Abstract

We propose an approach to implementing wavelength- and time-selective optical switching, dropping and swapping based on the sum-frequency generation (SFG) or cascaded sum- and difference-frequency generation (cSFG/DFG) in a periodically poled lithium niobate (PPLN) waveguide. Analytical solutions are derived, showing the parametric depletion effect for optical switching and the narrow-band operation due to quasi-phase matching (QPM) condition of PPLN. Using parametric depletion effect of SFG process, we demonstrate wavelength- and time-selective optical switching for ITU-grid compatible 40-Gbit/s wavelength-division multiplexed (WDM) signals with a channel spacing of 100 GHz. Less than 1-dB power penalty at a bit-error rate (BER) of 10−9 is measured for the wavelength- and time-selective switching channel. Negligible impacts are observed on other channels of WDM signals. Using combined effects of parametric depletion and wavelength conversion of cSFG/DFG processes, we demonstrate wavelength- and time-selective optical dropping for ITU-grid compatible 100-GHz-spaced 40-Gbit/s WDM signals. Moreover, we demonstrate optical swapping between two 100-GHz-spaced 40-Gbit/s signals. The obtained theoretical and experimental results confirm single-PPLN-assisted wavelength- and time-selective optical switching, dropping and swapping for 100-GHz-spaced WDM signals, which might potentially be extended to WDM signals with narrower channel spacing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron.17(2), 320–332 (2011).
    [CrossRef]
  2. S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron.18(2), 670–680 (2012).
    [CrossRef]
  3. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical signal processing,” IEEE J. Sel. Top. Quantum Electron.6(6), 1428–1435 (2000).
    [CrossRef]
  4. J. Wang, J. Sun, C. Luo, and Q. Sun, “Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide,” Appl. Phys. B83(4), 543–548 (2006).
    [CrossRef]
  5. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using nonlinearities in guided-wave devices,” J. Lightwave Technol.24(7), 2579–2592 (2006).
    [CrossRef]
  6. J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror,” Opt. Lett.32(11), 1477–1479 (2007).
    [CrossRef] [PubMed]
  7. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett.32(16), 2462–2464 (2007).
    [CrossRef] [PubMed]
  8. B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
    [CrossRef]
  9. L. K. Oxenlowe, M. Hua Ji, Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012).
    [CrossRef]
  10. J. Wang, H. Huang, X. Wang, J. Y. Yang, and A. E. Willner, “Reconfigurable 2.3-Tbit/s DQPSK simultaneous add/drop, data exchange and equalization using double-pass LCoS and bidirectional HNLF,” Opt. Express19(19), 18246–18252 (2011).
    [CrossRef] [PubMed]
  11. K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8(3), 560–568 (2002).
    [CrossRef]
  12. R. W. L. Fung, H. K. Y. Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett.19(22), 1846–1848 (2007).
    [CrossRef]
