Abstract

We investigate the use of a superconducting nano-detector as a novel near-field probe. In contrast to conventional scanning near-field optical microscopes, the nano-detector absorbs and detects photons in the near-field. We show that this absorption-based probe has a higher collection efficiency and investigate the details of the interaction between the nano detector and the dipole emitter. To this end, we introduce a multipole model to describe the interaction. Calculations of the local density of states show that the nano-detector does not strongly modify the emission rate of a dipole, especially when compared to traditional metal probes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev.99(10), 2891–2928 (1999).
    [CrossRef] [PubMed]
  2. V. Sandoghdar, B. Buchler, P. Kramper, S. Götzinger, O. Benson, and M. Kafesaki, “Scanning near-field optical studies of photonic devices,” in Photonic Crystals: Advances in Design, Fabrication, and Characterization, K. Busch, S. Lölkes, R. B. Wehrspohn and H. Föll eds. (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).
  3. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transact. A Math. Phys. Eng. Sci.362(1817), 787–805 (2004).
    [CrossRef] [PubMed]
  4. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(1), 72–76 (2001).
    [CrossRef] [PubMed]
  5. B. Hecht, B. Sick, U. P. Wild, V. Decker, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
    [CrossRef]
  6. C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys.68(3), 801–853 (1996).
    [CrossRef]
  7. E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science262(5138), 1422–1425 (1993).
    [CrossRef] [PubMed]
  8. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
    [CrossRef]
  9. D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett.10(8), 2977–2981 (2010).
    [CrossRef] [PubMed]
  10. A. Rasmussen and V. Deckert, “New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy,” Anal. Bioanal. Chem.381(1), 165–172 (2005).
    [CrossRef] [PubMed]
  11. F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett.65(13), 1623–1625 (1994).
    [CrossRef]
  12. A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc.202(1), 94–99 (2001).
    [CrossRef] [PubMed]
  13. T. Vo-Dinh, J. P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000).
    [CrossRef] [PubMed]
  14. Y. Zhang, A. Dhawan, and T. Vo Dinh, “Design and fabrication of fiber-optic nanoprobes for optical sensing,” Nanoscale Res. Lett.6, 18–23 (2011).
  15. J. Smajic and C. Hafner, “Numerical analysis of a SNOM tip based on a partially cladded optical fiber,” Opt. Express19(23), 23140–23152 (2011).
    [CrossRef] [PubMed]
  16. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
    [CrossRef]
  17. I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun.174(1-4), 33–41 (2000).
    [CrossRef]
  18. C. F. Bohren and D. R. Huffman, “Particles small compared with the wavelength,” in Absorption and scattering of light by small particles. (Wiley & Sons, 1983).
  19. B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182(4-6), 321–328 (2000).
    [CrossRef]
  20. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids I, E. D. Palik, ed. (Academic, 1998).
  21. E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett.94(17), 171109 (2009).
    [CrossRef]
  22. M. Esslinger and R. Vogelgesang, “Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes,” ACS Nano6(9), 8173–8182 (2012).
    [CrossRef] [PubMed]
  23. A. J. L. Adam, N. C. J. van der Valk, and P. C. M. Planken, “Measurement and calculation of the near field of a terahertz apertureless scanning optical microscope,” J. Opt. Soc. Am. B24(5), 1080–1090 (2007).
    [CrossRef]
  24. J. D. Jackson, “Multipoles, electrostatics of macroscopic media, dielectrics,” in Classical Electrodynamics. (Wiley & Sons, 1983).
  25. L. Novotny and B. Hecht, “Dipole emission near planar interfaces,” in Principles of Nano-optics. (Cambridge University Press, 2006).
  26. J. D. Jackson, “Radiating systems, multipole fields and radiation,” in Classical Electrodynamics. (Wiley & Sons, 1983).
  27. J. D. Jackson, “Maxwell equations, macroscopic electromagnetism, conservation laws,” in Classical Electrodynamics. (Wiley & Sons, 1983).
  28. K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1(2), 693–701 (1970).
    [CrossRef]
  29. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt.12, 165–232 (1974).
  30. R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
    [CrossRef]
  31. K. Joulain, R. Carminati, J. Mulet, and J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B68(24), 245405 (2003).
    [CrossRef]
  32. K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys.63(5), 1733 (1988).
    [CrossRef]

2012 (1)

M. Esslinger and R. Vogelgesang, “Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes,” ACS Nano6(9), 8173–8182 (2012).
[CrossRef] [PubMed]

2011 (2)

Y. Zhang, A. Dhawan, and T. Vo Dinh, “Design and fabrication of fiber-optic nanoprobes for optical sensing,” Nanoscale Res. Lett.6, 18–23 (2011).

