Abstract

Highly nonlinear planar glass waveguides have been shown to be useful for all optical signal processing. However, the typical SMF-28 fiber to waveguide coupling loss of ~5dB/end remains a barrier to practical implementation. Low loss coupling to a fiber using vertical tapering of the waveguide film is analyzed for rib and nanowire waveguides and experimentally demonstrated for ribs showing polarization and wavelength independence over >300nm bandwidth. Tapers with essentially zero excess loss led to total losses from the waveguide to fiber core of 1.1dB per facet comprising only material absorption (0.75dB) and mode overlap loss (0.36dB), both of which can be eliminated with improvements to processing and materials.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Van Erps, F. Luan, M. Pelusi, T. Iredale, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, H. Thienpont, and B. Eggleton, “High-resolution optical sampling of 640-Gb/s data using Four-Wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol.28(2), 209–215 (2010).
    [CrossRef]
  2. M. Lamont, V. Ta'eed, M. Roelens, D. Moss, B. Eggleton, D. Choi, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross-phase modulation in 5cm of As2S3 Chalcogenide glass rib waveguide,” Elec. Lett.43(17), 945–947 (2007).
    [CrossRef]
  3. M. Pelusi, F. Luan, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, and B. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
    [CrossRef]
  4. V. G. Ta’eed, M. R. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in Chalcogenide glass rib waveguides,” Opt. Express14(23), 11242–11247 (2006).
    [CrossRef] [PubMed]
  5. J. Van Erps, J. Schröder, T. D. Vo, M. D. Pelusi, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Automatic dispersion compensation for 1.28Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express18(24), 25415–25421 (2010).
    [CrossRef] [PubMed]
  6. V. Ta'eed, M. Pelusi, B. Eggleton, D. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Exp.15(23), 15047–15052 (2007).
    [CrossRef]
  7. M. Pelusi, F. Luan, D. Choi, S. Madden, D. Bulla, B. Luther-Davies, and B. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Exp.18(25), 26686–26694 (2010).
    [CrossRef]
  8. M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a Chalcogenide chip,” Opt. Express17(11), 9314–9322 (2009).
    [CrossRef] [PubMed]
  9. R. Pant, C. Xiong, S. Madden, B. Davies, and B. Eggleton, “Investigation of all-optical analog-to-digital quantization using a Chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun.283(10), 2258–2262 (2010).
    [CrossRef]
  10. C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).
  11. E. Teraoka, D. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett.97(7), 071105 (2010).
    [CrossRef]
  12. C. C. Evans, K. Shtyrkova, J. D. Bradley, E. Ippen, and E. Mazur, “Spectral broadening of femtosecond pulses in polycrystalline anatase titanium dioxide waveguides,” paper JW4D.4. in Nonlinear Photonics, OSA Technical Digest, Optical Society of America, 2012.
  13. C. Evans, J. Bradley, O. Reshef, E. Marti-Panameño, and E. Mazur, “Ultrafast all-optical switching in TiO2,” Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale, NATO Science for Peace and Security Series B: Physics and Biophysics, ISBN 978–94–007–5312–9. Springer Science + Business Media Dordrecht, 2013, p. 377.
  14. W. Pernice, C. Xiong, C. Schuck, and H. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett.100(22), 223501 (2012).
    [CrossRef]
  15. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
    [CrossRef]
  16. A. Pasquazi, M. Peccianti, Y. Park, B. Little, S. Chu, R. Morandotti, J. Azaña, and D. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics5(10), 618–623 (2011).
    [CrossRef]
  17. D. Duchesne, M. Peccianti, M. R. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express18(2), 923–930 (2010).
    [CrossRef] [PubMed]
  18. J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
    [CrossRef]
  19. Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011).
    [CrossRef] [PubMed]
  20. T. Ning, O. Hyvärinen, H. Pietarinen, T. Kaplas, M. Kauranen, and G. Genty, “Third-harmonic UV generation in Silicon nitride nanostructures,” Opt. Exp.21(2), 2012–2017 (2013).
    [CrossRef]
  21. K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Exp.21(1), 1335–1343 (2013).
    [CrossRef]
  22. A. Subramanian, G. Murugan, M. Zervas, and J. Wilkinson, “High index contrast Er:Ta2O5 waveguide amplifier on oxidised silicon,” Opt. Commun.285(2), 124–127 (2012).
    [CrossRef]
  23. J. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B27(2), 187–196 (2010).
    [CrossRef]
  24. R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534nm in Erbium-doped Zirconia waveguides,” IEEE J. Quant. Elec.39(1), 154–159 (2003).
    [CrossRef]
  25. K. Vu and S. Madden, “Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8dB/cm internal gain,” Opt. Exp.18(18), 19192–19200 (2010).
    [CrossRef]
