. T. Ismail, C.-P. Liu, J. E. Mitchell, and A. J. Seeds, “High-dynamic range wireless-over-fiber link using feed forward linearization,” J. Lightwave Technol.25(11), 3274–3282 (2007).
    [CrossRef]
  8. C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
    [CrossRef]
  9. J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Techn. 45(8), 1390–1397 (1997).
  10. W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech.43(9), 2184–2197 (1995).
    [CrossRef]
  11. E. I. Ackerman and A. S. Daryoush, “Broad-band external modulation fiber-optic links for antenna-remoting applications,” IEEE Trans. Microw. Theory Tech.45(8), 1436–1442 (1997).
    [CrossRef]
  12. S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol.20(5), 886–891 (2002).
    [CrossRef]
  13. M. Sauer, A. Kobyakov, and J. George, “Radio over fiber for picocellular network architectures,” J. Lightwave Technol.25(11), 3301–3320 (2007).
    [CrossRef]
  14. F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
    [CrossRef]
  15. A. Ayazi, T. Baehr-Jones, Y. Liu, A. E.-J. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express20(12), 13115–13122 (2012).
    [CrossRef] [PubMed]
  16. A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J. M. Fedeli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications.” in Group IV Photonics, 2012 IEEE 9th International Conference on (IEEE, 2012), pp. 57–59 (2012).
  17. A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fédéli, L. Vivien, J. Marti, and P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol.30(1), 9–14 (2012).
    [CrossRef]
  18. A. Khilo, C. M. Sorace, and F. X. Kärtner, “Broadband linearized silicon modulator,” Opt. Express19(5), 4485–4500 (2011).
    [CrossRef] [PubMed]
  19. A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett.19(5), 312–314 (2007).
    [CrossRef]
  20. K. J. Williams, L. T. Nichols, and R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber optic link,” J. Lightwave Technol.16(2), 192–199 (1998).
    [CrossRef]
  21. B. Liu, J. Shim, Y.-J. Chiu, A. Keating, J. Piprek, and J.E. Bowers, “Analog characterization of low-voltage MQW traveling-wave electroabsorption modulators,” J. Lightwave Technol.21(12), 3011–3019 (2003).
    [CrossRef]
  22. http://www.ime.a-star.edu.sg/PPSSite/index.asp .
  23. T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
    [CrossRef]
  24. T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
    [CrossRef]
  25. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
    [CrossRef] [PubMed]

2012 (4)

2011 (1)

2010 (2)

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

2008 (1)

2007 (3)

2006 (5)

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
[CrossRef]

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

2004 (1)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol.20(5), 886–891 (2002).
[CrossRef]

1998 (1)

1997 (1)

E. I. Ackerman and A. S. Daryoush, “Broad-band external modulation fiber-optic links for antenna-remoting applications,” IEEE Trans. Microw. Theory Tech.45(8), 1436–1442 (1997).
[CrossRef]

1995 (1)

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech.43(9), 2184–2197 (1995).
[CrossRef]

Ackerman, E. I.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

E. I. Ackerman and A. S. Daryoush, “Broad-band external modulation fiber-optic links for antenna-remoting applications,” IEEE Trans. Microw. Theory Tech.45(8), 1436–1442 (1997).
[CrossRef]

Ang, K.-W.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Ayazi, A.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. G. Teo, G. Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

A. Ayazi, T. Baehr-Jones, Y. Liu, A. E.-J. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express20(12), 13115–13122 (2012).
[CrossRef] [PubMed]

Baehr-Jones, T.

A. Ayazi, T. Baehr-Jones, Y. Liu, A. E.-J. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express20(12), 13115–13122 (2012).
[CrossRef] [PubMed]

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. G. Teo, G. Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

Basak, J.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

Betts, G. E.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Bowers, J.E.

Bridges, W. B.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech.43(9), 2184–2197 (1995).
[CrossRef]

Brimont, A.

Chiu, Y.-J.

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Cox, C. H.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Daryoush, A. S.

E. I. Ackerman and A. S. Daryoush, “Broad-band external modulation fiber-optic links for antenna-remoting applications,” IEEE Trans. Microw. Theory Tech.45(8), 1436–1442 (1997).
[CrossRef]

De Dobbelaere, P.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

Devenport, J.

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett.19(5), 312–314 (2007).
[CrossRef]

Ding, R.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. G. Teo, G. Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

Dubovitsky, S.