J. Smajic and C. Hafner, “Numerical analysis of a SNOM tip based on a partially cladded optical fiber,” Opt. Express19(23), 23140–23152 (2011).
[CrossRef] [PubMed]

2010 (1)

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett.10(8), 2977–2981 (2010).
[CrossRef] [PubMed]

2009 (1)

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett.94(17), 171109 (2009).
[CrossRef]

2007 (1)

2005 (1)

A. Rasmussen and V. Deckert, “New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy,” Anal. Bioanal. Chem.381(1), 165–172 (2005).
[CrossRef] [PubMed]

2004 (1)

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transact. A Math. Phys. Eng. Sci.362(1817), 787–805 (2004).
[CrossRef] [PubMed]

2003 (1)

K. Joulain, R. Carminati, J. Mulet, and J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B68(24), 245405 (2003).
[CrossRef]

2001 (3)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(1), 72–76 (2001).
[CrossRef] [PubMed]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc.202(1), 94–99 (2001).
[CrossRef] [PubMed]

2000 (4)

T. Vo-Dinh, J. P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000).
[CrossRef] [PubMed]

I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun.174(1-4), 33–41 (2000).
[CrossRef]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182(4-6), 321–328 (2000).
[CrossRef]

B. Hecht, B. Sick, U. P. Wild, V. Decker, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

1999 (1)

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev.99(10), 2891–2928 (1999).
[CrossRef] [PubMed]

1996 (1)

C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys.68(3), 801–853 (1996).
[CrossRef]

1994 (1)

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett.65(13), 1623–1625 (1994).
[CrossRef]

1993 (1)

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science262(5138), 1422–1425 (1993).
[CrossRef] [PubMed]

1988 (1)

K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys.63(5), 1733 (1988).
[CrossRef]

1978 (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

1974 (1)

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt.12, 165–232 (1974).

1970 (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1(2), 693–701 (1970).
[CrossRef]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
[CrossRef]

Adam, A. J. L.

Alarie, J. P.

T. Vo-Dinh, J. P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000).
[CrossRef] [PubMed]

Asano, H.

K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys.63(5), 1733 (1988).
[CrossRef]

Averbukh, I. S.

I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun.174(1-4), 33–41 (2000).
[CrossRef]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
[CrossRef]

Betzig, E.

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science262(5138), 1422–1425 (1993).
[CrossRef] [PubMed]

Bitauld, D.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett.10(8), 2977–2981 (2010).
[CrossRef] [PubMed]

Carminati, R.

K. Joulain, R. Carminati, J. Mulet, and J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B68(24), 245405 (2003).
[CrossRef]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Chernobrod, B. M.

I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun.174(1-4), 33–41 (2000).
[CrossRef]

Chichester, R. J.

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science262(5138), 1422–1425 (1993).
[CrossRef] [PubMed]

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Cullum, B. M.

T. Vo-Dinh, J. P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000).
[CrossRef] [PubMed]

de Dood, M. J. A.

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett.94(17), 171109 (2009).
[CrossRef]

Decker, V.

B. Hecht, B. Sick, U. P. Wild, V. Decker, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Deckert, V.

A. Rasmussen and V. Deckert, “New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy,” Anal. Bioanal. Chem.381(1), 165–172 (2005).
[CrossRef] [PubMed]

Dhawan, A.

Y. Zhang, A. Dhawan, and T. Vo Dinh, “Design and fabrication of fiber-optic nanoprobes for optical sensing,” Nanoscale Res. Lett.6, 18–23 (2011).

Drexhage, K. H.

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt.12, 165–232 (1974).

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1(2), 693–701 (1970).
[CrossRef]

Driessen, E. F. C.

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett.94(17), 171109 (2009).
[CrossRef]

Dunn, R. C.

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev.99(10), 2891–2928 (1999).
[CrossRef] [PubMed]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Esslinger, M.

