Abstract

It is shown that two mutually uncoupled microresonators in series can adequately cover the entire I–Q space and render the realization of QAM signals possible. This approach is based on the independent optimization of each microresonator for amplitude and phase modulation respectively. Generation of 16 quadrature amplitude modulation is demonstrated by means of simulation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.-P. Ho and H.-W. Cuei, “Generation of arbitrary quadrature signals using one dual-drive modulator,” J. of Lightwave Technol.23, 764–770, (2005).
    [CrossRef]
  2. M. Seimetz, “Multi-format transmitters for coherent optical M-PSK and M-QAM transmission,” in Proceedings of 7th International Conference on Transparent Optical Networks, 225–229 (2005).
  3. H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett., 22, 344–346 (2010).
    [CrossRef]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435, 325–327 (2005).
    [CrossRef] [PubMed]
  5. L. Zhang, J. Yang, M. Song, Y. Li, B. Zhang, R. Beausoleil, and A. Willner, “Microring-based modulation and demodulation of DPSK signal,” Opt. Express15, 564–569 (2007).
  6. L. Xu, J. Chan, A. Biberman, H. Lira, M. Lipson, and K. Bergman, “DPSK transmission through silicon microring switch for photonic interconnection networks,” IEEE Photon. Technol. Lett.23, 1103–1105 (2011).
    [CrossRef]
  7. P. Dong, C. Xie, L. Chen, N. Fontaine, and Y. Chen, “Experimental demonstration of microring quadrature phase-shift keying modulators,” Opt. Lett.37, 1178–1180 (2012).
    [CrossRef] [PubMed]
  8. W. Sacher and J. Poon, “Microring quadrature modulators,” Opt. Lett.34, 3878–3880 (2009).
    [CrossRef] [PubMed]
  9. R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, and W. Jiang, “Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation,” Opt. Express19, 14,892–14,902 (2011).
    [CrossRef]
  10. R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, W. Song, Y. Qian, and W. Jiang, “Fabrication and characterization of parallel–coupled dual racetrack silicon microresonators,” in Proceedings of SPIE8266, 82660M (2012).
    [CrossRef]
  11. J. Heebner, V. Wong, A. Schweinsberg, R. Boyd, and D. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron.40, 726–730 (2004).
    [CrossRef]
  12. Y. Ehrlichman, O. Amrani, and S. Ruschin, “A method for generating arbitrary optical signal constellations using direct digital drive,” J. of Lightwave Technol.29, 2545–2551 (2011).
    [CrossRef]
  13. C. Tee, K. Williams, R. Penty, and I. White, “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE of Selected Topics Quantum J. Electron.12, 108–106 (2006).
    [CrossRef]
  14. Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon microring modulators for WDM optical interconnection,” Opt. Express14, 9431–9434 (2006).
    [CrossRef] [PubMed]

2012 (2)

P. Dong, C. Xie, L. Chen, N. Fontaine, and Y. Chen, “Experimental demonstration of microring quadrature phase-shift keying modulators,” Opt. Lett.37, 1178–1180 (2012).
[CrossRef] [PubMed]

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, W. Song, Y. Qian, and W. Jiang, “Fabrication and characterization of parallel–coupled dual racetrack silicon microresonators,” in Proceedings of SPIE8266, 82660M (2012).
[CrossRef]

2011 (3)

Y. Ehrlichman, O. Amrani, and S. Ruschin, “A method for generating arbitrary optical signal constellations using direct digital drive,” J. of Lightwave Technol.29, 2545–2551 (2011).
[CrossRef]

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, and W. Jiang, “Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation,” Opt. Express19, 14,892–14,902 (2011).
[CrossRef]

L. Xu, J. Chan, A. Biberman, H. Lira, M. Lipson, and K. Bergman, “DPSK transmission through silicon microring switch for photonic interconnection networks,” IEEE Photon. Technol. Lett.23, 1103–1105 (2011).
[CrossRef]

2010 (1)

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett., 22, 344–346 (2010).
[CrossRef]

2009 (1)

2007 (1)

2006 (2)

C. Tee, K. Williams, R. Penty, and I. White, “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE of Selected Topics Quantum J. Electron.12, 108–106 (2006).
[CrossRef]

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon microring modulators for WDM optical interconnection,” Opt. Express14, 9431–9434 (2006).
[CrossRef] [PubMed]

2005 (3)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435, 325–327 (2005).
[CrossRef] [PubMed]

K.-P. Ho and H.-W. Cuei, “Generation of arbitrary quadrature signals using one dual-drive modulator,” J. of Lightwave Technol.23, 764–770, (2005).
[CrossRef]

M. Seimetz, “Multi-format transmitters for coherent optical M-PSK and M-QAM transmission,” in Proceedings of 7th International Conference on Transparent Optical Networks, 225–229 (2005).

