Abstract

This paper presents a comprehensive computational analysis of the spectral optical response of epithelial tissues labeled with gold nanoparticles. Monte Carlo modeling is employed to simulate nanoparticle-induced changes in reflectance signals and to assess whether labeling can generate sufficient exogenous contrast that can better pinpoint precancer progression. Simulation results suggest that the observed contrast profile is highly dependent on a series of factors including the labeling scheme, optical sensor geometry, and wavelength. It is evident, however, that selection of an optimal labeling and sensing strategy can lead to a significant enhancement of the inherent positive or negative contrast and can improve the diagnostic potential of optical measurements.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Cai and X. Chen, “Nanoplatforms for targeted molecular imaging in living subjects,” Small3(11), 1840–1854 (2007).
    [CrossRef] [PubMed]
  2. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res.63(9), 1999–2004 (2003).
    [PubMed]
  3. C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett.30(9), 1012–1014 (2005).
    [CrossRef] [PubMed]
  4. J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007).
    [CrossRef] [PubMed]
  5. A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev.3(1-2), 146–158 (2009).
    [CrossRef]
  6. A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond)7(3), 429–445 (2012).
    [CrossRef] [PubMed]
  7. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  8. J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem.262(2), 137–156 (1998).
    [CrossRef] [PubMed]
  9. J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem.262(2), 157–176 (1998).
    [CrossRef] [PubMed]
  10. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  11. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  12. Y. Hu, R. C. Fleming, and R. A. Drezek, “Optical properties of gold-silica-gold multilayer nanoshells,” Opt. Express16(24), 19579–19591 (2008).
    [CrossRef] [PubMed]
  13. A. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Correlated structure and optical property studies of plasmonic nanoparticles,” J. Phys. Chem. C115(19), 9291–9305 (2011).
    [CrossRef]
  14. N. Nitin, D. J. Javier, D. M. Roblyer, and R. Richards-Kortum, “Widefield and high-resolution reflectance imaging of gold and silver nanospheres,” J. Biomed. Opt.12(5), 051505 (2007).
    [CrossRef] [PubMed]
  15. R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007).
    [CrossRef]
  16. A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J. Biomed. Opt.10(6), 064035 (2005).
    [CrossRef] [PubMed]
  17. E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
    [CrossRef] [PubMed]
  18. M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt.14(2), 021017 (2009).
    [CrossRef] [PubMed]
  19. C. Cihan and D. Arifler, “Influence of phase function on modeled optical response of nanoparticle-labeled epithelial tissues,” J. Biomed. Opt.16(8), 085002 (2011).
    [CrossRef] [PubMed]
  20. J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20(1), 119–131 (2009).
    [CrossRef] [PubMed]
  21. D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006).
    [CrossRef] [PubMed]
  22. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett.21(16), 1310–1312 (1996).
    [CrossRef] [PubMed]
  23. C. Kortun, Y. R. Hijazi, and D. Arifler, “Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer,” J. Biomed. Opt.13(3), 034014 (2008).
    [CrossRef] [PubMed]
  24. J. S. Sanfilippo, S. Miseljic, A. R. Yang, D. L. Doering, R. M. Shaheen, and J. L. Wittliff, “Quantitative analyses of epidermal growth factor receptors, HER-2/neu oncoprotein and cathepsin D in nonmalignant and malignant uteri,” Cancer77(4), 710–716 (1996).
    [CrossRef] [PubMed]
  25. M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol.192(4), 1021–1028 (2009).
    [CrossRef] [PubMed]
  26. K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt.16(11), 116003 (2011).
    [CrossRef] [PubMed]
  27. J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett.9(10), 3612–3618 (2009).
    [CrossRef] [PubMed]
  28. M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano5(11), 8532–8540 (2011).
    [CrossRef] [PubMed]

2012 (1)

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond)7(3), 429–445 (2012).
[CrossRef] [PubMed]

2011 (4)

A. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Correlated structure and optical property studies of plasmonic nanoparticles,” J. Phys. Chem. C115(19), 9291–9305 (2011).
[CrossRef]