  13. J. Wang, Z. Bakhtiari, S. R. Nuccio, O. F. Yilmaz, X. Wu, and A. E. Willner, “Phase-transparent optical data exchange of 40 Gbit/s differential phase-shift keying signals,” Opt. Lett.35(17), 2979–2981 (2010).
    [CrossRef] [PubMed]
  14. M. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signals,” IEEE Photon. Technol. Lett.21(21), 1591–1593 (2009).
    [CrossRef]
  15. V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
    [CrossRef]
  16. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  17. K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett.12(6), 654–656 (2000).
    [CrossRef]
  18. T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett.13(11), 1203–1205 (2001).
    [CrossRef]
  19. Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett.15(7), 978–980 (2003).
    [CrossRef]
  20. J. Wang and Q. Z. Sun, “Theoretical analysis of power swapping in quadratic nonlinear medium,” Appl. Phys. Lett.96(8), 081108 (2010).
    [CrossRef]
  21. J. Wang, S. R. Nuccio, X. Wu, O. F. Yilmaz, L. Zhang, I. Fazal, J. Y. Yang, Y. Yue, and A. E. Willner, “40 Gbit/s optical data exchange between wavelength-division-multiplexed channels using a periodically poled lithium niobate waveguide,” Opt. Lett.35(7), 1067–1069 (2010).
    [CrossRef] [PubMed]
  22. A. Bogoni, X. Wu, S. R. Nuccio, J. Wang, Z. Bakhtiari, and A. E. Willner, “Photonic 640-Gb/s reconfigurable OTDM add-drop multiplexer based on pump depletion in a single PPLN waveguide,” IEEE J. Sel. Top. Quantum Electron.18(2), 709–716 (2012).
    [CrossRef]
  23. T. K. Liang, L. R. Nunes, T. Sakamoto, K. Sasagawa, T. Kawanishi, M. Tsuchiya, G. R. A. Priem, D. Van Thourhout, P. Dumon, R. Baets, and H. K. Tsang, “Ultrafast all-optical switching by cross-absorption modulation in silicon wire waveguides,” Opt. Express13(19), 7298–7303 (2005).
    [CrossRef] [PubMed]
  24. L. Yin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Optical switching using nonlinear polarization rotation inside silicon waveguides,” Opt. Lett.34(4), 476–478 (2009).
    [CrossRef] [PubMed]
  25. S. Abaslou and V. Ahmadi, “Compact all-optical switch for WDM networks based on Raman effect in silicon nanowavegide,” Opt. Lett.37(1), 40–42 (2012).
    [CrossRef] [PubMed]
  26. Y. Miyamoto, T. Kataoka, K. Yonenaga, M. Tomizawa, A. Hirano, S. Kuwahara, and Y. Tada, “WDM field trials of 43-Gb/s/channel transport system for optical transport network,” J. Lightwave Technol.20(12), 2115–2128 (2002).
    [CrossRef]
  27. M. Sauer, J. E. Hurley, S. Ten, J. J. Ferner, and S. P. Colby, “1.6 Tbit/s transmission over 2160 km of field-deployed dispersion-managed fibre without per channel dispersion compensation,” Electron. Lett.39(9), 728–730 (2003).
    [CrossRef]
  28. A. H. Gnauck, R. W. Tkach, A. R. Chraplyvy, and T. Li, “High-capacity optical transmission systems,” J. Lightwave Technol.26(9), 1032–1045 (2008).
    [CrossRef]
  29. J. Wang, H. Fu, D. Geng, and A. Willner, “All-optical wavelength-/time-selective switching/dropping/swapping for 100-GHz-spaced WDM signals using a periodically poled lithium niobate waveguide,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Th.1.A.5.