M. Esslinger and R. Vogelgesang, “Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes,” ACS Nano6(9), 8173–8182 (2012).
[CrossRef] [PubMed]

Fiore, A.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett.10(8), 2977–2981 (2010).
[CrossRef] [PubMed]

Gaggero, A.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett.10(8), 2977–2981 (2010).
[CrossRef] [PubMed]

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Greffet, J.

K. Joulain, R. Carminati, J. Mulet, and J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B68(24), 245405 (2003).
[CrossRef]

Griffin, G. D.

T. Vo-Dinh, J. P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000).
[CrossRef] [PubMed]

Hafner, C.

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Decker, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Henry, C. H.

C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys.68(3), 801–853 (1996).
[CrossRef]

Hillenbrand, R.

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transact. A Math. Phys. Eng. Sci.362(1817), 787–805 (2004).
[CrossRef] [PubMed]

Joulain, K.

K. Joulain, R. Carminati, J. Mulet, and J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B68(24), 245405 (2003).
[CrossRef]

Kalkbrenner, T.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(1), 72–76 (2001).
[CrossRef] [PubMed]

Katoh, Y.

K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys.63(5), 1733 (1988).
[CrossRef]

Kazarinov, R. F.

C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys.68(3), 801–853 (1996).
[CrossRef]

Keilmann, F.

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transact. A Math. Phys. Eng. Sci.362(1817), 787–805 (2004).
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182(4-6), 321–328 (2000).
[CrossRef]

Knoll, B.

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182(4-6), 321–328 (2000).
[CrossRef]

Leoni, R.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett.10(8), 2977–2981 (2010).
[CrossRef] [PubMed]

Lévy, F.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett.10(8), 2977–2981 (2010).
[CrossRef] [PubMed]

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Marsili, F.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett.10(8), 2977–2981 (2010).
[CrossRef] [PubMed]

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Decker, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Mattioli, F.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett.10(8), 2977–2981 (2010).
[CrossRef] [PubMed]

Michikami, O.

K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys.63(5), 1733 (1988).
[CrossRef]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(1), 72–76 (2001).
[CrossRef] [PubMed]

Mulet, J.

K. Joulain, R. Carminati, J. Mulet, and J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B68(24), 245405 (2003).
[CrossRef]

Nejad, S. J.

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett.10(8), 2977–2981 (2010).
[CrossRef] [PubMed]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett.65(13), 1623–1625 (1994).
[CrossRef]

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Planken, P. C. M.

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Decker, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Prior, Y.

I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun.174(1-4), 33–41 (2000).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(1), 72–76 (2001).
[CrossRef] [PubMed]

Rasmussen, A.

A. Rasmussen and V. Deckert, “New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy,” Anal. Bioanal. Chem.381(1), 165–172 (2005).
[CrossRef] [PubMed]

Sandoghdar, V.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(1), 72–76 (2001).
[CrossRef] [PubMed]

A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc.202(1), 94–99 (2001).
[CrossRef] [PubMed]

Sedletsky, O. A.

I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun.174(1-4), 33–41 (2000).
[CrossRef]

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Decker, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Smajic, J.

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Tanabe, K.

K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys.63(5), 1733 (1988).
[CrossRef]

van der Valk, N. C. J.

Vo Dinh, T.

Y. Zhang, A. Dhawan, and T. Vo Dinh, “Design and fabrication of fiber-optic nanoprobes for optical sensing,” Nanoscale Res. Lett.6, 18–23 (2011).

Vo-Dinh, T.

T. Vo-Dinh, J. P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000).
[CrossRef] [PubMed]

Vogelgesang, R.

M. Esslinger and R. Vogelgesang, “Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes,” ACS Nano6(9), 8173–8182 (2012).
[CrossRef] [PubMed]

Voronov, B.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Wickramasinghe, H. K.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett.65(13), 1623–1625 (1994).
[CrossRef]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Decker, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Zayats, A. V.

A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc.202(1), 94–99 (2001).
[CrossRef] [PubMed]

Zenhausern, F.

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett.65(13), 1623–1625 (1994).
[CrossRef]

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Decker, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Zhang, Y.

Y. Zhang, A. Dhawan, and T. Vo Dinh, “Design and fabrication of fiber-optic nanoprobes for optical sensing,” Nanoscale Res. Lett.6, 18–23 (2011).