  26. C. Baker, J. Heikenfeld, Z. Yu, and A. Steckl, “Optical amplification and electroluminescence at 1.54μm in Er-doped Zinc silicate Germanate on Silicon,” Appl. Phys. Lett.84(9), 1462–1464 (2004).
    [CrossRef]
  27. X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550nm,” Opt. Exp.18(18), 18866–18874 (2010).
    [CrossRef]
  28. S. J. Madden and K. T. Vu, “Very low loss reactively ion etched Tellurium dioxide planar rib waveguides for linear and non-linear optics,” Opt. Express17(20), 17645–17651 (2009).
    [CrossRef] [PubMed]
  29. D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
    [CrossRef]
  30. J. Hu, N. N. Feng, N. Carlie, L. Petit, J. Wang, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss high-index-contrast planar waveguides with graded-index cladding layers,” Opt. Express15(22), 14566–14572 (2007).
    [CrossRef] [PubMed]
  31. X. Xia, Q. Chen, C. Tsay, C. B. Arnold, and C. K. Madsen, “Low-loss Chalcogenide waveguides on lithium niobate for the mid-infrared,” Opt. Lett.35(19), 3228–3230 (2010).
    [CrossRef] [PubMed]
  32. http://www.ozoptics.com .
  33. B. Batagelj, “Conversion efficiency of fiber wavelength converter based on degenerate FWM,” in 2nd International Conference on Transparent Optical Networks, 2000 (2000), pp. 179–182.
  34. I. Moerman, P. Van Daele, and P. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 1308–1320 (1997).
    [CrossRef]
  35. L. Vivien, X. Le Roux, S. Laval, E. Cassan, and D. Marris-Morini, “Design, realization, and characterization of 3-D taper for fiber/micro-waveguide coupling,” IEEE J. Sel. Top. Quantum Electron.12(6), 1354–1358 (2006).
    [CrossRef]
  36. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
    [CrossRef]
  37. T. Tsuchizawa, K. Yamada, T. Watanabe, H. Fukuda, H. Nishi, H. Shinojima, and S. Itabashi, “Spot-size converters for rib-type Silicon photonic wire waveguides” in 2008 5th IEEE International Conference on Group IV Photonics(2008), pp. 200–202 (2008).
  38. B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm Silicon-on-insulator Wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
    [CrossRef]
  39. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Elec. Lett.38(25), 1669–1670 (2002).
    [CrossRef]
  40. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003).
    [CrossRef] [PubMed]
  41. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]
  42. T. Wahlbrink, W. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng.86(4-6), 1117–1119 (2009).
    [CrossRef]
  43. P. K. Tien, R. J. Martin, and G. Smolinsky, “Formation of light-guiding interconnections in an integrated optical circuit by composite tapered-film coupling,” Appl. Opt.12(8), 1909–1916 (1973).
    [CrossRef] [PubMed]
  44. S. Sottini, D. Grando, L. Palchetti, and E. Giorgetti, “Optical fiber-polymer guide coupling by a tapered graded index glass guide,” IEEE J. Quant. Elec.31(6), 1123–1130 (1995).
    [CrossRef]
  45. F. Soares, F. Karouta, E. Geluk, J. van Zantvoort, H. de Waardt, R. Baets, and M. Smit, “Low loss InP based spot size converter based on a vertical taper,” in 12th European Conference on Integrated Optics (Grenoble, France, 2005), pp. 104–107.
  46. R. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow loss high delta silica germania planar waveguides,” J. Electrochem. Soc.151(8), G541–G547 (2004).
    [CrossRef]
  47. www.nufern.com .
  48. www.fibercore.com .
  49. M. Fadel, M. Bulters, M. Niemand, E. Voges, and P. Krummrich, “Low-loss and low-birefringence high-contrast Silicon-Oxynitride waveguides for optical communication,” J. Lightwave Technol.27(6), 698–705 (2009).
    [CrossRef]
  50. H. Hanafusa, M. Horiguchi, and J. Noda, “Thermally diffused expanded core fibers for low loss and inexpensive photonic components,” Elec. Lett.27(21), 1968–1969 (1991).
    [CrossRef]
  51. A. Martinez-Rios, I. Torres-Gomez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering & fattening,” Rev. Mex. Fis.56, 80–84 (2010).
  52. www.feasa.com .
  53. www.microchem.com .
  54. D. Bulla, R. Wang, A. Prasad, A. Rode, S. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process.96(3), 615–625 (2009).
    [CrossRef]
  55. www.microresist.de/home_en.htm .
  56. M. Nordstrom, D. Zauner, A. Boisen, and J. Hubner, “Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications,” J. Lightwave Technol.25(5), 1284–1289 (2007).
    [CrossRef]
  57. B. Yang, L. Yang, R. Hu, Z. Sheng, D. Dai, Q. Liu, and S. He, “Fabrication and characterization of small optical ridge waveguides based on SU-8 polymer,” J. Lightwave Technol.27(18), 4091–4096 (2009).
    [CrossRef]
  58. S. Madden, D. Choi, A. Rode, and B. Luther-Davies, “Low loss etched Ge33As12Se55 Chalcogenide waveguides,” in Australian Conference on Optical Fiber Technology (2006), pp. 75–78.
  59. D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express20(12), 13425–13439 (2012).
    [CrossRef] [PubMed]
  60. T. Han, S. Madden, S. Debbarma, and B. Luther-Davies, “Improved method for hot embossing As2S3 waveguides employing a thermally stable Chalcogenide coating,” Opt. Express19(25), 25447–25453 (2011).
    [CrossRef] [PubMed]