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol.20(5), 886–891 (2002).
[CrossRef]

Esman, R. D.

Eu-Jin Lim, A.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

Fang, Q.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Fathpour, S.

Fédéli, J.-M.

Foster, M. A.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Gaeta, A. L.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Gan, F.

Geis, M. W.

George, J.

Gould, M.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

Grein, M. E.

Gutierrez, A. M.

Harris, N.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

Harris, N. C.

He, L.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

Hill, C.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

Hochberg, M.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. G. Teo, G. Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

A. Ayazi, T. Baehr-Jones, Y. Liu, A. E.-J. Lim, and M. Hochberg, “Linearity of silicon ring modulators for analog optical links,” Opt. Express20(12), 13115–13122 (2012).
[CrossRef] [PubMed]

Ippen, E. P.

Ismail, T.

Jalali, B.

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
[CrossRef]

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol.20(5), 886–891 (2002).
[CrossRef]

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Karim, A.

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett.19(5), 312–314 (2007).
[CrossRef]

Kärtner, F. X.

Kärtner, F. Z.

Keating, A.

Khilo, A.

Kobyakov, A.

Kwong, D.-L.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Lee, P.

Lennon, D. M.

Li, J.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

Liao, L.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Lim, A. E.

Lim, A. E.-J.

Liow, T. Y.

Liow, T.-Y.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Lipson, M.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Liu, A.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Liu, B.

Liu, C.-P.

Liu, Y.

Lo, G. Q.

Lo, G.-Q.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Lyszczarz, T. M.

Marris-Morini, D.

Marti, J.

Mekis, A.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

Mirshafiei, M.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

Mitchell, J. E.

Nichols, L. T.

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Ocheltree, S.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

Paniccia, M.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Pinguet, T.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. G. Teo, G. Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

Piprek, J.

Pomerene, A.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

Popovic, M. A.

Prince, J. L.

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

Rasigade, G.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Rusch, L. A.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

Sanchis, P.

Sauer, M.

Schaffner, J. H.

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech.43(9), 2184–2197 (1995).
[CrossRef]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Seeds, A. J.

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Shim, J.

Song, J.-F.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Sorace, C. M.

Soref, R.

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

Spector, S. J.

Steier, W. H.

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol.20(5), 886–891 (2002).
[CrossRef]

Streshinsky, M.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. G. Teo, G. Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

Teo, S. H. G.

Teo, S. H.-G.

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

Turner, A. C.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Vacondio, F.

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

Vivien, L.

Williams, K. J.

Xiong, Y.-Z.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Yegnanarayanan, S.

S. Dubovitsky, W. H. Steier, S. Yegnanarayanan, and B. Jalali, “Analysis and improvement of Mach-Zehnder modulator linearity performance for chirped and tunable optical carriers,” J. Lightwave Technol.20(5), 886–891 (2002).
[CrossRef]

Yoon, J. U.

Yu, M.-B.

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

Zhang, Y.

T. Baehr-Jones, R. Ding, Y. Liu, A. Ayazi, T. Pinguet, N. C. Harris, M. Streshinsky, P. Lee, Y. Zhang, A. E. Lim, T. Y. Liow, S. H. G. Teo, G. Q. Lo, and M. Hochberg, “Ultralow drive voltage silicon traveling-wave modulator,” Opt. Express20(11), 12014–12020 (2012).
[CrossRef] [PubMed]

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

Zhou, G.-R.

Ziebell, M.

IEEE J. Sel. Top. Quantum Electron. (3)

R. Soref, “The past, present and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

F. Vacondio, M. Mirshafiei, J. Basak, A. Liu, L. Liao, M. Paniccia, and L. A. Rusch, “A silicon modulator enabling RF over fiber for 802.11 OFDM signals,” IEEE J. Sel. Top. Quantum Electron.16(1), 141–148 (2010).
[CrossRef]

T.-Y. Liow, K.-W. Ang, Q. Fang, J.-F. Song, Y.-Z. Xiong, M.-B. Yu, G.-Q. Lo, and D.-L. Kwong, “Silicon modulators and germanium photodetectors on SOI: monolithic integration, compatibility, and performance optimization,” IEEE J. Sel. Top. Quantum Electron.16(1), 307–315 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Karim and J. Devenport, “Noise figure reduction in externally modulated analog fiber-optic links,” IEEE Photon. Technol. Lett.19(5), 312–314 (2007).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (4)

