Abstract

A heterogeneously integrated III-V-on-silicon laser is reported, integrating a III-V gain section, a silicon ring resonator for wavelength selection and two silicon Bragg grating reflectors as back and front mirrors. Single wavelength operation with a side mode suppression ratio higher than 45 dB is obtained. An output power up to 10 mW at 20 ⁰C and a thermo-optic wavelength tuning range of 8 nm are achieved. The laser linewidth is found to be 1.7 MHz.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 316–324 (2010).
    [CrossRef]
  2. S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express3(1), 35–46 (2013).
    [CrossRef]
  3. D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-Temperature, Strong SiO 2-SiO 2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits,” J. Electron. Mater.37(10), 1552–1559 (2008).
    [CrossRef]
  4. J.-M. Fedeli and B. Ben Bakir, “InP on SOI devices for optical communication and optical network on chip,” in Proceedings of SPIE Photonic West Conference, 7942 Optoelectronic Integrated Circuits XIII (San Francisco, California, USA, 2011).
  5. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An electrically pumped AlGaInAs-silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
    [CrossRef]
  6. S. Keyvaninia, G. Roelkens, D. Van Thourhout, G. H. Duan, M. Lamponi, F. Lelarge, J.-M. Fedeli, S. Messaoudene, E. J. Geluk, and B. Smalbrugge, “A highly efficient electrically pumped optical amplifier integrated on a SOI waveguide circuit,” in Proceedings of IEEE Group IV Photonics Conference (San Diego, United Sates, 2012), 222–224.
  7. S. Keyvaninia, G. Roelkens, and D. Van Thourhout, “Engineering the heterogeneously integrated III-V/SOI tunable laser,” in Proceedings of 14th Ann. Symp. IEEE Photonics Benelux Chapter (Belgium, 2009), 141–144.
  8. M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
    [CrossRef]
  9. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  10. S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310 nm hybrid III-V/Si Fabry-Perot laser based on adhesive bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
    [CrossRef]
  11. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
    [CrossRef]
  12. T. Maruyama, T. Okumura, S. Sakamoto, K. Miura, Y. Nishimoto, and S. Arai, “GaInAsP/InP membrane BH-DFB lasers directly bonded on SOI substrate,” Opt. Express14(18), 8184–8188 (2006).
    [CrossRef] [PubMed]
  13. A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express16(7), 4413–4419 (2008).
    [CrossRef] [PubMed]
  14. A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett.20(20), 1667–1669 (2008).
    [CrossRef]
  15. D. Van Thourhout, L. Zhang, W. Yang, B. I. Miller, N. J. Sauer, and C. R. Doerr, “Compact digitally tunable laser,” IEEE Photon. Technol. Lett.15(2), 182–184 (2003).
    [CrossRef]
  16. J. Buus, M.-C. Amamm, and D. Blumenthal, Tunable Laser Diodes and Related Optical Sources, 2nd ed. (Wiley-IEEE Press, 2005).
  17. M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photon. Technol. Lett.21(13), 905–907 (2009).
    [CrossRef]
  18. B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett.14(5), 600–602 (2002).
    [CrossRef]
  19. T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron.45(7), 892–899 (2009).
    [CrossRef]
  20. T. Chu, N. Fujioka, and M. Ishizaka, “Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators,” Opt. Express17(16), 14063–14068 (2009).
    [CrossRef] [PubMed]
  21. A. Le Liepvre, C. Jany, A. Accard, M. Lamponi, F. Poingt, D. Make, F. Lelarge, J.-M. Fedeli, S. Messaoudene, D. Bordel, and G.-H. Duan, “Widely wavelength tunable hybrid III-V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique,” in Proceedings of IEEE Group IV Photonics Conference (San Diego, United Sates, 2012), 54–56.
  22. “CAMFR,” http://camfr.sourceforge.net
  23. D. Derrickson, Fiber Optic Test and Measurement (Prentice Hall, 1998), p. 185.
  24. G. H. Duan, C. Jany, A. Le Liepvre, J. G. Provost, D. Make, F. Lelarge, M. Lamponi, F. Poingt, J.-M. Fedeli, S. Messaoudene, D. Bordel, S. Brision, S. Keyvaninia, G. Roelkens, D. Van Thourhout, D. J. Thomson, F. Y. Gardes, and G. T. Reed, “10 Gb/s integrated tunable hybrid III-V/si laser and silicon mach-zehnder modulator,” in Proceedings of European Conference and Exhibition on Optical Communication ECEOC (Amsterdam, 2012).

