Abstract

We demonstrate the 40-Gb/s upstream transmission in the 60-km reach wavelength-division-multiplexed passive optical network (WDM PON) implemented by using directly modulated reflective semiconductor optical amplifiers (RSOAs) and self-homodyne receivers. It is difficult to operate the RSOA at 40 Gb/s due to its limited modulation bandwidth. To overcome this problem and generate 40-Gb/s upstream signal, we utilize the quadrature phase-shift-keying (QPSK) format and the offset polarization-division-multiplexing (PDM) technique. For this purpose, we install two RSOAs at each ONU and provide the seed light for these RSOAs by polarization-multiplexing the outputs of two lasers with a small frequency offset (20 GHz). This frequency offset is used to separate the polarization-multiplexed seed light by using a simple delay-line interferometer (DLI), instead of the polarization-beam splitter and polarization controller, at the ONU. The separated seed light is modulated by each RSOA at 20 Gb/s in the QPSK format, and then combined again by the DLI before sent back to the central office (CO). The results show that this WDM PON can support the transmission of 40-Gb/s channels spaced at 50 GHz over 60 km without using any remote optical amplifiers.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40-Gb/s wavelength-division-multiplexing passive optical network with centralized lightwave source,” in Proc. of Optical Fiber Communication 2008, paper OTuH8.
  2. Y. C. Chung, “Recent advancement in WDM PON technology,” in Proc. of European Conference on Optical Communications 2011, Paper Th.11.C.4.
  3. K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett.23(8), 495–497 (2011).
    [CrossRef]
  4. Q. Guo and A. V. Tran, “40 Gb/s upstream transmission in WDM-PON using Reflective Electro-Absorption Modulator and noise predictive Maximum Likelihood Equalization,” in Proc. of Optical Fiber Communication 2012, paper OW3B.
  5. K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly-modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
    [CrossRef]
  6. S. P. Jung, Y. Takushima, and Y. C. Chung, “Generation of 5-Gbps QPSK signal using directly modulated RSOA for 100-km coherent WDM PON,” in Proc. of Optical Fiber Communication 2011, paper OTuB3.
  7. K. Y. Cho, U. H. Hong, S. P. Jung, Y. Takushima, A. Agata, T. Sano, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach 10-Gb/s RSOA-based WDM PON employing QPSK signal and coherent receiver,” Opt. Express20(14), 15353–15358 (2012).
    [CrossRef] [PubMed]
  8. H. Zhang, J.-X. Cai, C. R. Davidson, B. Anderson, O. Sinkin, M. Nissov, and A. N. Pilipetskii, “Offset PDM RZ-DPSK for 40 Gb/s long-haul transmission,” in Proc. of Optical Fiber Communication 2009, paper OThR2.
  9. K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol.29(4), 456–462 (2011).
    [CrossRef]
  10. S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation,” IEEE Photon. Technol. Lett.18(9), 1016–1018 (2006).
    [CrossRef]
  11. K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron.12(4), 563–570 (2006).
    [CrossRef]

2012 (2)

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly-modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
[CrossRef]

K. Y. Cho, U. H. Hong, S. P. Jung, Y. Takushima, A. Agata, T. Sano, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach 10-Gb/s RSOA-based WDM PON employing QPSK signal and coherent receiver,” Opt. Express20(14), 15353–15358 (2012).
[CrossRef] [PubMed]

2011 (2)

K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol.29(4), 456–462 (2011).
[CrossRef]

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett.23(8), 495–497 (2011).
[CrossRef]

2006 (2)

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation,” IEEE Photon. Technol. Lett.18(9), 1016–1018 (2006).
[CrossRef]

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron.12(4), 563–570 (2006).
[CrossRef]

Agata, A.

Chang, J. H.

Cho, K. Y.

K. Y. Cho, U. H. Hong, S. P. Jung, Y. Takushima, A. Agata, T. Sano, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach 10-Gb/s RSOA-based WDM PON employing QPSK signal and coherent receiver,” Opt. Express20(14), 15353–15358 (2012).
[CrossRef] [PubMed]

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly-modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
[CrossRef]

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett.23(8), 495–497 (2011).
[CrossRef]

K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol.29(4), 456–462 (2011).
[CrossRef]

Choi, B. S.

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett.23(8), 495–497 (2011).
[CrossRef]

Chung, Y. C.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly-modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
[CrossRef]

K. Y. Cho, U. H. Hong, S. P. Jung, Y. Takushima, A. Agata, T. Sano, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach 10-Gb/s RSOA-based WDM PON employing QPSK signal and coherent receiver,” Opt. Express20(14), 15353–15358 (2012).
[CrossRef] [PubMed]

K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol.29(4), 456–462 (2011).
[CrossRef]

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett.23(8), 495–497 (2011).
[CrossRef]

Hong, U. H.