C. Cihan and D. Arifler, “Influence of phase function on modeled optical response of nanoparticle-labeled epithelial tissues,” J. Biomed. Opt.16(8), 085002 (2011).
[CrossRef] [PubMed]

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt.16(11), 116003 (2011).
[CrossRef] [PubMed]

M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

2009 (5)

M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol.192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett.9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20(1), 119–131 (2009).
[CrossRef] [PubMed]

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt.14(2), 021017 (2009).
[CrossRef] [PubMed]

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev.3(1-2), 146–158 (2009).
[CrossRef]

2008 (3)

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Y. Hu, R. C. Fleming, and R. A. Drezek, “Optical properties of gold-silica-gold multilayer nanoshells,” Opt. Express16(24), 19579–19591 (2008).
[CrossRef] [PubMed]

C. Kortun, Y. R. Hijazi, and D. Arifler, “Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer,” J. Biomed. Opt.13(3), 034014 (2008).
[CrossRef] [PubMed]

2007 (4)

N. Nitin, D. J. Javier, D. M. Roblyer, and R. Richards-Kortum, “Widefield and high-resolution reflectance imaging of gold and silver nanospheres,” J. Biomed. Opt.12(5), 051505 (2007).
[CrossRef] [PubMed]

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007).
[CrossRef]

W. Cai and X. Chen, “Nanoplatforms for targeted molecular imaging in living subjects,” Small3(11), 1840–1854 (2007).
[CrossRef] [PubMed]

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007).
[CrossRef] [PubMed]

2006 (2)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006).
[CrossRef] [PubMed]

2005 (2)

A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J. Biomed. Opt.10(6), 064035 (2005).
[CrossRef] [PubMed]

C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, and R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett.30(9), 1012–1014 (2005).
[CrossRef] [PubMed]

2003 (2)

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res.63(9), 1999–2004 (2003).
[PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

1998 (2)

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem.262(2), 137–156 (1998).
[CrossRef] [PubMed]

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem.262(2), 157–176 (1998).
[CrossRef] [PubMed]

1996 (2)

J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett.21(16), 1310–1312 (1996).
[CrossRef] [PubMed]

J. S. Sanfilippo, S. Miseljic, A. R. Yang, D. L. Doering, R. M. Shaheen, and J. L. Wittliff, “Quantitative analyses of epidermal growth factor receptors, HER-2/neu oncoprotein and cathepsin D in nonmalignant and malignant uteri,” Cancer77(4), 710–716 (1996).
[CrossRef] [PubMed]

Aaron, J.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett.9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res.63(9), 1999–2004 (2003).
[PubMed]

Agrba, P. D.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Arifler, D.

C. Cihan and D. Arifler, “Influence of phase function on modeled optical response of nanoparticle-labeled epithelial tissues,” J. Biomed. Opt.16(8), 085002 (2011).
[CrossRef] [PubMed]

C. Kortun, Y. R. Hijazi, and D. Arifler, “Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer,” J. Biomed. Opt.13(3), 034014 (2008).
[CrossRef] [PubMed]

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006).
[CrossRef] [PubMed]

Balalaeva, I. V.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Bingham, J. M.

A. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Correlated structure and optical property studies of plasmonic nanoparticles,” J. Phys. Chem. C115(19), 9291–9305 (2011).
[CrossRef]

Brown, J. Q.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20(1), 119–131 (2009).
[CrossRef] [PubMed]

Bugrova, M.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt.14(2), 021017 (2009).
[CrossRef] [PubMed]

Bugrova, M. L.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Cai, W.

W. Cai and X. Chen, “Nanoplatforms for targeted molecular imaging in living subjects,” Small3(11), 1840–1854 (2007).
[CrossRef] [PubMed]

Chang, E.

Chen, X.

W. Cai and X. Chen, “Nanoplatforms for targeted molecular imaging in living subjects,” Small3(11), 1840–1854 (2007).
[CrossRef] [PubMed]

Chilkoti, A.

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt.16(11), 116003 (2011).
[CrossRef] [PubMed]

Cho, S. H.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007).
[CrossRef]

Cihan, C.