2013

2012

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

2011

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310 nm hybrid III-V/Si Fabry-Perot laser based on adhesive bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

2010

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 316–324 (2010).
[CrossRef]

2009

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron.45(7), 892–899 (2009).
[CrossRef]

T. Chu, N. Fujioka, and M. Ishizaka, “Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators,” Opt. Express17(16), 14063–14068 (2009).
[CrossRef] [PubMed]

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photon. Technol. Lett.21(13), 905–907 (2009).
[CrossRef]

2008

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-Temperature, Strong SiO 2-SiO 2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits,” J. Electron. Mater.37(10), 1552–1559 (2008).
[CrossRef]

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett.20(20), 1667–1669 (2008).
[CrossRef]

A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express16(7), 4413–4419 (2008).
[CrossRef] [PubMed]

2007

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An electrically pumped AlGaInAs-silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
[CrossRef]

2006

2003

D. Van Thourhout, L. Zhang, W. Yang, B. I. Miller, N. J. Sauer, and C. R. Doerr, “Compact digitally tunable laser,” IEEE Photon. Technol. Lett.15(2), 182–184 (2003).
[CrossRef]

2002

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett.14(5), 600–602 (2002).
[CrossRef]

Arai, S.

Augustin, L. M.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photon. Technol. Lett.21(13), 905–907 (2009).
[CrossRef]

Baets, R.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 316–324 (2010).
[CrossRef]

Bogaerts, W.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 316–324 (2010).
[CrossRef]

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

Bowers, J. E.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett.20(20), 1667–1669 (2008).
[CrossRef]

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-Temperature, Strong SiO 2-SiO 2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits,” J. Electron. Mater.37(10), 1552–1559 (2008).
[CrossRef]

A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express16(7), 4413–4419 (2008).
[CrossRef] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An electrically pumped AlGaInAs-silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett.14(5), 600–602 (2002).
[CrossRef]

Chu, T.

Cohen, O.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An electrically pumped AlGaInAs-silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

de Valicourt, G.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

de Vries, T.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photon. Technol. Lett.21(13), 905–907 (2009).
[CrossRef]

Doerr, C. R.

D. Van Thourhout, L. Zhang, W. Yang, B. I. Miller, N. J. Sauer, and C. R. Doerr, “Compact digitally tunable laser,” IEEE Photon. Technol. Lett.15(2), 182–184 (2003).
[CrossRef]

Duan, G. H.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Dumon, P.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 316–324 (2010).
[CrossRef]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

Fang, A. W.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-Temperature, Strong SiO 2-SiO 2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits,” J. Electron. Mater.37(10), 1552–1559 (2008).
[CrossRef]

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett.20(20), 1667–1669 (2008).
[CrossRef]

A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express16(7), 4413–4419 (2008).
[CrossRef] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An electrically pumped AlGaInAs-silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Fedeli, J.-M.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Fujioka, N.

Gaudino, R.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photon. Technol. Lett.21(13), 905–907 (2009).
[CrossRef]

Heck, J.

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310 nm hybrid III-V/Si Fabry-Perot laser based on adhesive bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

Heck, M. J. R.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photon. Technol. Lett.21(13), 905–907 (2009).
[CrossRef]

Ishizaka, M.

Jany, C.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Jones, R.

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310 nm hybrid III-V/Si Fabry-Perot laser based on adhesive bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett.20(20), 1667–1669 (2008).
[CrossRef]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An electrically pumped AlGaInAs-silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Kakitsuka, T.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron.45(7), 892–899 (2009).
[CrossRef]

Keyvaninia, S.