2012 (5)

S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron.18(2), 670–680 (2012).
[CrossRef]

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

L. K. Oxenlowe, M. Hua Ji, Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012).
[CrossRef]

A. Bogoni, X. Wu, S. R. Nuccio, J. Wang, Z. Bakhtiari, and A. E. Willner, “Photonic 640-Gb/s reconfigurable OTDM add-drop multiplexer based on pump depletion in a single PPLN waveguide,” IEEE J. Sel. Top. Quantum Electron.18(2), 709–716 (2012).
[CrossRef]

S. Abaslou and V. Ahmadi, “Compact all-optical switch for WDM networks based on Raman effect in silicon nanowavegide,” Opt. Lett.37(1), 40–42 (2012).
[CrossRef] [PubMed]

2011 (2)

J. Wang, H. Huang, X. Wang, J. Y. Yang, and A. E. Willner, “Reconfigurable 2.3-Tbit/s DQPSK simultaneous add/drop, data exchange and equalization using double-pass LCoS and bidirectional HNLF,” Opt. Express19(19), 18246–18252 (2011).
[CrossRef] [PubMed]

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron.17(2), 320–332 (2011).
[CrossRef]

2010 (3)

2009 (2)

L. Yin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Optical switching using nonlinear polarization rotation inside silicon waveguides,” Opt. Lett.34(4), 476–478 (2009).
[CrossRef] [PubMed]

M. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signals,” IEEE Photon. Technol. Lett.21(21), 1591–1593 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (2)

J. Wang, J. Sun, C. Luo, and Q. Sun, “Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide,” Appl. Phys. B83(4), 543–548 (2006).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using nonlinearities in guided-wave devices,” J. Lightwave Technol.24(7), 2579–2592 (2006).
[CrossRef]

2005 (1)

2004 (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

2003 (2)

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett.15(7), 978–980 (2003).
[CrossRef]

M. Sauer, J. E. Hurley, S. Ten, J. J. Ferner, and S. P. Colby, “1.6 Tbit/s transmission over 2160 km of field-deployed dispersion-managed fibre without per channel dispersion compensation,” Electron. Lett.39(9), 728–730 (2003).
[CrossRef]

2002 (3)

Y. Miyamoto, T. Kataoka, K. Yonenaga, M. Tomizawa, A. Hirano, S. Kuwahara, and Y. Tada, “WDM field trials of 43-Gb/s/channel transport system for optical transport network,” J. Lightwave Technol.20(12), 2115–2128 (2002).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8(3), 560–568 (2002).
[CrossRef]

2001 (1)

T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett.13(11), 1203–1205 (2001).
[CrossRef]

2000 (2)

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett.12(6), 654–656 (2000).
[CrossRef]

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical signal processing,” IEEE J. Sel. Top. Quantum Electron.6(6), 1428–1435 (2000).
[CrossRef]

Abaslou, S.

Absil, P. P.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Agrawal, G. P.

Ahmadi, V.

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Baets, R.

Bakhtiari, Z.

A. Bogoni, X. Wu, S. R. Nuccio, J. Wang, Z. Bakhtiari, and A. E. Willner, “Photonic 640-Gb/s reconfigurable OTDM add-drop multiplexer based on pump depletion in a single PPLN waveguide,” IEEE J. Sel. Top. Quantum Electron.18(2), 709–716 (2012).
[CrossRef]

J. Wang, Z. Bakhtiari, S. R. Nuccio, O. F. Yilmaz, X. Wu, and A. E. Willner, “Phase-transparent optical data exchange of 40 Gbit/s differential phase-shift keying signals,” Opt. Lett.35(17), 2979–2981 (2010).
[CrossRef] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Bogoni, A.

A. Bogoni, X. Wu, S. R. Nuccio, J. Wang, Z. Bakhtiari, and A. E. Willner, “Photonic 640-Gb/s reconfigurable OTDM add-drop multiplexer based on pump depletion in a single PPLN waveguide,” IEEE J. Sel. Top. Quantum Electron.18(2), 709–716 (2012).
[CrossRef]

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron.17(2), 320–332 (2011).
[CrossRef]

Cheung, H. K. Y.

R. W. L. Fung, H. K. Y. Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett.19(22), 1846–1848 (2007).
[CrossRef]

Chou, M. H.

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett.12(6), 654–656 (2000).
[CrossRef]

Chraplyvy, A. R.

Clausen,

L. K. Oxenlowe, M. Hua Ji, Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012).
[CrossRef]

Colby, S. P.

M. Sauer, J. E. Hurley, S. Ten, J. J. Ferner, and S. P. Colby, “1.6 Tbit/s transmission over 2160 km of field-deployed dispersion-managed fibre without per channel dispersion compensation,” Electron. Lett.39(9), 728–730 (2003).
[CrossRef]

Dumon, P.

Eggleton, B. J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Fauchet, P. M.

Fazal, I.

Fejer, M. M.

Ferner, J. J.

M. Sauer, J. E. Hurley, S. Ten, J. J. Ferner, and S. P. Colby, “1.6 Tbit/s transmission over 2160 km of field-deployed dispersion-managed fibre without per channel dispersion compensation,” Electron. Lett.39(9), 728–730 (2003).
[CrossRef]

Fujimura, M.

