Abstract

This paper demonstrates experimentally the tight focusing of a 3X3 array of radially polarized diffraction orders, and the coupling of this array of spots to surface plasmon polaritons (SPPs), propagating on a uniform metal film, and effectively generating a periodic structure of plasmonic sources by the use of structured illumination pattern, rather than by structuring the plasmonic sample. Using near field measurements, we observed coherent interactions between these multiple plasmonic sources as they propagate towards each other. The demonstrated setup exploits the previously demonstrated advantages of radially polarized light in coupling to SPPs and in generating sharper plasmonic hot spots and expends its use towards mitigating parallel processing challenges. The experimental results are in good agreement with the theory, showing interference fringes having periodicity compatible with the plasmonic SPP wavelength. The demonstrated approach of generating array of hot spots on flat metallic films is expected to play a role in variety of applications, e.g. microscopy, lithography, sensing and optical memories.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Editorial, “Surface plasmon resurrection,” Nat. Photonics6, 707 (2012).
  2. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010).
    [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  4. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
    [CrossRef] [PubMed]
  5. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  6. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009).
    [CrossRef]
  7. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326(5956), 1074–1077 (2009).
    [CrossRef] [PubMed]
  8. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  9. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
    [CrossRef]
  10. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plasmonic Lens,” Nano Lett.5(9), 1726–1729 (2005).
    [CrossRef] [PubMed]
  11. A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express17(2), 924–932 (2009).
    [CrossRef] [PubMed]
  12. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett.9(5), 2139–2143 (2009).
    [CrossRef] [PubMed]
  13. W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett.34(6), 722–724 (2009).
    [CrossRef] [PubMed]
  14. P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic Resonance Effects for Tandem Receiving-Transmitting Nanoantennas,” Nano Lett.11(1), 220–224 (2011).
    [CrossRef] [PubMed]
  15. A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
    [CrossRef] [PubMed]
  16. B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale Mode Selector in Silicon Waveguide for on Chip Nanofocusing Applications,” Nano Lett.9(10), 3381–3386 (2009).
    [CrossRef] [PubMed]
  17. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
    [CrossRef] [PubMed]
  18. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
    [CrossRef] [PubMed]
  19. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
    [CrossRef] [PubMed]
  20. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
    [CrossRef] [PubMed]
  21. A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett.32(17), 2535–2537 (2007).
    [CrossRef] [PubMed]
  22. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,” Nano Lett.9(12), 4320–4325 (2009).
    [CrossRef] [PubMed]
  23. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009).
    [CrossRef]
  24. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett.31(11), 1726–1728 (2006).
    [CrossRef] [PubMed]
  25. A. Yanai and U. Levy, “The role of short and long range surface plasmons for plasmonic focusing applications,” Opt. Express17(16), 14270–14280 (2009).
    [CrossRef] [PubMed]
  26. L. Novotny and B. Hecht, “Principals of Nano-Optics,” Cambridge University Press, Cambridge, 2007.
  27. M. Born and E. Wolf, “Fundamentals of optics,” (Pergamon, 1959).
  28. J. W. Goodman, “Introduction to Fourier Optics,” (McGraw-Hill, 1996).
  29. H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun.3(5), 312–315 (1971).
    [CrossRef]
  30. C. Zhou and L. Liu, “Numerical study of Dammann array illuminators,” Appl. Opt.34(26), 5961–5969 (1995).
    [CrossRef] [PubMed]
  31. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-Field Analysis of Surface Waves Launched at Nanoslit Apertures,” Phys. Rev. Lett.98(15), 153902 (2007).
    [CrossRef] [PubMed]
  32. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett.94(5), 053901 (2005).
    [CrossRef] [PubMed]

2012

“Editorial, “Surface plasmon resurrection,” Nat. Photonics6, 707 (2012).

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

2011

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic Resonance Effects for Tandem Receiving-Transmitting Nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
[CrossRef] [PubMed]

2010

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

2009

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett.9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale Mode Selector in Silicon Waveguide for on Chip Nanofocusing Applications,” Nano Lett.9(10), 3381–3386 (2009).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,” Nano Lett.9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express17(2), 924–932 (2009).
[CrossRef] [PubMed]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon.1(1), 1–57 (2009).
[CrossRef]

W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett.34(6), 722–724 (2009).
[CrossRef] [PubMed]

A. Yanai and U. Levy, “The role of short and long range surface plasmons for plasmonic focusing applications,” Opt. Express17(16), 14270–14280 (2009).
[CrossRef] [PubMed]

2007

A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny, “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett.32(17), 2535–2537 (2007).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-Field Analysis of Surface Waves Launched at Nanoslit Apertures,” Phys. Rev. Lett.98(15), 153902 (2007).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

2006

2005

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plasmonic Lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett.94(5), 053901 (2005).
[CrossRef] [PubMed]

2004

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

1995

1971

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun.3(5), 312–315 (1971).
[CrossRef]

Abeysinghe, D. C.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,” Nano Lett.9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Aigouy, L.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-Field Analysis of Surface Waves Launched at Nanoslit Apertures,” Phys. Rev. Lett.98(15), 153902 (2007).
[CrossRef] [PubMed]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Alkemade, P. F. A.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett.94(5), 053901 (2005).
[CrossRef] [PubMed]

Andreani, L. C.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Bek, A.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Berkovitch, N.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic Resonance Effects for Tandem Receiving-Transmitting Nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Blok, H.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett.94(5), 053901 (2005).
[CrossRef] [PubMed]

Bouhelier, A.

