Abstract

Light funneling in metal/dielectric multilayer films with subwavelength grooves is numerically and experimentally demonstrated. Incident light at the resonant wavelength can be completely funneled into dielectric layers through a narrow groove that only covers 12.5% of the surface area within one period and absorbed by a resonant cavity composed of metal/dielectric multilayer films. A narrower resonant dip is observed than that produced by bulk metals with the same thickness and grooves. The mechanism and influencing factors of the reflection spectrum, including groove widths, layer numbers, and the profile of the groove side wall are comprehensively analyzed. Coupling between adjacent grooves with different depths are also discussed. Our study can be applied in the applications of biological sensing and infrared detectors.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Curto, A. Manjavacas, and F. J. García de Abajo, “Near-field focusing with optical phase antennas,” Opt. Express17(20), 17801–17811 (2009).
    [CrossRef] [PubMed]
  2. A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science320(5875), 511–513 (2008).
    [CrossRef] [PubMed]
  3. T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett.96(4), 041103 (2010).
    [CrossRef]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  5. L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett.103(3), 033902 (2009).
    [CrossRef] [PubMed]
  6. H. F. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett.96(14), 141107 (2010).
    [CrossRef]
  7. R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science317(5840), 927–929 (2007).
    [CrossRef] [PubMed]
  8. G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett.107(16), 163902 (2011).
    [CrossRef] [PubMed]
  9. F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107(9), 093902 (2011).
    [CrossRef] [PubMed]
  10. P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
    [CrossRef]
  11. D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
    [CrossRef] [PubMed]
  12. S. M. Feng, J. M. Elson, and P. L. Overfelt, “Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes,” Opt. Express13(11), 4113–4124 (2005).
    [CrossRef] [PubMed]
  13. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
    [CrossRef] [PubMed]
  14. D. Edward Palik, Handbook of Optical Constants of Solids (Academic Press, 1985)
  15. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express16(7), 4888–4894 (2008).
    [CrossRef] [PubMed]
  16. D. Xiang, L. L. Wang, X. A. Zhai, L. Wang, and A. L. Pan, “Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits,” Opt. Commun.284(1), 471–475 (2011).
    [CrossRef]
  17. Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007).
    [CrossRef]
  18. C. S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A, Pure Appl. Opt.6(1), 22–25 (2004).
    [CrossRef]
  19. Q. Z. Li, W. H. Lin, and G. P. Wang, “An optical magnetic metamaterial working at multiple frequencies simultaneously,” Appl. Phys. Lett.99(4), 041109 (2011).
    [CrossRef]
  20. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
    [CrossRef] [PubMed]

2011

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett.107(16), 163902 (2011).
[CrossRef] [PubMed]

F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107(9), 093902 (2011).
[CrossRef] [PubMed]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

D. Xiang, L. L. Wang, X. A. Zhai, L. Wang, and A. L. Pan, “Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits,” Opt. Commun.284(1), 471–475 (2011).
[CrossRef]

Q. Z. Li, W. H. Lin, and G. P. Wang, “An optical magnetic metamaterial working at multiple frequencies simultaneously,” Appl. Phys. Lett.99(4), 041109 (2011).
[CrossRef]

2010

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett.96(4), 041103 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

H. F. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett.96(14), 141107 (2010).
[CrossRef]

2009

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett.103(3), 033902 (2009).
[CrossRef] [PubMed]

A. G. Curto, A. Manjavacas, and F. J. García de Abajo, “Near-field focusing with optical phase antennas,” Opt. Express17(20), 17801–17811 (2009).
[CrossRef] [PubMed]

2008

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science320(5875), 511–513 (2008).
[CrossRef] [PubMed]

J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express16(7), 4888–4894 (2008).
[CrossRef] [PubMed]

2007

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[CrossRef] [PubMed]

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science317(5840), 927–929 (2007).
[CrossRef] [PubMed]

Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007).
[CrossRef]

2005

2004

C. S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A, Pure Appl. Opt.6(1), 22–25 (2004).
[CrossRef]

Adams, D. C.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Atwater, H. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Bao, Y. J.

Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007).
[CrossRef]

Bardou, N.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Bouchon, P.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107(9), 093902 (2011).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Brener, I.

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett.107(16), 163902 (2011).
[CrossRef] [PubMed]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett.103(3), 033902 (2009).
[CrossRef] [PubMed]

Chen, Y.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett.96(4), 041103 (2010).
[CrossRef]

Curto, A. G.

Dagher, G.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Dupuis, C.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Elson, J. M.

Fan, S. H.

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett.103(3), 033902 (2009).
[CrossRef] [PubMed]

Feng, S. M.

Ferlazzo, L.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Foteinopoulou, S.

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett.107(16), 163902 (2011).
[CrossRef] [PubMed]

García de Abajo, F. J.