C. Cihan and D. Arifler, “Influence of phase function on modeled optical response of nanoparticle-labeled epithelial tissues,” J. Biomed. Opt.16(8), 085002 (2011).
[CrossRef] [PubMed]

Coghlan, L.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007).
[CrossRef] [PubMed]

Collier, T.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Crow, M. J.

M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt.16(11), 116003 (2011).
[CrossRef] [PubMed]

M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol.192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

Diagaradjane, P.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007).
[CrossRef]

Doering, D. L.

J. S. Sanfilippo, S. Miseljic, A. R. Yang, D. L. Doering, R. M. Shaheen, and J. L. Wittliff, “Quantitative analyses of epidermal growth factor receptors, HER-2/neu oncoprotein and cathepsin D in nonmalignant and malignant uteri,” Cancer77(4), 710–716 (1996).
[CrossRef] [PubMed]

Drezek, R.

Drezek, R. A.

Y. Hu, R. C. Fleming, and R. A. Drezek, “Optical properties of gold-silica-gold multilayer nanoshells,” Opt. Express16(24), 19579–19591 (2008).
[CrossRef] [PubMed]

A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J. Biomed. Opt.10(6), 064035 (2005).
[CrossRef] [PubMed]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Fleming, R. C.

Follen, M.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007).
[CrossRef] [PubMed]

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res.63(9), 1999–2004 (2003).
[PubMed]

Gill-Sharp, K. L.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007).
[CrossRef]

Grant, G.

M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol.192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

Halas, N.

Halas, N. J.

A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J. Biomed. Opt.10(6), 064035 (2005).
[CrossRef] [PubMed]

Harrison, N.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett.9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

Hellebust, A.

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond)7(3), 429–445 (2012).
[CrossRef] [PubMed]

Henry, A.

A. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Correlated structure and optical property studies of plasmonic nanoparticles,” J. Phys. Chem. C115(19), 9291–9305 (2011).
[CrossRef]

Hijazi, Y. R.

C. Kortun, Y. R. Hijazi, and D. Arifler, “Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer,” J. Biomed. Opt.13(3), 034014 (2008).
[CrossRef] [PubMed]

Hirsch, L.

Hu, Y.

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Javier, D. J.

N. Nitin, D. J. Javier, D. M. Roblyer, and R. Richards-Kortum, “Widefield and high-resolution reflectance imaging of gold and silver nanospheres,” J. Biomed. Opt.12(5), 051505 (2007).
[CrossRef] [PubMed]

José-Yacamán, M.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007).
[CrossRef] [PubMed]

Kamensky, V. A.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Khlebtsov, B.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt.14(2), 021017 (2009).
[CrossRef] [PubMed]

Khlebtsov, B. N.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Kirillin, M.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt.14(2), 021017 (2009).
[CrossRef] [PubMed]

Kirillin, M. Y.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Kortun, C.

C. Kortun, Y. R. Hijazi, and D. Arifler, “Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer,” J. Biomed. Opt.13(3), 034014 (2008).
[CrossRef] [PubMed]

Krishnan, S.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007).
[CrossRef]

Kumar, G.

Kumar, S.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007).
[CrossRef] [PubMed]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Lee, M. H.

Lewinski, N. A.

A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J. Biomed. Opt.10(6), 064035 (2005).
[CrossRef] [PubMed]

Lin, A. W. H.

A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J. Biomed. Opt.10(6), 064035 (2005).
[CrossRef] [PubMed]

Loo, C.

Lotan, R.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res.63(9), 1999–2004 (2003).
[PubMed]

MacAulay, C.

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006).
[CrossRef] [PubMed]

Malpica, A.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res.63(9), 1999–2004 (2003).
[PubMed]

Marinakos, S.

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt.16(11), 116003 (2011).
[CrossRef] [PubMed]

Marks, L. D.

A. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Correlated structure and optical property studies of plasmonic nanoparticles,” J. Phys. Chem. C115(19), 9291–9305 (2011).
[CrossRef]

Miseljic, S.