Boyd, R. W.

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010).
[CrossRef] [PubMed]

Bruyant, A.

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Candeloro, P.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Chen, W.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,” Nano Lett.9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett.34(6), 722–724 (2009).
[CrossRef] [PubMed]

Colas des Francs, G.

Dammann, H.

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun.3(5), 312–315 (1971).
[CrossRef]

Das, G.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

De Angelis, F.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Dereux, A.

Desiatov, B.

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale Mode Selector in Silicon Waveguide for on Chip Nanofocusing Applications,” Nano Lett.9(10), 3381–3386 (2009).
[CrossRef] [PubMed]

Di Fabrizio, E.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Dubois, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett.94(5), 053901 (2005).
[CrossRef] [PubMed]

Eliel, E. R.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett.94(5), 053901 (2005).
[CrossRef] [PubMed]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Galli, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Gauthier, D. J.

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

Gbur, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett.94(5), 053901 (2005).
[CrossRef] [PubMed]

Ginzburg, P.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic Resonance Effects for Tandem Receiving-Transmitting Nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Gortler, K.

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun.3(5), 312–315 (1971).
[CrossRef]

Goykhman, I.

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale Mode Selector in Silicon Waveguide for on Chip Nanofocusing Applications,” Nano Lett.9(10), 3381–3386 (2009).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Hooft, G. W.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett.94(5), 053901 (2005).
[CrossRef] [PubMed]

Huang, C.

Hugonin, J. P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-Field Analysis of Surface Waves Launched at Nanoslit Apertures,” Phys. Rev. Lett.98(15), 153902 (2007).
[CrossRef] [PubMed]

Ignatovich, F.

Inouye, Y.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

Julié, G.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-Field Analysis of Surface Waves Launched at Nanoslit Apertures,” Phys. Rev. Lett.98(15), 153902 (2007).
[CrossRef] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Kawata, S.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

Kuipers, L.

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

Kuzmin, N.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett.94(5), 053901 (2005).
[CrossRef] [PubMed]

Lalanne, P.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-Field Analysis of Surface Waves Launched at Nanoslit Apertures,” Phys. Rev. Lett.98(15), 153902 (2007).
[CrossRef] [PubMed]

Lazzarino, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Lenstra, D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett.94(5), 053901 (2005).
[CrossRef] [PubMed]

Lerman, G. M.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic Resonance Effects for Tandem Receiving-Transmitting Nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett.9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Levy, U.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic Resonance Effects for Tandem Receiving-Transmitting Nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

A. Yanai and U. Levy, “The role of short and long range surface plasmons for plasmonic focusing applications,” Opt. Express17(16), 14270–14280 (2009).
[CrossRef] [PubMed]

A. Yanai and U. Levy, “Plasmonic focusing with a coaxial structure illuminated by radially polarized light,” Opt. Express17(2), 924–932 (2009).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett.9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale Mode Selector in Silicon Waveguide for on Chip Nanofocusing Applications,” Nano Lett.9(10), 3381–3386 (2009).
[CrossRef] [PubMed]

Liberale, C.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Liu, L.

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plasmonic Lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Maksymov, I.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Mathet, V.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-Field Analysis of Surface Waves Launched at Nanoslit Apertures,” Phys. Rev. Lett.98(15), 153902 (2007).
[CrossRef] [PubMed]

Mortier, M.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-Field Analysis of Surface Waves Launched at Nanoslit Apertures,” Phys. Rev. Lett.98(15), 153902 (2007).
[CrossRef] [PubMed]

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Nelson, R. L.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,” Nano Lett.9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Nevet, A.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic Resonance Effects for Tandem Receiving-Transmitting Nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

Normatov, A.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic Resonance Effects for Tandem Receiving-Transmitting Nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Novotny, L.

Orenstein, M.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic Resonance Effects for Tandem Receiving-Transmitting Nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Patrini, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plasmonic Lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Polman, A.

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

Raschke, M. B.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Schouten, H. F.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett.94(5), 053901 (2005).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Shalaev, V. M.

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010).
[CrossRef] [PubMed]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plasmonic Lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plasmonic Lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express19(22), 22029–22106 (2011).
[CrossRef] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plasmonic Lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Verhagen, E.