S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express3(1), 35–46 (2013).
[CrossRef]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

Koch, B. R.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett.20(20), 1667–1669 (2008).
[CrossRef]

Kondo, Y.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron.45(7), 892–899 (2009).
[CrossRef]

Kuo, Y. H.

Kuo, Y.-H.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett.20(20), 1667–1669 (2008).
[CrossRef]

La Porta, A.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photon. Technol. Lett.21(13), 905–907 (2009).
[CrossRef]

Lamponi, M.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Leijtens, X. J. M.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photon. Technol. Lett.21(13), 905–907 (2009).
[CrossRef]

Lelarge, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Liang, D.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-Temperature, Strong SiO 2-SiO 2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits,” J. Electron. Mater.37(10), 1552–1559 (2008).
[CrossRef]

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett.20(20), 1667–1669 (2008).
[CrossRef]

A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express16(7), 4413–4419 (2008).
[CrossRef] [PubMed]

Liu, B.

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett.14(5), 600–602 (2002).
[CrossRef]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

Lively, E.

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett.20(20), 1667–1669 (2008).
[CrossRef]

A. W. Fang, E. Lively, Y. H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express16(7), 4413–4419 (2008).
[CrossRef] [PubMed]

Maruyama, T.

Matsuo, S.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron.45(7), 892–899 (2009).
[CrossRef]

Messaoudene, S.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Miller, B. I.

D. Van Thourhout, L. Zhang, W. Yang, B. I. Miller, N. J. Sauer, and C. R. Doerr, “Compact digitally tunable laser,” IEEE Photon. Technol. Lett.15(2), 182–184 (2003).
[CrossRef]

Miura, K.

Muneeb, M.

Nishimoto, Y.

Nötzel, R.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photon. Technol. Lett.21(13), 905–907 (2009).
[CrossRef]

Oakley, D. C.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-Temperature, Strong SiO 2-SiO 2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits,” J. Electron. Mater.37(10), 1552–1559 (2008).
[CrossRef]

Oei, Y.-S.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photon. Technol. Lett.21(13), 905–907 (2009).
[CrossRef]

Okumura, T.

Paniccia, M. J.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An electrically pumped AlGaInAs-silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Park, H.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-Temperature, Strong SiO 2-SiO 2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits,” J. Electron. Mater.37(10), 1552–1559 (2008).
[CrossRef]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An electrically pumped AlGaInAs-silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
[CrossRef]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
[CrossRef] [PubMed]

Poingt, F.

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

Reynolds, T. E.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-Temperature, Strong SiO 2-SiO 2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits,” J. Electron. Mater.37(10), 1552–1559 (2008).
[CrossRef]

Robbins, D. J.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photon. Technol. Lett.21(13), 905–907 (2009).
[CrossRef]

Roelkens, G.

S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express3(1), 35–46 (2013).
[CrossRef]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310 nm hybrid III-V/Si Fabry-Perot laser based on adhesive bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

Sakamoto, S.

Sato, T.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron.45(7), 892–899 (2009).
[CrossRef]

Sauer, N. J.

D. Van Thourhout, L. Zhang, W. Yang, B. I. Miller, N. J. Sauer, and C. R. Doerr, “Compact digitally tunable laser,” IEEE Photon. Technol. Lett.15(2), 182–184 (2003).
[CrossRef]

Segawa, T.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron.45(7), 892–899 (2009).
[CrossRef]

Selvaraja, S.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 316–324 (2010).
[CrossRef]

Shakouri, A.

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett.14(5), 600–602 (2002).
[CrossRef]

Smalbrugge, B.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photon. Technol. Lett.21(13), 905–907 (2009).
[CrossRef]

Smit, M. K.

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photon. Technol. Lett.21(13), 905–907 (2009).
[CrossRef]

Stankovic, S.

S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express3(1), 35–46 (2013).
[CrossRef]

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310 nm hybrid III-V/Si Fabry-Perot laser based on adhesive bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

Sysak, M.

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310 nm hybrid III-V/Si Fabry-Perot laser based on adhesive bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

Takahashi, R.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron.45(7), 892–899 (2009).
[CrossRef]

Van Thourhout, D.