J. S. Sanfilippo, S. Miseljic, A. R. Yang, D. L. Doering, R. M. Shaheen, and J. L. Wittliff, “Quantitative analyses of epidermal growth factor receptors, HER-2/neu oncoprotein and cathepsin D in nonmalignant and malignant uteri,” Cancer77(4), 710–716 (1996).
[CrossRef] [PubMed]

Nitin, N.

N. Nitin, D. J. Javier, D. M. Roblyer, and R. Richards-Kortum, “Widefield and high-resolution reflectance imaging of gold and silver nanospheres,” J. Biomed. Opt.12(5), 051505 (2007).
[CrossRef] [PubMed]

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007).
[CrossRef] [PubMed]

Orlova, A. G.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Ostrander, J.

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt.16(11), 116003 (2011).
[CrossRef] [PubMed]

Ostrander, J. H.

M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

Palmer, G. M.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20(1), 119–131 (2009).
[CrossRef] [PubMed]

Park, S. Y.

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007).
[CrossRef] [PubMed]

Pavlova, I.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res.63(9), 1999–2004 (2003).
[PubMed]

Payne, J. D.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007).
[CrossRef]

Provenzale, J. M.

M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol.192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

Rajaram, N.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007).
[CrossRef]

Ramanujam, N.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20(1), 119–131 (2009).
[CrossRef] [PubMed]

Richards-Kortum, R.

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond)7(3), 429–445 (2012).
[CrossRef] [PubMed]

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007).
[CrossRef] [PubMed]

N. Nitin, D. J. Javier, D. M. Roblyer, and R. Richards-Kortum, “Widefield and high-resolution reflectance imaging of gold and silver nanospheres,” J. Biomed. Opt.12(5), 051505 (2007).
[CrossRef] [PubMed]

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res.63(9), 1999–2004 (2003).
[PubMed]

Ringe, E.

A. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Correlated structure and optical property studies of plasmonic nanoparticles,” J. Phys. Chem. C115(19), 9291–9305 (2011).
[CrossRef]

Roblyer, D. M.

N. Nitin, D. J. Javier, D. M. Roblyer, and R. Richards-Kortum, “Widefield and high-resolution reflectance imaging of gold and silver nanospheres,” J. Biomed. Opt.12(5), 051505 (2007).
[CrossRef] [PubMed]

Rylander, H. G.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007).
[CrossRef]

Sanfilippo, J. S.

J. S. Sanfilippo, S. Miseljic, A. R. Yang, D. L. Doering, R. M. Shaheen, and J. L. Wittliff, “Quantitative analyses of epidermal growth factor receptors, HER-2/neu oncoprotein and cathepsin D in nonmalignant and malignant uteri,” Cancer77(4), 710–716 (1996).
[CrossRef] [PubMed]

Schatz, G. C.

A. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Correlated structure and optical property studies of plasmonic nanoparticles,” J. Phys. Chem. C115(19), 9291–9305 (2011).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Schmitt, J. M.

Schwartz, J.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007).
[CrossRef]

Seekell, K.

M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt.16(11), 116003 (2011).
[CrossRef] [PubMed]

Shaheen, R. M.

J. S. Sanfilippo, S. Miseljic, A. R. Yang, D. L. Doering, R. M. Shaheen, and J. L. Wittliff, “Quantitative analyses of epidermal growth factor receptors, HER-2/neu oncoprotein and cathepsin D in nonmalignant and malignant uteri,” Cancer77(4), 710–716 (1996).
[CrossRef] [PubMed]

Shirmanova, M.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt.14(2), 021017 (2009).
[CrossRef] [PubMed]

Shirmanova, M. V.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Sirotkina, M.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt.14(2), 021017 (2009).
[CrossRef] [PubMed]

Sirotkina, M. A.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Sokolov, K.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett.9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev.3(1-2), 146–158 (2009).
[CrossRef]

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res.63(9), 1999–2004 (2003).
[PubMed]

Travis, K.

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett.9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007).
[CrossRef] [PubMed]

Tunnell, J. W.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007).
[CrossRef]

Van Duyne, R. P.

A. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Correlated structure and optical property studies of plasmonic nanoparticles,” J. Phys. Chem. C115(19), 9291–9305 (2011).
[CrossRef]

Vishwanath, K.