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

C. H. Cox, E. I. Ackerman, G. E. Betts, and J. L. Prince, “Limits on the performance of RF-over-fiber links and their impact on device design,” IEEE Trans. Microw. Theory Tech.54(2), 906–920 (2006).
[CrossRef]

W. B. Bridges and J. H. Schaffner, “Distortion in linearized electrooptic modulators,” IEEE Trans. Microw. Theory Tech.43(9), 2184–2197 (1995).
[CrossRef]

E. I. Ackerman and A. S. Daryoush, “Broad-band external modulation fiber-optic links for antenna-remoting applications,” IEEE Trans. Microw. Theory Tech.45(8), 1436–1442 (1997).
[CrossRef]

J. Lightwave Technol. (7)

Nature (2)

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature427(6975), 615–618 (2004).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Opt. Express (4)

Proc. SPIE (1)

T. Baehr-Jones, R. Ding, A. Ayazi, T. Pinguet, M. Streshinsky, N. Harris, J. Li, L. He, M. Gould, Y. Zhang, A. Eu-Jin Lim, T.-Y. Liow, S. H.-G. Teo, G.-Q. Lo, S. Ocheltree, C. Hill, A. Pomerene, P. De Dobbelaere, A. Mekis, and M. Hochberg, “Shared shuttles for integrated silicon optoelectronics,” Proc. SPIE8252, 82520G, 82520G-11 (2012).
[CrossRef]

Other (3)

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Techn. 45(8), 1390–1397 (1997).

A. M. Gutierrez, J. V. Galan, J. Herrera, A. Brimont, D. Marris-Morini, J. M. Fedeli, L. Vivien, and P. Sanchis, “High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications.” in Group IV Photonics, 2012 IEEE 9th International Conference on (IEEE, 2012), pp. 57–59 (2012).

http://www.ime.a-star.edu.sg/PPSSite/index.asp .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Device structure and fabrication. (a) Optical Micrograph of the traveling wave device, with the inset showing the detailed junction geometry. The inset at highest magnification is a rendering of the layout file used in fabrication. (b) A cross-section of the fabricated device is shown, with the two metal layers indicated, as well as the rib waveguide structure and the lateral pn junction. (c) Top-view schematic layout of the traveling wave device.

Fig. 2
Fig. 2

Optical transmission versus wavelength at 0 V and 6 V reverse bias conditions of the bottom arm of the device.

Fig. 3
Fig. 3

Measured phase shift versus reverse bias voltage of each arm of the MZM. The dashed lines are polynomial fits of each data series.

Fig. 4
Fig. 4

Experiment block diagram. When driving the MZM in the single arm configuration, the RF input is applied only to the bottom arm.

Fig. 5
Fig. 5

Electro-optic S21 for each arm of the MZM. Driven differentially, the device has 15.5 GHz bandwidth.

Fig. 6
Fig. 6

RF spectra of the fundamental tones at 1.02951 and 1.12951 GHz and the intermodulation distortion at 1.22951 GHz. These measurements are taken at a 10 Hz resolution bandwidth. The full range of 1 GHz to 1.3 GHz is not swept at this resolution bandwidth due to the slow sampling time, and a reconstructed spectrum is shown instead. The RF noise in this regime was observed to be uniformly around the noise floor of −165 dBm/Hz during test.

Fig. 7
Fig. 7

Output power vs. input power of the second harmonic distortion and intermodulation distortion for an MZM driven by a single arm. Spur-free dynamic ranges of 72 dB·Hz1/2 and 92 dB·Hz2/3 are measured for SFDRSHD and SFDRIMD, respectively.

Fig. 8
Fig. 8

Output power vs. input power of the second harmonic distortion and intermodulation distortion for a differentially driven MZM. Spur-free dynamic ranges of 82 dB·Hz1/2 and 97 dB·Hz2/3 are measured for SFDRSHD and SFDRIMD, respectively.

Tables (1)

Tables Icon

Table 1 Fit Parameters for Phase Shift of MZM Versus Reverse Bias

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I out = I in 2 ( 1+sin(φ(V) )
SHD= 1 2 V 0 2 cos(2ωt) [ 1 2! d 2 I out d V 2 ] V=0
IMD= 3 4 V 0 3 cos((2 ω 1 ω 2 )t) [ 1 3! d 3 I out d V 3 ] V=0
φ=bV+c V 2 +d V 3

Metrics