2004 (1)

J. Heebner, V. Wong, A. Schweinsberg, R. Boyd, and D. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron.40, 726–730 (2004).
[CrossRef]

Amrani, O.

Y. Ehrlichman, O. Amrani, and S. Ruschin, “A method for generating arbitrary optical signal constellations using direct digital drive,” J. of Lightwave Technol.29, 2545–2551 (2011).
[CrossRef]

Beausoleil, R.

Bergman, K.

L. Xu, J. Chan, A. Biberman, H. Lira, M. Lipson, and K. Bergman, “DPSK transmission through silicon microring switch for photonic interconnection networks,” IEEE Photon. Technol. Lett.23, 1103–1105 (2011).
[CrossRef]

Biberman, A.

L. Xu, J. Chan, A. Biberman, H. Lira, M. Lipson, and K. Bergman, “DPSK transmission through silicon microring switch for photonic interconnection networks,” IEEE Photon. Technol. Lett.23, 1103–1105 (2011).
[CrossRef]

Boyd, R.

J. Heebner, V. Wong, A. Schweinsberg, R. Boyd, and D. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron.40, 726–730 (2004).
[CrossRef]

Chan, J.

L. Xu, J. Chan, A. Biberman, H. Lira, M. Lipson, and K. Bergman, “DPSK transmission through silicon microring switch for photonic interconnection networks,” IEEE Photon. Technol. Lett.23, 1103–1105 (2011).
[CrossRef]

Chen, L.

Chen, Y.

Cuei, H.-W.

K.-P. Ho and H.-W. Cuei, “Generation of arbitrary quadrature signals using one dual-drive modulator,” J. of Lightwave Technol.23, 764–770, (2005).
[CrossRef]

Ding, D.

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, W. Song, Y. Qian, and W. Jiang, “Fabrication and characterization of parallel–coupled dual racetrack silicon microresonators,” in Proceedings of SPIE8266, 82660M (2012).
[CrossRef]

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, and W. Jiang, “Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation,” Opt. Express19, 14,892–14,902 (2011).
[CrossRef]

Dong, P.

Ehrlichman, Y.

Y. Ehrlichman, O. Amrani, and S. Ruschin, “A method for generating arbitrary optical signal constellations using direct digital drive,” J. of Lightwave Technol.29, 2545–2551 (2011).
[CrossRef]

Fontaine, N.

Gill, D.

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, W. Song, Y. Qian, and W. Jiang, “Fabrication and characterization of parallel–coupled dual racetrack silicon microresonators,” in Proceedings of SPIE8266, 82660M (2012).
[CrossRef]

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, and W. Jiang, “Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation,” Opt. Express19, 14,892–14,902 (2011).
[CrossRef]

Goh, T.

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett., 22, 344–346 (2010).
[CrossRef]

Heebner, J.

J. Heebner, V. Wong, A. Schweinsberg, R. Boyd, and D. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron.40, 726–730 (2004).
[CrossRef]

Ho, K.-P.

K.-P. Ho and H.-W. Cuei, “Generation of arbitrary quadrature signals using one dual-drive modulator,” J. of Lightwave Technol.23, 764–770, (2005).
[CrossRef]

Integlia, R.

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, W. Song, Y. Qian, and W. Jiang, “Fabrication and characterization of parallel–coupled dual racetrack silicon microresonators,” in Proceedings of SPIE8266, 82660M (2012).
[CrossRef]

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, and W. Jiang, “Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation,” Opt. Express19, 14,892–14,902 (2011).
[CrossRef]

Jackson, D.

J. Heebner, V. Wong, A. Schweinsberg, R. Boyd, and D. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron.40, 726–730 (2004).
[CrossRef]

Jiang, W.

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, W. Song, Y. Qian, and W. Jiang, “Fabrication and characterization of parallel–coupled dual racetrack silicon microresonators,” in Proceedings of SPIE8266, 82660M (2012).
[CrossRef]

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, and W. Jiang, “Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation,” Opt. Express19, 14,892–14,902 (2011).
[CrossRef]

Kaneko, A.