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20(1), 119–131 (2009).
[CrossRef] [PubMed]

Wang, J. C.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007).
[CrossRef]

Wax, A.

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt.16(11), 116003 (2011).
[CrossRef] [PubMed]

M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol.192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev.3(1-2), 146–158 (2009).
[CrossRef]

West, J.

West, J. L.

A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J. Biomed. Opt.10(6), 064035 (2005).
[CrossRef] [PubMed]

Wittliff, J. L.

J. S. Sanfilippo, S. Miseljic, A. R. Yang, D. L. Doering, R. M. Shaheen, and J. L. Wittliff, “Quantitative analyses of epidermal growth factor receptors, HER-2/neu oncoprotein and cathepsin D in nonmalignant and malignant uteri,” Cancer77(4), 710–716 (1996).
[CrossRef] [PubMed]

Yang, A. R.

J. S. Sanfilippo, S. Miseljic, A. R. Yang, D. L. Doering, R. M. Shaheen, and J. L. Wittliff, “Quantitative analyses of epidermal growth factor receptors, HER-2/neu oncoprotein and cathepsin D in nonmalignant and malignant uteri,” Cancer77(4), 710–716 (1996).
[CrossRef] [PubMed]

Yguerabide, E. E.

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem.262(2), 157–176 (1998).
[CrossRef] [PubMed]

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem.262(2), 137–156 (1998).
[CrossRef] [PubMed]

Yguerabide, J.

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem.262(2), 157–176 (1998).
[CrossRef] [PubMed]

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem.262(2), 137–156 (1998).
[CrossRef] [PubMed]

Zagaynova, E.

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt.14(2), 021017 (2009).
[CrossRef] [PubMed]

Zagaynova, E. V.

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Zaman, R. T.

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

ACS Nano (1)

M. J. Crow, K. Seekell, J. H. Ostrander, and A. Wax, “Monitoring of receptor dimerization using plasmonic coupling of gold nanoparticles,” ACS Nano5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

AJR Am. J. Roentgenol. (1)

M. J. Crow, G. Grant, J. M. Provenzale, and A. Wax, “Molecular imaging and quantitative measurement of epidermal growth factor receptor expression in live cancer cells using immunolabeled gold nanoparticles,” AJR Am. J. Roentgenol.192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

Anal. Biochem. (2)

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem.262(2), 137–156 (1998).
[CrossRef] [PubMed]

J. Yguerabide and E. E. Yguerabide, “Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications,” Anal. Biochem.262(2), 157–176 (1998).
[CrossRef] [PubMed]

Cancer (1)

J. S. Sanfilippo, S. Miseljic, A. R. Yang, D. L. Doering, R. M. Shaheen, and J. L. Wittliff, “Quantitative analyses of epidermal growth factor receptors, HER-2/neu oncoprotein and cathepsin D in nonmalignant and malignant uteri,” Cancer77(4), 710–716 (1996).
[CrossRef] [PubMed]

Cancer Res. (1)

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, and R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res.63(9), 1999–2004 (2003).
[PubMed]

Curr. Opin. Biotechnol. (1)

J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opin. Biotechnol.20(1), 119–131 (2009).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

R. T. Zaman, P. Diagaradjane, J. C. Wang, J. Schwartz, N. Rajaram, K. L. Gill-Sharp, S. H. Cho, H. G. Rylander, J. D. Payne, S. Krishnan, and J. W. Tunnell, “In vivo detection of gold nanoshells in tumors using diffuse optical spectroscopy,” IEEE J. Sel. Top. Quantum Electron.13(6), 1715–1720 (2007).
[CrossRef]

J. Biomed. Opt. (8)

A. W. H. Lin, N. A. Lewinski, J. L. West, N. J. Halas, and R. A. Drezek, “Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells,” J. Biomed. Opt.10(6), 064035 (2005).
[CrossRef] [PubMed]