S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express3(1), 35–46 (2013).
[CrossRef]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310 nm hybrid III-V/Si Fabry-Perot laser based on adhesive bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 316–324 (2010).
[CrossRef]

D. Van Thourhout, L. Zhang, W. Yang, B. I. Miller, N. J. Sauer, and C. R. Doerr, “Compact digitally tunable laser,” IEEE Photon. Technol. Lett.15(2), 182–184 (2003).
[CrossRef]

Van Veldhoven, P. J.

Warner, K.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-Temperature, Strong SiO 2-SiO 2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits,” J. Electron. Mater.37(10), 1552–1559 (2008).
[CrossRef]

Yang, W.

D. Van Thourhout, L. Zhang, W. Yang, B. I. Miller, N. J. Sauer, and C. R. Doerr, “Compact digitally tunable laser,” IEEE Photon. Technol. Lett.15(2), 182–184 (2003).
[CrossRef]

Zhang, L.

D. Van Thourhout, L. Zhang, W. Yang, B. I. Miller, N. J. Sauer, and C. R. Doerr, “Compact digitally tunable laser,” IEEE Photon. Technol. Lett.15(2), 182–184 (2003).
[CrossRef]

IEEE J. Quantum Electron.

T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo, and R. Takahashi, “Semiconductor double-ring-resonator-coupled tunable laser for wavelength routing,” IEEE J. Quantum Electron.45(7), 892–899 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. Selvaraja, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron.16(1), 316–324 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An electrically pumped AlGaInAs-silicon evanescent amplifier,” IEEE Photon. Technol. Lett.19(4), 230–232 (2007).
[CrossRef]

M. Lamponi, S. Keyvaninia, C. Jany, F. Poingt, F. Lelarge, G. de Valicourt, G. Roelkens, D. Van Thourhout, S. Messaoudene, J.-M. Fedeli, and G. H. Duan, “Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler,” IEEE Photon. Technol. Lett.24(1), 76–78 (2012).
[CrossRef]

S. Stanković, R. Jones, M. Sysak, J. Heck, G. Roelkens, and D. Van Thourhout, “1310 nm hybrid III-V/Si Fabry-Perot laser based on adhesive bonding,” IEEE Photon. Technol. Lett.23(23), 1781–1783 (2011).
[CrossRef]

A. W. Fang, B. R. Koch, R. Jones, E. Lively, D. Liang, Y.-H. Kuo, and J. E. Bowers, “A distributed Bragg reflector silicon evanescent laser,” IEEE Photon. Technol. Lett.20(20), 1667–1669 (2008).
[CrossRef]

D. Van Thourhout, L. Zhang, W. Yang, B. I. Miller, N. J. Sauer, and C. R. Doerr, “Compact digitally tunable laser,” IEEE Photon. Technol. Lett.15(2), 182–184 (2003).
[CrossRef]

M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, B. Smalbrugge, Y.-S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, and M. K. Smit, “Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed,” IEEE Photon. Technol. Lett.21(13), 905–907 (2009).
[CrossRef]

B. Liu, A. Shakouri, and J. E. Bowers, “Wide tunable double ring resonator coupled lasers,” IEEE Photon. Technol. Lett.14(5), 600–602 (2002).
[CrossRef]

J. Electron. Mater.

D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, and J. E. Bowers, “Low-Temperature, Strong SiO 2-SiO 2 Covalent Wafer Bonding for III–V Compound Semiconductors-to-Silicon Photonic Integrated Circuits,” J. Electron. Mater.37(10), 1552–1559 (2008).
[CrossRef]

Laser Photon. Rev.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intera-chip optical interconnects,” Laser Photon. Rev.4(6), 751–779 (2010).
[CrossRef]

Opt. Express

Opt. Mater. Express

Other

A. Le Liepvre, C. Jany, A. Accard, M. Lamponi, F. Poingt, D. Make, F. Lelarge, J.-M. Fedeli, S. Messaoudene, D. Bordel, and G.-H. Duan, “Widely wavelength tunable hybrid III-V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique,” in Proceedings of IEEE Group IV Photonics Conference (San Diego, United Sates, 2012), 54–56.