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett.12(6), 654–656 (2000).
[CrossRef]

Fung, R. W. L.

R. W. L. Fung, H. K. Y. Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett.19(22), 1846–1848 (2007).
[CrossRef]

Galili,

L. K. Oxenlowe, M. Hua Ji, Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012).
[CrossRef]

Gnauck, A. H.

Goldhar, J.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Grover, R.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Grundkötter, W.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett.15(7), 978–980 (2003).
[CrossRef]

Hao Hu, H. C. H.

L. K. Oxenlowe, M. Hua Ji, Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012).
[CrossRef]

Hirano, A.

Ho, P.-T.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Hua Ji, M.

L. K. Oxenlowe, M. Hua Ji, Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012).
[CrossRef]

Huang, D.

Huang, H.

Hurley, J. E.

M. Sauer, J. E. Hurley, S. Ten, J. J. Ferner, and S. P. Colby, “1.6 Tbit/s transmission over 2160 km of field-deployed dispersion-managed fibre without per channel dispersion compensation,” Electron. Lett.39(9), 728–730 (2003).
[CrossRef]

Hvam, A. T.

L. K. Oxenlowe, M. Hua Ji, Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012).
[CrossRef]

Ibrahim, T. A.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Ishizuki, H.

T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett.13(11), 1203–1205 (2001).
[CrossRef]

Jeppesen, P.

L. K. Oxenlowe, M. Hua Ji, Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012).
[CrossRef]

Johnson, F. G.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Kataoka, T.

Kawanishi, T.

Kazovsky, L. G.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8(3), 560–568 (2002).
[CrossRef]

Kumar, S.

Kuwahara, S.

Langrock, C.

Lee, J. H.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett.15(7), 978–980 (2003).
[CrossRef]

Lee, Y. L.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett.15(7), 978–980 (2003).
[CrossRef]

Li, T.

Liang, T. K.

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Luo, C.

J. Wang, J. Sun, C. Luo, and Q. Sun, “Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide,” Appl. Phys. B83(4), 543–548 (2006).
[CrossRef]

Luther-Davies, B.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Madden, S. J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Marhic, M. E.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8(3), 560–568 (2002).
[CrossRef]

McGeehan, J. E.

Min, Y. H.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett.15(7), 978–980 (2003).
[CrossRef]

Minhao Pu,

L. K. Oxenlowe, M. Hua Ji, Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012).
[CrossRef]

Miyamoto, Y.

Mulvad, K.

L. K. Oxenlowe, M. Hua Ji, Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012).
[CrossRef]

Nuccio, S. R.

A. Bogoni, X. Wu, S. R. Nuccio, J. Wang, Z. Bakhtiari, and A. E. Willner, “Photonic 640-Gb/s reconfigurable OTDM add-drop multiplexer based on pump depletion in a single PPLN waveguide,” IEEE J. Sel. Top. Quantum Electron.18(2), 709–716 (2012).
[CrossRef]

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron.17(2), 320–332 (2011).
[CrossRef]

J. Wang, Z. Bakhtiari, S. R. Nuccio, O. F. Yilmaz, X. Wu, and A. E. Willner, “Phase-transparent optical data exchange of 40 Gbit/s differential phase-shift keying signals,” Opt. Lett.35(17), 2979–2981 (2010).
[CrossRef] [PubMed]

J. Wang, S. R. Nuccio, X. Wu, O. F. Yilmaz, L. Zhang, I. Fazal, J. Y. Yang, Y. Yue, and A. E. Willner, “40 Gbit/s optical data exchange between wavelength-division-multiplexed channels using a periodically poled lithium niobate waveguide,” Opt. Lett.35(7), 1067–1069 (2010).
[CrossRef] [PubMed]

Nunes, L. R.

Oxenlowe, L. K.