M. Kirillin, M. Shirmanova, M. Sirotkina, M. Bugrova, B. Khlebtsov, and E. Zagaynova, “Contrasting properties of gold nanoshells and titanium dioxide nanoparticles for optical coherence tomography imaging of skin: Monte Carlo simulations and in vivo study,” J. Biomed. Opt.14(2), 021017 (2009).
[CrossRef] [PubMed]

C. Cihan and D. Arifler, “Influence of phase function on modeled optical response of nanoparticle-labeled epithelial tissues,” J. Biomed. Opt.16(8), 085002 (2011).
[CrossRef] [PubMed]

J. Aaron, N. Nitin, K. Travis, S. Kumar, T. Collier, S. Y. Park, M. José-Yacamán, L. Coghlan, M. Follen, R. Richards-Kortum, and K. Sokolov, “Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo,” J. Biomed. Opt.12(3), 034007 (2007).
[CrossRef] [PubMed]

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006).
[CrossRef] [PubMed]

N. Nitin, D. J. Javier, D. M. Roblyer, and R. Richards-Kortum, “Widefield and high-resolution reflectance imaging of gold and silver nanospheres,” J. Biomed. Opt.12(5), 051505 (2007).
[CrossRef] [PubMed]

C. Kortun, Y. R. Hijazi, and D. Arifler, “Combined Monte Carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer,” J. Biomed. Opt.13(3), 034014 (2008).
[CrossRef] [PubMed]

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, and A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt.16(11), 116003 (2011).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

A. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz, and R. P. Van Duyne, “Correlated structure and optical property studies of plasmonic nanoparticles,” J. Phys. Chem. C115(19), 9291–9305 (2011).
[CrossRef]

Laser Photon. Rev. (1)

A. Wax and K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev.3(1-2), 146–158 (2009).
[CrossRef]

Nano Lett. (1)

J. Aaron, K. Travis, N. Harrison, and K. Sokolov, “Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling,” Nano Lett.9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

Nanomedicine (Lond) (1)

A. Hellebust and R. Richards-Kortum, “Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics,” Nanomedicine (Lond)7(3), 429–445 (2012).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Med. Biol. (1)

E. V. Zagaynova, M. V. Shirmanova, M. Y. Kirillin, B. N. Khlebtsov, A. G. Orlova, I. V. Balalaeva, M. A. Sirotkina, M. L. Bugrova, P. D. Agrba, and V. A. Kamensky, “Contrasting properties of gold nanoparticles for optical coherence tomography: phantom, in vivo studies and Monte Carlo simulation,” Phys. Med. Biol.53(18), 4995–5009 (2008).
[CrossRef] [PubMed]

Small (1)

W. Cai and X. Chen, “Nanoplatforms for targeted molecular imaging in living subjects,” Small3(11), 1840–1854 (2007).
[CrossRef] [PubMed]

Other (1)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic depiction of epithelial tissue as a two-layer medium. (b)–(e) Optical coefficients μs and μa used to construct normal and precancerous tissue models. The descriptive subscripts ‘epi’ and ‘str’ stand for epithelium and stroma, respectively. Note that the absorption coefficients for normal and precancerous epithelium have the same values.

Fig. 2
Fig. 2

Scattering coefficients μs,epi*, absorption coefficients μa,epi*, and anisotropy factors gepi* of nanoparticle-labeled precancerous epithelium for different labeling schemes: (a)–(c) 40-nm nanospheres, (d)–(f) 80-nm nanospheres, and (g)–(i) 120-nm nanospheres. The volume fractions considered in each case are f1 = 0.0005%, f2 = 0.001%, and f3 = 0.005%. Optical properties of unlabeled precancerous epithelium are also plotted to enable a direct comparison.

Fig. 3
Fig. 3

Spectral reflectance profile of normal tissue, unlabeled precancerous tissue, and precancerous tissue labeled with 40-nm gold nanospheres. Three different volume fractions considered are f1 = 0.0005%, f2 = 0.001%, and f3 = 0.005%. The source and detector fibers are oriented perpendicular to the tissue surface and are separated by a center-to-center distance of (a) 150 μm, (b) 300 μm, (c) 500 μm, and (d) 1000 μm.