“CAMFR,” http://camfr.sourceforge.net

D. Derrickson, Fiber Optic Test and Measurement (Prentice Hall, 1998), p. 185.

G. H. Duan, C. Jany, A. Le Liepvre, J. G. Provost, D. Make, F. Lelarge, M. Lamponi, F. Poingt, J.-M. Fedeli, S. Messaoudene, D. Bordel, S. Brision, S. Keyvaninia, G. Roelkens, D. Van Thourhout, D. J. Thomson, F. Y. Gardes, and G. T. Reed, “10 Gb/s integrated tunable hybrid III-V/si laser and silicon mach-zehnder modulator,” in Proceedings of European Conference and Exhibition on Optical Communication ECEOC (Amsterdam, 2012).

J. Buus, M.-C. Amamm, and D. Blumenthal, Tunable Laser Diodes and Related Optical Sources, 2nd ed. (Wiley-IEEE Press, 2005).

J.-M. Fedeli and B. Ben Bakir, “InP on SOI devices for optical communication and optical network on chip,” in Proceedings of SPIE Photonic West Conference, 7942 Optoelectronic Integrated Circuits XIII (San Francisco, California, USA, 2011).

S. Keyvaninia, G. Roelkens, D. Van Thourhout, G. H. Duan, M. Lamponi, F. Lelarge, J.-M. Fedeli, S. Messaoudene, E. J. Geluk, and B. Smalbrugge, “A highly efficient electrically pumped optical amplifier integrated on a SOI waveguide circuit,” in Proceedings of IEEE Group IV Photonics Conference (San Diego, United Sates, 2012), 222–224.

S. Keyvaninia, G. Roelkens, and D. Van Thourhout, “Engineering the heterogeneously integrated III-V/SOI tunable laser,” in Proceedings of 14th Ann. Symp. IEEE Photonics Benelux Chapter (Belgium, 2009), 141–144.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic view of the single wavelength microring-based laser structure; (b) Reflection characteristic of the ring resonator (red), and DBR grating (blue/green) combination; and the longitudinal mode spacing is added (dashed lines) as a reference.

Fig. 2
Fig. 2

(a) Simulation of a Bragg reflector and experimental measurements for structures using a 70 nm grating etch depth with a grating period of 290 nm and 50% duty cycle (40 periods); (b) Simulation of the grating transmission (Tr_) and reflection (Ref_) for 10, 15, and 40 periods; the Bragg reflector used in this work has a 50 nm grating etch depth with a grating period of 280 nm and 50% duty cycle.

Fig. 3
Fig. 3

Characterization of the ring resonator structure by using the III-V gain region under reverse bias; the inset shows a scanning electron microscope image of the fabricated structure.

Fig. 4
Fig. 4

(a) Three-dimensional view of the coupling structure in the gain section with representative mode profiles in two cross-sections; (b) detailed top view of the gain structure.

Fig. 5
Fig. 5

(a) Picture of a completely processed III-V/SOI wafer; (b) microscope picture of the fabricated tunable lasers, showing the ring resonator section with integrated heater, the III-V gain section (after metallization) and the passive silicon output waveguide.

Fig. 6
Fig. 6

(a) the L-I curve of the hybrid ring-resonator-based laser with two DBRs in CW regime as a function of temperature; (b) measured laser spectrum showing more than 50 dB side mode suppression ration (at 20°C for 80 mA current injection).

Fig. 7
Fig. 7

(a) The L-I-V curve for a hybrid ring-resonator-based laser with a back DBR and a cleaved front facet at 20°C. The inset shows the lasing spectrum for this device configuration. (b) Delayed-self heterodyne line width trace at 20°C and laser injection current of 80 mA and the Lorentzian fit illustrating 1.7 MHz laser line width.

Fig. 8
Fig. 8

(a) Super-imposed laser spectra for several values of the heating power (b) laser wavelength as a function of the power dissipated in the heater, at 20°C and a laser injection current of 80 mA.

Metrics