L. K. Oxenlowe, M. Hua Ji, Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012).
[CrossRef]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Pant, R.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Parameswaran, K. R.

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett.12(6), 654–656 (2000).
[CrossRef]

Pelusi, M. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Priem, G. R. A.

Quiring, V.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett.15(7), 978–980 (2003).
[CrossRef]

Radic, S.

S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron.18(2), 670–680 (2012).
[CrossRef]

Ritter, K.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Sakamoto, T.

Sasagawa, K.

Sauer, M.

M. Sauer, J. E. Hurley, S. Ten, J. J. Ferner, and S. P. Colby, “1.6 Tbit/s transmission over 2160 km of field-deployed dispersion-managed fibre without per channel dispersion compensation,” Electron. Lett.39(9), 728–730 (2003).
[CrossRef]

Schr, J.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Shen, M.

M. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signals,” IEEE Photon. Technol. Lett.21(21), 1591–1593 (2009).
[CrossRef]

Sohler, W.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett.15(7), 978–980 (2003).
[CrossRef]

Stubkjaer, K. E.

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical signal processing,” IEEE J. Sel. Top. Quantum Electron.6(6), 1428–1435 (2000).
[CrossRef]

Suche, H.

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett.15(7), 978–980 (2003).
[CrossRef]

Suhara, T.

T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett.13(11), 1203–1205 (2001).
[CrossRef]

Sun, J.

Sun, Q.

Sun, Q. Z.

J. Wang and Q. Z. Sun, “Theoretical analysis of power swapping in quadratic nonlinear medium,” Appl. Phys. Lett.96(8), 081108 (2010).
[CrossRef]

Tada, Y.

Ten, S.

M. Sauer, J. E. Hurley, S. Ten, J. J. Ferner, and S. P. Colby, “1.6 Tbit/s transmission over 2160 km of field-deployed dispersion-managed fibre without per channel dispersion compensation,” Electron. Lett.39(9), 728–730 (2003).
[CrossRef]

Tkach, R. W.

Tomizawa, M.

Tsang, H. K.

Tsuchiya, M.

Uesaka, K.

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8(3), 560–568 (2002).
[CrossRef]

Van, V.

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

Van Thourhout, D.

Vo, T. D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Wang, D.

Wang, J.

A. Bogoni, X. Wu, S. R. Nuccio, J. Wang, Z. Bakhtiari, and A. E. Willner, “Photonic 640-Gb/s reconfigurable OTDM add-drop multiplexer based on pump depletion in a single PPLN waveguide,” IEEE J. Sel. Top. Quantum Electron.18(2), 709–716 (2012).
[CrossRef]

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron.17(2), 320–332 (2011).
[CrossRef]

J. Wang, H. Huang, X. Wang, J. Y. Yang, and A. E. Willner, “Reconfigurable 2.3-Tbit/s DQPSK simultaneous add/drop, data exchange and equalization using double-pass LCoS and bidirectional HNLF,” Opt. Express19(19), 18246–18252 (2011).
[CrossRef] [PubMed]

J. Wang, S. R. Nuccio, X. Wu, O. F. Yilmaz, L. Zhang, I. Fazal, J. Y. Yang, Y. Yue, and A. E. Willner, “40 Gbit/s optical data exchange between wavelength-division-multiplexed channels using a periodically poled lithium niobate waveguide,” Opt. Lett.35(7), 1067–1069 (2010).
[CrossRef] [PubMed]

J. Wang, Z. Bakhtiari, S. R. Nuccio, O. F. Yilmaz, X. Wu, and A. E. Willner, “Phase-transparent optical data exchange of 40 Gbit/s differential phase-shift keying signals,” Opt. Lett.35(17), 2979–2981 (2010).
[CrossRef] [PubMed]

J. Wang and Q. Z. Sun, “Theoretical analysis of power swapping in quadratic nonlinear medium,” Appl. Phys. Lett.96(8), 081108 (2010).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett.32(16), 2462–2464 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror,” Opt. Lett.32(11), 1477–1479 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, C. Luo, and Q. Sun, “Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide,” Appl. Phys. B83(4), 543–548 (2006).
[CrossRef]

Wang, X.