2013 (2)

T. Ning, O. Hyvärinen, H. Pietarinen, T. Kaplas, M. Kauranen, and G. Genty, “Third-harmonic UV generation in Silicon nitride nanostructures,” Opt. Exp.21(2), 2012–2017 (2013).
[CrossRef]

K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Exp.21(1), 1335–1343 (2013).
[CrossRef]

2012 (3)

A. Subramanian, G. Murugan, M. Zervas, and J. Wilkinson, “High index contrast Er:Ta2O5 waveguide amplifier on oxidised silicon,” Opt. Commun.285(2), 124–127 (2012).
[CrossRef]

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett.100(22), 223501 (2012).
[CrossRef]

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express20(12), 13425–13439 (2012).
[CrossRef] [PubMed]

2011 (4)

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011).
[CrossRef] [PubMed]

T. Han, S. Madden, S. Debbarma, and B. Luther-Davies, “Improved method for hot embossing As2S3 waveguides employing a thermally stable Chalcogenide coating,” Opt. Express19(25), 25447–25453 (2011).
[CrossRef] [PubMed]

A. Pasquazi, M. Peccianti, Y. Park, B. Little, S. Chu, R. Morandotti, J. Azaña, and D. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics5(10), 618–623 (2011).
[CrossRef]

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

2010 (15)

E. Teraoka, D. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett.97(7), 071105 (2010).
[CrossRef]

M. Pelusi, F. Luan, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, and B. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

R. Pant, C. Xiong, S. Madden, B. Davies, and B. Eggleton, “Investigation of all-optical analog-to-digital quantization using a Chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun.283(10), 2258–2262 (2010).
[CrossRef]

M. Pelusi, F. Luan, D. Choi, S. Madden, D. Bulla, B. Luther-Davies, and B. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Exp.18(25), 26686–26694 (2010).
[CrossRef]

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

K. Vu and S. Madden, “Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8dB/cm internal gain,” Opt. Exp.18(18), 19192–19200 (2010).
[CrossRef]

X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550nm,” Opt. Exp.18(18), 18866–18874 (2010).
[CrossRef]

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm Silicon-on-insulator Wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

A. Martinez-Rios, I. Torres-Gomez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering & fattening,” Rev. Mex. Fis.56, 80–84 (2010).