ACS Nano (1)

M. Esslinger and R. Vogelgesang, “Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes,” ACS Nano6(9), 8173–8182 (2012).
[CrossRef] [PubMed]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, “Molecular fluorescence and energy transfer near interfaces,” Adv. Chem. Phys.37, 1–65 (1978).
[CrossRef]

Anal. Bioanal. Chem. (1)

A. Rasmussen and V. Deckert, “New dimension in nano-imaging: breaking through the diffraction limit with scanning near-field optical microscopy,” Anal. Bioanal. Chem.381(1), 165–172 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett.65(13), 1623–1625 (1994).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

E. F. C. Driessen and M. J. A. de Dood, “The perfect absorber,” Appl. Phys. Lett.94(17), 171109 (2009).
[CrossRef]

Chem. Rev. (1)

R. C. Dunn, “Near-field scanning optical microscopy,” Chem. Rev.99(10), 2891–2928 (1999).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

K. Tanabe, H. Asano, Y. Katoh, and O. Michikami, “Ellipsometric and optical reflectivity studies of reactively sputtered NbN thin films,” J. Appl. Phys.63(5), 1733 (1988).
[CrossRef]

J. Chem. Phys. (1)

B. Hecht, B. Sick, U. P. Wild, V. Decker, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

J. Lumin. (1)

K. H. Drexhage, “Influence of a dielectric interface on fluorescence decay time,” J. Lumin.1(2), 693–701 (1970).
[CrossRef]

J. Microsc. (2)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc.202(1), 72–76 (2001).
[CrossRef] [PubMed]

A. V. Zayats and V. Sandoghdar, “Apertureless near-field optical microscopy via local second-harmonic generation,” J. Microsc.202(1), 94–99 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

D. Bitauld, F. Marsili, A. Gaggero, F. Mattioli, R. Leoni, S. J. Nejad, F. Lévy, and A. Fiore, “Nanoscale optical detector with single-photon and multiphoton sensitivity,” Nano Lett.10(8), 2977–2981 (2010).
[CrossRef] [PubMed]

Nanoscale Res. Lett. (1)

Y. Zhang, A. Dhawan, and T. Vo Dinh, “Design and fabrication of fiber-optic nanoprobes for optical sensing,” Nanoscale Res. Lett.6, 18–23 (2011).

Nat. Biotechnol. (1)

T. Vo-Dinh, J. P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000).
[CrossRef] [PubMed]

Opt. Commun. (2)

I. S. Averbukh, B. M. Chernobrod, O. A. Sedletsky, and Y. Prior, “Coherent near field optical microscopy,” Opt. Commun.174(1-4), 33–41 (2000).
[CrossRef]

B. Knoll and F. Keilmann, “Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun.182(4-6), 321–328 (2000).
[CrossRef]

Opt. Express (1)

Philos. Transact. A Math. Phys. Eng. Sci. (1)

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transact. A Math. Phys. Eng. Sci.362(1817), 787–805 (2004).
[CrossRef] [PubMed]

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev.66(7-8), 163–182 (1944).
[CrossRef]

Phys. Rev. B (1)

K. Joulain, R. Carminati, J. Mulet, and J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B68(24), 245405 (2003).
[CrossRef]

Prog. Opt. (1)

K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Prog. Opt.12, 165–232 (1974).

Rev. Mod. Phys. (1)

C. H. Henry and R. F. Kazarinov, “Quantum noise in photonics,” Rev. Mod. Phys.68(3), 801–853 (1996).
[CrossRef]

Science (1)

E. Betzig and R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science262(5138), 1422–1425 (1993).
[CrossRef] [PubMed]

Other (7)

V. Sandoghdar, B. Buchler, P. Kramper, S. Götzinger, O. Benson, and M. Kafesaki, “Scanning near-field optical studies of photonic devices,” in Photonic Crystals: Advances in Design, Fabrication, and Characterization, K. Busch, S. Lölkes, R. B. Wehrspohn and H. Föll eds. (Wiley-VCH Verlag GmbH & Co. KGaA, 2006).

C. F. Bohren and D. R. Huffman, “Particles small compared with the wavelength,” in Absorption and scattering of light by small particles. (Wiley & Sons, 1983).

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids I, E. D. Palik, ed. (Academic, 1998).