Willner, A. E.

Wong, K. K. Y.

M. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signals,” IEEE Photon. Technol. Lett.21(21), 1591–1593 (2009).
[CrossRef]

R. W. L. Fung, H. K. Y. Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett.19(22), 1846–1848 (2007).
[CrossRef]

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8(3), 560–568 (2002).
[CrossRef]

Wu, X.

A. Bogoni, X. Wu, S. R. Nuccio, J. Wang, Z. Bakhtiari, and A. E. Willner, “Photonic 640-Gb/s reconfigurable OTDM add-drop multiplexer based on pump depletion in a single PPLN waveguide,” IEEE J. Sel. Top. Quantum Electron.18(2), 709–716 (2012).
[CrossRef]

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron.17(2), 320–332 (2011).
[CrossRef]

J. Wang, Z. Bakhtiari, S. R. Nuccio, O. F. Yilmaz, X. Wu, and A. E. Willner, “Phase-transparent optical data exchange of 40 Gbit/s differential phase-shift keying signals,” Opt. Lett.35(17), 2979–2981 (2010).
[CrossRef] [PubMed]

J. Wang, S. R. Nuccio, X. Wu, O. F. Yilmaz, L. Zhang, I. Fazal, J. Y. Yang, Y. Yue, and A. E. Willner, “40 Gbit/s optical data exchange between wavelength-division-multiplexed channels using a periodically poled lithium niobate waveguide,” Opt. Lett.35(7), 1067–1069 (2010).
[CrossRef] [PubMed]

Xu, X.

M. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signals,” IEEE Photon. Technol. Lett.21(21), 1591–1593 (2009).
[CrossRef]

Yang, J. Y.

Yilmaz, O. F.

Yin, L.

Yonenaga, K.

Yong Choi, D.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Yue, Y.

Yuk, T. I.

M. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signals,” IEEE Photon. Technol. Lett.21(21), 1591–1593 (2009).
[CrossRef]

Yvind, J. M.

L. K. Oxenlowe, M. Hua Ji, Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012).
[CrossRef]

Zhang, J.

Zhang, L.

Zhang, X.

Zhou, M.

Appl. Phys. B (1)

J. Wang, J. Sun, C. Luo, and Q. Sun, “Flexible all-optical wavelength conversions of 1.57-ps pulses exploiting cascaded sum- and difference frequency generation (cSFG/DFG) in a PPLN waveguide,” Appl. Phys. B83(4), 543–548 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

J. Wang and Q. Z. Sun, “Theoretical analysis of power swapping in quadratic nonlinear medium,” Appl. Phys. Lett.96(8), 081108 (2010).
[CrossRef]

Electron. Lett. (1)

M. Sauer, J. E. Hurley, S. Ten, J. J. Ferner, and S. P. Colby, “1.6 Tbit/s transmission over 2160 km of field-deployed dispersion-managed fibre without per channel dispersion compensation,” Electron. Lett.39(9), 728–730 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (6)

A. Bogoni, X. Wu, S. R. Nuccio, J. Wang, Z. Bakhtiari, and A. E. Willner, “Photonic 640-Gb/s reconfigurable OTDM add-drop multiplexer based on pump depletion in a single PPLN waveguide,” IEEE J. Sel. Top. Quantum Electron.18(2), 709–716 (2012).
[CrossRef]

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron.17(2), 320–332 (2011).
[CrossRef]

S. Radic, “Parametric signal processing,” IEEE J. Sel. Top. Quantum Electron.18(2), 670–680 (2012).
[CrossRef]

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical signal processing,” IEEE J. Sel. Top. Quantum Electron.6(6), 1428–1435 (2000).
[CrossRef]