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

Verma, P.

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

Visser, T. D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett.94(5), 053901 (2005).
[CrossRef] [PubMed]

Weeber, J.-C.

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Wiederrecht, G. P.

Yanai, A.

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Zhan, Q.

Zhang, X.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plasmonic Lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

Zhou, C.

Adv. Opt. Photon.

Appl. Opt.

Nano Lett.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing Surface Plasmons with a Plasmonic Lens,” Nano Lett.5(9), 1726–1729 (2005).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light,” Nano Lett.9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic Resonance Effects for Tandem Receiving-Transmitting Nanoantennas,” Nano Lett.11(1), 220–224 (2011).
[CrossRef] [PubMed]

B. Desiatov, I. Goykhman, and U. Levy, “Nanoscale Mode Selector in Silicon Waveguide for on Chip Nanofocusing Applications,” Nano Lett.9(10), 3381–3386 (2009).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,” Nano Lett.9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Nat. Mater.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Nat. Photonics

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

“Editorial, “Surface plasmon resurrection,” Nat. Photonics6, 707 (2012).

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics3(7), 388–394 (2009).
[CrossRef]

Opt. Commun.

H. Dammann and K. Gortler, “High-efficiency in-line multiple imaging by means of multiple phase holograms,” Opt. Commun.3(5), 312–315 (1971).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-Field Analysis of Surface Waves Launched at Nanoslit Apertures,” Phys. Rev. Lett.98(15), 153902 (2007).
[CrossRef] [PubMed]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-Assisted Two-Slit Transmission: Young’s Experiment Revisited,” Phys. Rev. Lett.94(5), 053901 (2005).
[CrossRef] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

Science

R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science326(5956), 1074–1077 (2009).
[CrossRef] [PubMed]

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other

L. Novotny and B. Hecht, “Principals of Nano-Optics,” Cambridge University Press, Cambridge, 2007.

M. Born and E. Wolf, “Fundamentals of optics,” (Pergamon, 1959).

J. W. Goodman, “Introduction to Fourier Optics,” (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Illustration of SPP coupling scheme: Radially polarized laser beams are focused by a high NA oil-immersion microscope objective onto a microscope cover slip coated with a 50 nm thick Gold (Au) film. SPP's are coupled to the Gold-Air interface. (b) Experimental setup: A laser beam (a) propagates through a radial polarization converter (b). The center of the beam is blocked by metallic disk (c), the beam is expanded by an inverted telescope (d) and diffracted by a Dammann phase grating (e). The diffraction orders propagate towards a 100X, NA = 1.4 microscope objective (f), focused on to the thin metal film, and measured by an aperture NSOM (g).

Fig. 2
Fig. 2

Calculated intensity of the transverse plasmonic electric field showing the interaction of 9 radially polarized plasmonic sources propagating on a gold-air interface. a) Normal intensity color scale. b) Logarithmic color scale for better visibility of details.

Fig. 3
Fig. 3

(a) Far-field diffraction image of a radially polarized beam after passing through the Dammann grating. (b) Same as (a) but with a linear polarizer (aligned to block the vertical polarization component) placed in-front of the CCD.

Fig. 4
Fig. 4

(a) An NSOM scan of a single plasmonic focal spot. (b) Dashed red line - a cross section of the measured result presented in Fig. 4(a) along the white dashed line. Solid green line – the theoretical intensity pattern expected from Eq. (2).

Fig. 5
Fig. 5

(a) NSOM scan of the metal film illuminated by a 3X3 spot array in normal intensity scale. The dashed line provides a mark for the cross section presented in the next Figure. (b) Same as (a) but in logarithmic scale for better visibility of the interference fringes. (c) Simulation results showing the calculated intensity of the transverse electric field component. A polarizer was applied to transmit only the polarization direction aligned with the diagonal from lower left to the upper right of the Figure, taking into account the polarization properties of our bended NSOM probes. (d) Same as (c) but in logarithmic scale for better visibility of the interference fringes.

Fig. 6
Fig. 6

Cross-sections extracted from the NSOM scan of Fig. 5(a) (dashed red line) and from the simulation results of Fig. 5(c) (solid green line) along the white dashed line marked in Fig. 5(a). Inset – Zoom in on the central region.

Fig. 7
Fig. 7

Calculated intensity of the transverse plasmonic electric field showing the interaction of 9 radially polarized plasmonic sources propagating on a gold-air interface In each of the panels (a-f) a different loss coefficient was used: 0, 0.05, 0.1, 0.2, 0.5, 1 μm−1 . The interactions between plasmonic focal spots are suppressed with the increase in loss coefficient. Here we assumed equal amplitude for all 9 plasmonic sources.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E z ^ ( r,z=0 ) AJ 0 ( βr )
E r ^ ( r,z=0 )iA k D β J 1 ( βr )

Metrics