Ghenuche, P.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Goodhue, W. D.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Grbic, A.

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science320(5875), 511–513 (2008).
[CrossRef] [PubMed]

Guo, L. J.

H. F. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett.96(14), 141107 (2010).
[CrossRef]

Haidar, R.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Haïdar, R.

F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107(9), 093902 (2011).
[CrossRef] [PubMed]

He, M. D.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Huang, F. M.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett.96(4), 041103 (2010).
[CrossRef]

Huang, W. Q.

Inampudi, S.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Jiang, L.

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science320(5875), 511–513 (2008).
[CrossRef] [PubMed]

Kao, T. S.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett.96(4), 041103 (2010).
[CrossRef]

Kee, C. S.

C. S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A, Pure Appl. Opt.6(1), 22–25 (2004).
[CrossRef]

Kim, K.

C. S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A, Pure Appl. Opt.6(1), 22–25 (2004).
[CrossRef]

Kuhta, N. A.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Li, Q. Z.

Q. Z. Li, W. H. Lin, and G. P. Wang, “An optical magnetic metamaterial working at multiple frequencies simultaneously,” Appl. Phys. Lett.99(4), 041109 (2011).
[CrossRef]

Lim, H.

C. S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A, Pure Appl. Opt.6(1), 22–25 (2004).
[CrossRef]

Lin, W. H.

Q. Z. Li, W. H. Lin, and G. P. Wang, “An optical magnetic metamaterial working at multiple frequencies simultaneously,” Appl. Phys. Lett.99(4), 041109 (2011).
[CrossRef]

Liu, J. Q.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Manjavacas, A.

Merlin, R.

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science320(5875), 511–513 (2008).
[CrossRef] [PubMed]

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science317(5840), 927–929 (2007).
[CrossRef] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Overfelt, P. L.

Pan, A. L.

D. Xiang, L. L. Wang, X. A. Zhai, L. Wang, and A. L. Pan, “Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits,” Opt. Commun.284(1), 471–475 (2011).
[CrossRef]

Pardo, F.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107(9), 093902 (2011).
[CrossRef] [PubMed]

Pelouard, J. L.

F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107(9), 093902 (2011).
[CrossRef] [PubMed]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Peng, R. W.

Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007).
[CrossRef]

Podolskiy, V. A.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Portier, B.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Ribaudo, T.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Rogers, E. T. F.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett.96(4), 041103 (2010).
[CrossRef]

Shi, H. F.

H. F. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett.96(14), 141107 (2010).
[CrossRef]

Slocum, D.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Subramania, G.

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett.107(16), 163902 (2011).
[CrossRef] [PubMed]

Sun, W. H.

Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007).
[CrossRef]

Tang, Z. H.

Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007).
[CrossRef]

Vangala, S.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett.103(3), 033902 (2009).
[CrossRef] [PubMed]

Wang, D.

Wang, G. P.

Q. Z. Li, W. H. Lin, and G. P. Wang, “An optical magnetic metamaterial working at multiple frequencies simultaneously,” Appl. Phys. Lett.99(4), 041109 (2011).
[CrossRef]

Wang, L.

D. Xiang, L. L. Wang, X. A. Zhai, L. Wang, and A. L. Pan, “Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits,” Opt. Commun.284(1), 471–475 (2011).
[CrossRef]

Wang, L. L.

D. Xiang, L. L. Wang, X. A. Zhai, L. Wang, and A. L. Pan, “Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits,” Opt. Commun.284(1), 471–475 (2011).
[CrossRef]

J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express16(7), 4888–4894 (2008).
[CrossRef] [PubMed]

Wang, M.

Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007).
[CrossRef]

Wang, Q. J.

Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007).
[CrossRef]

Wang, Z.

Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007).
[CrossRef]

Wasserman, D.

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Wen, S.

Wu, X.

Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007).
[CrossRef]

Xiang, D.

D. Xiang, L. L. Wang, X. A. Zhai, L. Wang, and A. L. Pan, “Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits,” Opt. Commun.284(1), 471–475 (2011).
[CrossRef]

Yu, Z. F.

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett.103(3), 033902 (2009).
[CrossRef] [PubMed]

Zhai, X. A.

D. Xiang, L. L. Wang, X. A. Zhai, L. Wang, and A. L. Pan, “Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits,” Opt. Commun.284(1), 471–475 (2011).
[CrossRef]

Zhang, Z. J.

Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007).
[CrossRef]

Zheludev, N. I.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett.96(4), 041103 (2010).
[CrossRef]

Zou, B. S.

Appl. Phys. Lett.