L. K. Oxenlowe, M. Hua Ji, Galili, Minhao Pu, H. C. H. Hao Hu, K. Mulvad, J. M. Yvind, A. T. Hvam, Clausen, and P. Jeppesen, “Silicon photonics for signal processing of Tbit/s serial data signals,” IEEE J. Sel. Top. Quantum Electron.18(2), 996–1005 (2012).
[CrossRef]

K. Uesaka, K. K. Y. Wong, M. E. Marhic, and L. G. Kazovsky, “Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,” IEEE J. Sel. Top. Quantum Electron.8(3), 560–568 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

R. W. L. Fung, H. K. Y. Cheung, and K. K. Y. Wong, “Widely tunable wavelength exchange in anomalous-dispersion regime,” IEEE Photon. Technol. Lett.19(22), 1846–1848 (2007).
[CrossRef]

M. Shen, X. Xu, T. I. Yuk, and K. K. Y. Wong, “Byte-level parametric wavelength exchange for narrow pulsewidth return-to-zero signals,” IEEE Photon. Technol. Lett.21(21), 1591–1593 (2009).
[CrossRef]

V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett.14(1), 74–76 (2002).
[CrossRef]

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett.12(6), 654–656 (2000).
[CrossRef]

T. Suhara and H. Ishizuki, “Integrated QPM sum-frequency generation interferometer device for ultrafast optical switching,” IEEE Photon. Technol. Lett.13(11), 1203–1205 (2001).
[CrossRef]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, “Wavelength- and time-selective all-optical channel dropping in periodically poled Ti:LiNbO3 channel waveguides,” IEEE Photon. Technol. Lett.15(7), 978–980 (2003).
[CrossRef]

J. Lightwave Technol. (3)

Laser Photon. Rev. (1)

B. J. Eggleton, T. D. Vo, R. Pant, J. Schr, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photon. Rev.6(1), 97–114 (2012).
[CrossRef]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (6)

Other (1)

J. Wang, H. Fu, D. Geng, and A. Willner, “All-optical wavelength-/time-selective switching/dropping/swapping for 100-GHz-spaced WDM signals using a periodically poled lithium niobate waveguide,” in European Conference and Exhibition on Optical Communication, OSA Technical Digest (online) (Optical Society of America, 2012), paper Th.1.A.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Concept and principle of wavelength- and time-selective (a) switching, (b) dropping, and (c) swapping.

Fig. 2
Fig. 2

Theoretical results for the depletion spectra of signal under different pump wavelengths of (a) 1570.6 nm, (b) 1569.8 nm, (c) 1569.0 nm, and (d) 1568.2 nm. Insets show enlarged depletion spectra.

Fig. 3
Fig. 3

Theoretical results for parametric depletion and SFG-based optical switching. (a) Depletion spectra under different pump wavelengths. (b) Depleted signal wavelength (peak of depletion) vs. pump wavelength. (c) Bandwidth of depletion spectra (>20 dB) vs. pump wavelength. (d) Signal wavelength (depletion = 0.6 dB) vs. pump wavelength. White areas (depletion > 0.6 dB) between two lines show a narrow bandwidth less than 100 GHz (0.8 nm). Shadow regions (depletion <0.6 dB) outside two lines indicate negligible impacts of parametric depletion and switching on neighboring channels.

Fig. 4
Fig. 4

Measured (a) spectrum, (b)-(e) temporal waveforms, and (f)-(i) eye diagrams for four 40-Gbit/s WDM NRZ signals (S1: 1536.61 nm, S2: 1537.40 nm, S3: 1538.19 nm, S4: 1538.98 nm).

Fig. 5
Fig. 5

Measured (a) spectrum, (b)-(e) temporal waveforms, and (f)-(i) eye diagrams for wavelength-selective switching of S1 (1536.61 nm) with the pump wavelength tuned at 1570.6 nm.