J. D. Jackson, “Multipoles, electrostatics of macroscopic media, dielectrics,” in Classical Electrodynamics. (Wiley & Sons, 1983).

L. Novotny and B. Hecht, “Dipole emission near planar interfaces,” in Principles of Nano-optics. (Cambridge University Press, 2006).

J. D. Jackson, “Radiating systems, multipole fields and radiation,” in Classical Electrodynamics. (Wiley & Sons, 1983).

J. D. Jackson, “Maxwell equations, macroscopic electromagnetism, conservation laws,” in Classical Electrodynamics. (Wiley & Sons, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Absorption cross section for a NbN sphere close to a GaAs substrate, as compared to a Ag sphere. Calculations are done at λ = 1.0 μm, as a function of sphere radius. The inset shows a sphere with a radius of a at distance z = 10 nm from the semi-infinite substrate. The particle is excited by an external electric field E parallel to the interface. In the Rayleigh limit (a/λ << 1), the absorption cross section is much larger than the scattering cross section. Because of the larger imaginary part of the dielectric constant of NbN, the absorption cross section of a NbN sphere is 10 times larger than that of a Ag sphere.

Fig. 2
Fig. 2

Comparison of the absorption cross section for a square and spherical NbN nano-detector as a function of size a at λ = 1.0 μm. Simulations are used to calculate the absorption of a square detector, both at λ = 1.0 μm. In the optical near-field (a/λ <<1), the absorption of a NbN square is higher than that of a sphere. The inset shows a schematic picture of a realistic NbN nano-detector: a 4 nm thick NbN film is grown on a GaAs substrate. A bowtie shape with a nanoscale square constriction serving as the detector active area is patterned in the film.

Fig. 3
Fig. 3

Physical model used in FDTD simulations of detector sensitivity and resolution. The NbN nano-detector is located above a dipole emitter (point source) with a dipole moment along X-direction. The emitter (λ = 1.0 μm) is placed on the semi-infinite GaAs substrate. Charge areas are induced inside the nano-detector and in the substrate underneath the emitter.

Fig. 4
Fig. 4

Calculated absorption of a point dipole as a function of distance between the nano-detector and the substrate. Calculations are done for a wavelength λ = 1.0 μm with the radiation power of the dipole source fixed at 1 W. The FDTD results are compared with two models: a dipole (a) and mutipole (b) model.

Fig. 5
Fig. 5

Normalized life time of an emitter close to a 4 nm thick metal film as a function of distance from the substrate. Calculation are shown for a NbN, Au, Ag and Al film at λ = 1.0 μm. In the near field (distance < 50 nm), the emitter close to NbN behaves differently from those close to the other three metal films. The inset shows the variations in emitter lifetime for larger distances.

Fig. 6
Fig. 6

Local density of states (LDOS) at the position of the emitter as a function of frequency for different metal substrates. Results are shown for a 4 nm thick NbN film and a 4 nm thick Ag film on a semi-infinite GaAs substrate as shown in the inset. The distance between the emitter and the film is set to 5 nm and 10 nm which are in the near-field of the emitter leading to a strong coupling to surface plasmon modes of the Ag film.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

α eff =α(1β)/(1 αβ 32π r 3 ) or α eff =α(1+β)/(1 αβ 16π r 3 ),
φ( R )= 1 4π ε o [ Q R p · 1 R + 1 6 D : 1 R +... ],
D 13 = V 3xz ρ(x,y,z)dxdydz=η E x 2 + E z 2 ,
E = E emitter + E image ,
ρ( R ,ω)= ω π c 2 ImTr[ G ( R , R ,ω) ].
G (z,z,ω)= i 4π 0 dλ [( c 1 ' e i2 h 1 z +1) λ 2 h 1 e r e r +(λ f 1 ' e i2 h 1 z ) h 1 2 k 1 2 e ϕ e ϕ +( f 1 ' e i2 h 1 z +1) λ 3 k 1 2 h 1 e z e z ],
Γ(z) ω 2 ImTrG(z,z,ω).
ε NbN (ω)= ε NbNhigh ε NbNhigh ω NbNp 2 ω 2 +i γ NbN ω ,
ε Ag (ω)= ε Aghigh ( ε Agstatic ε Aghigh ) ω Agp 2 ω 2 +i γ Ag ω ,

Metrics