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett., 22, 344–346 (2010).
[CrossRef]

Li, Y.

Lipson, M.

L. Xu, J. Chan, A. Biberman, H. Lira, M. Lipson, and K. Bergman, “DPSK transmission through silicon microring switch for photonic interconnection networks,” IEEE Photon. Technol. Lett.23, 1103–1105 (2011).
[CrossRef]

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon microring modulators for WDM optical interconnection,” Opt. Express14, 9431–9434 (2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435, 325–327 (2005).
[CrossRef] [PubMed]

Lira, H.

L. Xu, J. Chan, A. Biberman, H. Lira, M. Lipson, and K. Bergman, “DPSK transmission through silicon microring switch for photonic interconnection networks,” IEEE Photon. Technol. Lett.23, 1103–1105 (2011).
[CrossRef]

Pan, D.

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, W. Song, Y. Qian, and W. Jiang, “Fabrication and characterization of parallel–coupled dual racetrack silicon microresonators,” in Proceedings of SPIE8266, 82660M (2012).
[CrossRef]

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, and W. Jiang, “Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation,” Opt. Express19, 14,892–14,902 (2011).
[CrossRef]

Penty, R.

C. Tee, K. Williams, R. Penty, and I. White, “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE of Selected Topics Quantum J. Electron.12, 108–106 (2006).
[CrossRef]

Poon, J.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435, 325–327 (2005).
[CrossRef] [PubMed]

Qian, Y.

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, W. Song, Y. Qian, and W. Jiang, “Fabrication and characterization of parallel–coupled dual racetrack silicon microresonators,” in Proceedings of SPIE8266, 82660M (2012).
[CrossRef]

Ruschin, S.

Y. Ehrlichman, O. Amrani, and S. Ruschin, “A method for generating arbitrary optical signal constellations using direct digital drive,” J. of Lightwave Technol.29, 2545–2551 (2011).
[CrossRef]

Sacher, W.

Sakamaki, Y.

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett., 22, 344–346 (2010).
[CrossRef]

Schmidt, B.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon microring modulators for WDM optical interconnection,” Opt. Express14, 9431–9434 (2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435, 325–327 (2005).
[CrossRef] [PubMed]

Schweinsberg, A.

J. Heebner, V. Wong, A. Schweinsberg, R. Boyd, and D. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron.40, 726–730 (2004).
[CrossRef]

Seimetz, M.

M. Seimetz, “Multi-format transmitters for coherent optical M-PSK and M-QAM transmission,” in Proceedings of 7th International Conference on Transparent Optical Networks, 225–229 (2005).

Shakya, J.

Song, M.

Song, W.

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, W. Song, Y. Qian, and W. Jiang, “Fabrication and characterization of parallel–coupled dual racetrack silicon microresonators,” in Proceedings of SPIE8266, 82660M (2012).
[CrossRef]

Tee, C.

C. Tee, K. Williams, R. Penty, and I. White, “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE of Selected Topics Quantum J. Electron.12, 108–106 (2006).
[CrossRef]

White, I.

C. Tee, K. Williams, R. Penty, and I. White, “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE of Selected Topics Quantum J. Electron.12, 108–106 (2006).
[CrossRef]

Williams, K.

C. Tee, K. Williams, R. Penty, and I. White, “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE of Selected Topics Quantum J. Electron.12, 108–106 (2006).
[CrossRef]

Willner, A.

Wong, V.

J. Heebner, V. Wong, A. Schweinsberg, R. Boyd, and D. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron.40, 726–730 (2004).
[CrossRef]

Xie, C.

Xu, L.

L. Xu, J. Chan, A. Biberman, H. Lira, M. Lipson, and K. Bergman, “DPSK transmission through silicon microring switch for photonic interconnection networks,” IEEE Photon. Technol. Lett.23, 1103–1105 (2011).
[CrossRef]

Xu, Q.

Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon microring modulators for WDM optical interconnection,” Opt. Express14, 9431–9434 (2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435, 325–327 (2005).
[CrossRef] [PubMed]

Yamada, T.

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett., 22, 344–346 (2010).
[CrossRef]

Yamazaki, H.

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett., 22, 344–346 (2010).
[CrossRef]

Yang, J.

Yin, L.

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, W. Song, Y. Qian, and W. Jiang, “Fabrication and characterization of parallel–coupled dual racetrack silicon microresonators,” in Proceedings of SPIE8266, 82660M (2012).
[CrossRef]

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, and W. Jiang, “Parallel-coupled dual racetrack silicon micro-resonators for quadrature amplitude modulation,” Opt. Express19, 14,892–14,902 (2011).
[CrossRef]

Zhang, B.