Fig. 6
Fig. 6

Measured (a) spectrum, (b)-(e) temporal waveforms, and (f)-(i) eye diagrams for wavelength-selective switching of S2 (1537.40 nm) with the pump wavelength tuned at 1569.8 nm.

Fig. 7
Fig. 7

Measured (a) spectrum, (b)-(e) temporal waveforms, and (f)-(i) eye diagrams for wavelength-selective switching of S3 (1538.19 nm) with the pump wavelength tuned at 1569.0 nm.

Fig. 8
Fig. 8

Measured (a) spectrum, (b)-(e) temporal waveforms, and (f)-(i) eye diagrams for wavelength-selective switching of S4 (1538.98 nm) with the pump wavelength tuned at 1568.2 nm.

Fig. 9
Fig. 9

Measured (a)-(f) temporal waveforms and (g)-(k) eye diagrams for the time-selective switching of S4 (1538.98 nm) with the pump wavelength tuned at 1568.2 nm.

Fig. 10
Fig. 10

Measured (a)-(f) temporal waveforms and (g)-(k) eye diagrams for the time-selective switching of S2 (1537.40 nm) with the pump wavelength tuned at 1569.8 nm.

Fig. 11
Fig. 11

Measured BER curves for wavelength- and time-selective switching. (a)-(c) correspond to Figs. 5-8, 9, 10.

Fig. 12
Fig. 12

Measured results for wavelength- and time-selective dropping. (a)(b) Spectra. (c) Conversion efficiency. (d)-(i) Temporal waveforms. (j)-(n) Eye diagrams. (d)-(n) Wavelength- and time-selective switching and dropping of S4 (1538.98 nm) with the pump1 and pump2 wavelengths tuned at 1568.2 and 1557.6 nm and the idler generated at 1548.9 nm.

Fig. 13
Fig. 13

Measured temporal waveforms for wavelength-selective switching and dropping. (a)(b) S1 (1536.61 nm). (c)(d) S2 (1537.40 nm). (e)(f) S3 (1538.19 nm). The pump1 wavelength is tuned to be 1570.6 nm in (a)(b), 1569.8 nm in (c)(d), and 1569.0 nm in (e)(f).

Fig. 14
Fig. 14

Measured (a) spectrum, (b)-(e) temporal waveforms, and (f)-(i) eye diagrams for optical swapping between two 100-GHz-spaced signals (SA: 1542.54 nm, SB: 1543.33 nm).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

A S z + β 1S A S t + i 2 β 2S 2 A S t 2 + 1 2 α S A S =i ω S κ SFG A P * A SF exp(iΔ k SFG z)
A P z + β 1P A P t + i 2 β 2P 2 A P t 2 + 1 2 α P A P =i ω P κ SFG A S * A SF exp(iΔ k SFG z)
A SF z + β 1SF A SF t + i 2 β 2SF 2 A SF t 2 + 1 2 α SF A SF =i ω SF κ SFG A S A P exp(iΔ k SFG z)
β 1j = k/ω | ω= ω j =( n j λ j dn/dλ | λ= λ j )/c, β 2j = 2 k/ ω 2 | ω= ω j = λ j 3 /(2π c 2 ) d 2 n/d λ 2 | λ= λ j ,j=S,P,SF
κ SFG = d eff 2 μ 0 /(c n S n P n SF A eff ) , Δ κ SFG =2π( n SF / λ SF n S / λ S n P / λ P 1/Λ)
A S (z)= A S (0)F(Δ k SFG ,z)
F(Δ k SFG ,z)=exp(iΔ k SFG z/2)[cos( g 1 z)i g 2 sin( g 1 z)]
g 1 =1/2 Δ k SFG 2 +4 ω S ω SF k SFG 2 | A P (0) | 2 , g 2 = Δ k SFG 2 /(Δ k SFG 2 +4 ω S ω SF k SFG 2 | A P (0) | 2 )

Metrics