Fig. 4
Fig. 4

Spectral reflectance profile of normal tissue, unlabeled precancerous tissue, and precancerous tissue labeled with 80-nm gold nanospheres. Three different volume fractions considered are f1 = 0.0005%, f2 = 0.001%, and f3 = 0.005%. The source and detector fibers are oriented perpendicular to the tissue surface and are separated by a center-to-center distance of (a) 150 μm, (b) 300 μm, (c) 500 μm, and (d) 1000 μm.

Fig. 5
Fig. 5

Spectral reflectance profile of normal tissue, unlabeled precancerous tissue, and precancerous tissue labeled with 120-nm gold nanospheres. Three different volume fractions considered are f1 = 0.0005%, f2 = 0.001%, and f3 = 0.005%. The source and detector fibers are oriented perpendicular to the tissue surface and are separated by a center-to-center distance of (a) 150 μm, (b) 300 μm, (c) 500 μm, and (d) 1000 μm.

Fig. 6
Fig. 6

Spectral reflectance profile of normal tissue, unlabeled precancerous tissue, and precancerous tissue labeled with 40-nm gold nanospheres. Three different volume fractions considered are f1 = 0.0005%, f2 = 0.001%, and f3 = 0.005%. The distal ends of the source and detector fibers are tilted toward each other and are separated by a center-to-center distance of (a) 150 μm, (b) 300 μm, (c) 500 μm, and (d) 1000 μm.

Fig. 7
Fig. 7

Spectral reflectance profile of normal tissue, unlabeled precancerous tissue, and precancerous tissue labeled with 80-nm gold nanospheres. Three different volume fractions considered are f1 = 0.0005%, f2 = 0.001%, and f3 = 0.005%. The distal ends of the source and detector fibers are tilted toward each other and are separated by a center-to-center distance of (a) 150 μm, (b) 300 μm, (c) 500 μm, and (d) 1000 μm.

Fig. 8
Fig. 8

Spectral reflectance profile of normal tissue, unlabeled precancerous tissue, and precancerous tissue labeled with 120-nm gold nanospheres. Three different volume fractions considered are f1 = 0.0005%, f2 = 0.001%, and f3 = 0.005%. The distal ends of the source and detector fibers are tilted toward each other and are separated by a center-to-center distance of (a) 150 μm, (b) 300 μm, (c) 500 μm, and (d) 1000 μm.

Fig. 9
Fig. 9

Assessment of nanoparticle-induced contrast enhancement for selected optical sensor geometries, labeling schemes, and wavelengths as in Table 1: (a) perpendicular fibers, sds = 150 μm, 40-nm nanospheres, wavelength = 520 nm, (b) perpendicular fibers, sds = 150 μm, 80-nm nanospheres, wavelength = 520 nm, (c) perpendicular fibers, sds = 500 μm, 120-nm nanospheres, wavelength = 520 nm, (d) tilted fibers, sds = 300 μm, 40-nm nanospheres, wavelength = 520 nm, (e) tilted fibers, sds = 150 μm, 80-nm nanospheres, wavelength = 600 nm, (f) tilted fibers, sds = 1000 μm, 80-nm nanospheres, wavelength = 560 nm, (g) tilted fibers, sds = 150 μm, 120-nm nanospheres, wavelength = 640 nm, and (h) tilted fibers, sds = 300 μm, 120-nm nanospheres, wavelength = 680 nm. Precancerous tissue, if labeled, has a nanosphere volume fraction of f3 = 0.005%. Normal tissue, if labeled, has a nanosphere volume fraction of 5%, 10%, 50%, or 100% of f3.

Tables (1)

Tables Icon

Table 1 Penetration depth statistics for selected optical sensor geometries, labeling schemes, and wavelengths. Note that the volume fraction considered in all cases is f3 = 0.005%. The percentages in parentheses indicate the fraction of photons collected from the epithelial layer (< 300 μm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

μ s,epi * = μ s,epi + μ s,np ; μ a,epi * = μ a,epi + μ a,np ,
p epi * = μ s,epi p epi + μ s,np p np μ s,epi * ,
g epi * = μ s,epi g epi + μ s,np g np μ s,epi * .

Metrics