Zhang, L.

IEEE J. Quantum Electron. (1)

J. Heebner, V. Wong, A. Schweinsberg, R. Boyd, and D. Jackson, “Optical transmission characteristics of fiber ring resonators,” IEEE J. Quantum Electron.40, 726–730 (2004).
[CrossRef]

IEEE of Selected Topics Quantum J. Electron. (1)

C. Tee, K. Williams, R. Penty, and I. White, “Fabrication-tolerant active-passive integration scheme for vertically coupled microring resonator,” IEEE of Selected Topics Quantum J. Electron.12, 108–106 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. Yamazaki, T. Yamada, T. Goh, Y. Sakamaki, and A. Kaneko, “64QAM modulator with a hybrid configuration of silica PLCs and LiNbO3 phase modulators,” IEEE Photon. Technol. Lett., 22, 344–346 (2010).
[CrossRef]

L. Xu, J. Chan, A. Biberman, H. Lira, M. Lipson, and K. Bergman, “DPSK transmission through silicon microring switch for photonic interconnection networks,” IEEE Photon. Technol. Lett.23, 1103–1105 (2011).
[CrossRef]

J. of Lightwave Technol. (2)

K.-P. Ho and H.-W. Cuei, “Generation of arbitrary quadrature signals using one dual-drive modulator,” J. of Lightwave Technol.23, 764–770, (2005).
[CrossRef]

Y. Ehrlichman, O. Amrani, and S. Ruschin, “A method for generating arbitrary optical signal constellations using direct digital drive,” J. of Lightwave Technol.29, 2545–2551 (2011).
[CrossRef]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature435, 325–327 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Proceedings of 7th International Conference on Transparent Optical Networks (1)

M. Seimetz, “Multi-format transmitters for coherent optical M-PSK and M-QAM transmission,” in Proceedings of 7th International Conference on Transparent Optical Networks, 225–229 (2005).

Proceedings of SPIE (1)

R. Integlia, L. Yin, D. Ding, D. Pan, D. Gill, W. Song, Y. Qian, and W. Jiang, “Fabrication and characterization of parallel–coupled dual racetrack silicon microresonators,” in Proceedings of SPIE8266, 82660M (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical M-ary modulator based on a two microring resonators. As an input, the modulator accepts two voltages V1 and V2.

Fig. 2
Fig. 2

Power and phase transmissions for Ring #1 when t1 = a1 = 0.99; ring is driven by input voltage range that induces 0 ≤ ϕ1 ≤ 0.04π.

Fig. 3
Fig. 3

Power and phase transmissions for Ring #2 with t2 = 0.1 and a2 = 0.99. The ring modulator acts as a phase shifter; light exits after one round and does not interfere at all.

Fig. 4
Fig. 4

Simulation results with t1 = a1 = 0.99 and t2 = 0.1, a2 = 0.99. Ideal 16QAM (∇); available signal pool generated by way of two microring modulators (×); obtained 16QAM constellation (Δ) (i.e. 16 points selected from the pool).

Fig. 5
Fig. 5

Signal pool and 16 selected points. Pool is generated by two microring resonators with t1 = 0.985, a1 = 0.99 and t2 = 0.1, a2 = 0.99.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E out E in = exp [ j ( π + ϕ ) ] a t exp ( j ϕ ) 1 ta exp ( j ϕ )
T 1 = | E out 1 E in 1 | 2 = a 1 2 2 t 1 a 1 cos ( ϕ 1 ) + t 1 2 1 2 t 1 a 1 cos ( ϕ 1 ) + t 1 2 a 1 2 .
max ϕ 1 = acos ( r + t 1 4 r 2 t 1 2 2 t 1 2 ( r 1 ) ) .
Φ 2 = arg ( E out 1 E in 1 ) = π + ϕ 2 + atan ( t 2 sin ϕ 2 a 2 t 2 cos ( ϕ 2 ) ) + atan ( t 2 a 2 sin ϕ 2 1 t 2 a 2 cos ( ϕ 2 ) ) .
s i = r i e j θ i , r i > 0 , 0 θ i 2 π , i = 1 , , M .
EV M [ dB ] = 10 log 10 ( i = 1 M | s i E out ( D i ) | 2 i = 1 M | s i | 2 ) ,

Metrics