T. S. Kao, F. M. Huang, Y. Chen, E. T. F. Rogers, and N. I. Zheludev, “Metamaterial as a controllable template for nanoscale field localization,” Appl. Phys. Lett.96(4), 041103 (2010).
[CrossRef]

H. F. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett.96(14), 141107 (2010).
[CrossRef]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haidar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett.98(19), 191109 (2011).
[CrossRef]

Q. Z. Li, W. H. Lin, and G. P. Wang, “An optical magnetic metamaterial working at multiple frequencies simultaneously,” Appl. Phys. Lett.99(4), 041109 (2011).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

C. S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A, Pure Appl. Opt.6(1), 22–25 (2004).
[CrossRef]

Nano Lett.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010).
[CrossRef] [PubMed]

Nat. Photonics

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Opt. Commun.

D. Xiang, L. L. Wang, X. A. Zhai, L. Wang, and A. L. Pan, “Optical transmission through metal/dielectric multilayer films perforated with periodic subwavelength slits,” Opt. Commun.284(1), 471–475 (2011).
[CrossRef]

Opt. Express

Phys. Rev. B

Z. H. Tang, R. W. Peng, Z. Wang, X. Wu, Y. J. Bao, Q. J. Wang, Z. J. Zhang, W. H. Sun, and M. Wang, “Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays,” Phys. Rev. B76(19), 195405 (2007).
[CrossRef]

Phys. Rev. Lett.

L. Verslegers, P. B. Catrysse, Z. F. Yu, and S. H. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett.103(3), 033902 (2009).
[CrossRef] [PubMed]

D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling light through a subwavelength aperture with epsilon-near-zero materials,” Phys. Rev. Lett.107(13), 133901 (2011).
[CrossRef] [PubMed]

G. Subramania, S. Foteinopoulou, and I. Brener, “Nonresonant broadband funneling of light via ultrasubwavelength channels,” Phys. Rev. Lett.107(16), 163902 (2011).
[CrossRef] [PubMed]

F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett.107(9), 093902 (2011).
[CrossRef] [PubMed]

Science

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science317(5840), 927–929 (2007).
[CrossRef] [PubMed]

A. Grbic, L. Jiang, and R. Merlin, “Near-field plates: subdiffraction focusing with patterned surfaces,” Science320(5875), 511–513 (2008).
[CrossRef] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science316(5823), 430–432 (2007).
[CrossRef] [PubMed]

Other

D. Edward Palik, Handbook of Optical Constants of Solids (Academic Press, 1985)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of designed Au/MgF2 multilayer structure with nano-grooves. The thicknesses of Au/MgF2 films are 80 nm and 110 nm, respectively and 80 nm for the bottom Au layer. The total depth h is 380 nm. The periodΛof the grating is 800 nm and the width w of the groove is 100 nm. (b) Comparison of the reflection spectra of the designed Au/MgF2 multilayer structure and Au films with groove depth h = 380 nm and h = 500 nm, respectively.

Fig. 2
Fig. 2

Schematic of streamlines of the different Poynting vector components at the resonant wavelength in the Au/ MgF2 multilayer structure with a subwavelength groove: (a) Incident wave Si (b) EMI Sei (c) Total Poynting vector S (d) Simulated magnetic field (color bar) and power flow (white arrows) by COMSOL at the resonance in the designed structure. The parameters of the structure are the same as Fig. 1(a).

Fig. 3
Fig. 3

Simulated reflection spectra (a) multilayer grating structures with different Au/MgF2 pair numbers and the thicknesses of Au/MgF2 are 80 nm/110 nm; (b) multilayer structure with 3 pairs of Au/MgF2 (50 nm/80 nm) and the total thickness is 390 nm; (c) structures with different groove widths and the same period of 800 nm; (d) structures with different periods and the same groove depth of 100 nm. The pairs of Au/MgF2 are two in all the structures in (c) and (d).

Fig. 4
Fig. 4

(a) Schematic of the Au/MgF2 multilayer structure with tilted sidewalls. The width of top slit is w. (b) Simulated reflection spectra of the structure with different w.

Fig. 5
Fig. 5

(a) Schematic of the Au/MgF2 multilayer structure with double period grooves and L = 700 nm. (b) Reflection spectrum of the structure in (a). (c) Magnetic fields at different wavelengths in the multilayer structure. (d) Electrical fields at different wavelengths in the multilayer structure

Fig. 6
Fig. 6

Simulated reflection spectrum of the Au/MgF2 multilayer structure with the narrow grooves

Fig. 7
Fig. 7

(a) Angled SEM image of the cross section of the fabricated sample. The cross section is also cut by FIB. (b) Experimental and simulated reflection spectra of the fabricated sample.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S= S i + S ei + S e ,
2 0 h n eff (x)dx=(m1/2) λ m
ε 1 β s 2 ε m k 0 2 ε m β s 2 ε 1 k 0 2 = 1exp( a β s 2 ε 1 k 0 2 ) 1+exp( a β s 2 ε 1 k 0 2 )

Metrics