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly-modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
[CrossRef]

K. Y. Cho, U. H. Hong, S. P. Jung, Y. Takushima, A. Agata, T. Sano, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach 10-Gb/s RSOA-based WDM PON employing QPSK signal and coherent receiver,” Opt. Express20(14), 15353–15358 (2012).
[CrossRef] [PubMed]

Horiuchi, Y.

Jung, S. P.

Katoh, K.

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation,” IEEE Photon. Technol. Lett.18(9), 1016–1018 (2006).
[CrossRef]

Kikuchi, K.

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation,” IEEE Photon. Technol. Lett.18(9), 1016–1018 (2006).
[CrossRef]

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron.12(4), 563–570 (2006).
[CrossRef]

Sano, T.

Suzuki, M.

Takushima, Y.

K. Y. Cho, U. H. Hong, S. P. Jung, Y. Takushima, A. Agata, T. Sano, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach 10-Gb/s RSOA-based WDM PON employing QPSK signal and coherent receiver,” Opt. Express20(14), 15353–15358 (2012).
[CrossRef] [PubMed]

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly-modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
[CrossRef]

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett.23(8), 495–497 (2011).
[CrossRef]

K. Y. Cho, K. Tanaka, T. Sano, S. P. Jung, J. H. Chang, Y. Takushima, A. Agata, Y. Horiuchi, M. Suzuki, and Y. C. Chung, “Long-reach coherent WDM PON employing self-polarization-stabilization technique,” J. Lightwave Technol.29(4), 456–462 (2011).
[CrossRef]

Tanaka, K.

Tsukamoto, S.

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation,” IEEE Photon. Technol. Lett.18(9), 1016–1018 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron.12(4), 563–570 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Tsukamoto, K. Katoh, and K. Kikuchi, “Unrepeated transmission of 20-Gb/s optical quadrature phase-shift-keying signal over 200-km standard single-mode fiber based on digital processing of homodyne-detected signal for group-velocity dispersion compensation,” IEEE Photon. Technol. Lett.18(9), 1016–1018 (2006).
[CrossRef]

K. Y. Cho, B. S. Choi, Y. Takushima, and Y. C. Chung, “25.78-Gb/s operation of RSOA for next-generation optical access networks,” IEEE Photon. Technol. Lett.23(8), 495–497 (2011).
[CrossRef]

K. Y. Cho, U. H. Hong, Y. Takushima, A. Agata, T. Sano, M. Suzuki, and Y. C. Chung, “103-Gb/s long-reach WDM PON implemented by using directly-modulated RSOAs,” IEEE Photon. Technol. Lett.24(3), 209–211 (2012).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Other (5)

H. Zhang, J.-X. Cai, C. R. Davidson, B. Anderson, O. Sinkin, M. Nissov, and A. N. Pilipetskii, “Offset PDM RZ-DPSK for 40 Gb/s long-haul transmission,” in Proc. of Optical Fiber Communication 2009, paper OThR2.

S. P. Jung, Y. Takushima, and Y. C. Chung, “Generation of 5-Gbps QPSK signal using directly modulated RSOA for 100-km coherent WDM PON,” in Proc. of Optical Fiber Communication 2011, paper OTuB3.

Q. Guo and A. V. Tran, “40 Gb/s upstream transmission in WDM-PON using Reflective Electro-Absorption Modulator and noise predictive Maximum Likelihood Equalization,” in Proc. of Optical Fiber Communication 2012, paper OW3B.

J. Yu, Z. Jia, P. N. Ji, and T. Wang, “40-Gb/s wavelength-division-multiplexing passive optical network with centralized lightwave source,” in Proc. of Optical Fiber Communication 2008, paper OTuH8.

Y. C. Chung, “Recent advancement in WDM PON technology,” in Proc. of European Conference on Optical Communications 2011, Paper Th.11.C.4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup used to demonstrate the 40-Gb/s upstream transmission in the proposed long-reach WDM PON using the offset PDM technique. (AWG: arrayed-waveguide grating, DLI: delay-line interferometer, FR: Faraday rotator, PPG: pulse pattern generator)

Fig. 2
Fig. 2

Optical spectra of (a) two seed light measured in front of the DLI (b) separated output after DLI (c) the combined upstream signals measured after the DLI after the modulation by RSOAs, and (d) the separated upstream signal by the PBS measured in front of the coherent receiver.

Fig. 3
Fig. 3

Receiver sensitivities of the upstream signal measured by using the (a) receiver 1and (b) receiver 2 in Fig. 1.

Metrics