D. Duchesne, M. Peccianti, M. R. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express18(2), 923–930 (2010).
[CrossRef] [PubMed]

J. Bradley, L. Agazzi, D. Geskus, F. Ay, K. Wörhoff, and M. Pollnau, “Gain bandwidth of 80 nm and 2 dB/cm peak gain in Al2O3:Er3+ optical amplifiers on silicon,” J. Opt. Soc. Am. B27(2), 187–196 (2010).
[CrossRef]

J. Van Erps, F. Luan, M. Pelusi, T. Iredale, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, H. Thienpont, and B. Eggleton, “High-resolution optical sampling of 640-Gb/s data using Four-Wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol.28(2), 209–215 (2010).
[CrossRef]

X. Xia, Q. Chen, C. Tsay, C. B. Arnold, and C. K. Madsen, “Low-loss Chalcogenide waveguides on lithium niobate for the mid-infrared,” Opt. Lett.35(19), 3228–3230 (2010).
[CrossRef] [PubMed]

J. Van Erps, J. Schröder, T. D. Vo, M. D. Pelusi, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Automatic dispersion compensation for 1.28Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express18(24), 25415–25421 (2010).
[CrossRef] [PubMed]

2009 (6)

2008 (1)

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

2007 (4)

V. Ta'eed, M. Pelusi, B. Eggleton, D. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Exp.15(23), 15047–15052 (2007).
[CrossRef]

M. Lamont, V. Ta'eed, M. Roelens, D. Moss, B. Eggleton, D. Choi, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross-phase modulation in 5cm of As2S3 Chalcogenide glass rib waveguide,” Elec. Lett.43(17), 945–947 (2007).
[CrossRef]

M. Nordstrom, D. Zauner, A. Boisen, and J. Hubner, “Single-mode waveguides with SU-8 polymer core and cladding for MOEMS applications,” J. Lightwave Technol.25(5), 1284–1289 (2007).
[CrossRef]

J. Hu, N. N. Feng, N. Carlie, L. Petit, J. Wang, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss high-index-contrast planar waveguides with graded-index cladding layers,” Opt. Express15(22), 14566–14572 (2007).
[CrossRef] [PubMed]

2006 (2)

V. G. Ta’eed, M. R. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in Chalcogenide glass rib waveguides,” Opt. Express14(23), 11242–11247 (2006).
[CrossRef] [PubMed]

L. Vivien, X. Le Roux, S. Laval, E. Cassan, and D. Marris-Morini, “Design, realization, and characterization of 3-D taper for fiber/micro-waveguide coupling,” IEEE J. Sel. Top. Quantum Electron.12(6), 1354–1358 (2006).
[CrossRef]

2005 (1)

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

2004 (2)

R. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow loss high delta silica germania planar waveguides,” J. Electrochem. Soc.151(8), G541–G547 (2004).
[CrossRef]

C. Baker, J. Heikenfeld, Z. Yu, and A. Steckl, “Optical amplification and electroluminescence at 1.54μm in Er-doped Zinc silicate Germanate on Silicon,” Appl. Phys. Lett.84(9), 1462–1464 (2004).
[CrossRef]

2003 (3)

2002 (1)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Elec. Lett.38(25), 1669–1670 (2002).
[CrossRef]

1997 (1)

I. Moerman, P. Van Daele, and P. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 1308–1320 (1997).
[CrossRef]

1995 (1)

S. Sottini, D. Grando, L. Palchetti, and E. Giorgetti, “Optical fiber-polymer guide coupling by a tapered graded index glass guide,” IEEE J. Quant. Elec.31(6), 1123–1130 (1995).
[CrossRef]

1991 (1)

H. Hanafusa, M. Horiguchi, and J. Noda, “Thermally diffused expanded core fibers for low loss and inexpensive photonic components,” Elec. Lett.27(21), 1968–1969 (1991).
[CrossRef]

1973 (1)

Agarwal, A.

Agazzi, L.

Alibert, G.

R. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow loss high delta silica germania planar waveguides,” J. Electrochem. Soc.151(8), G541–G547 (2004).
[CrossRef]

Almeida, V. R.

Arnold, C. B.

Ay, F.

Azaña, J.

A. Pasquazi, M. Peccianti, Y. Park, B. Little, S. Chu, R. Morandotti, J. Azaña, and D. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics5(10), 618–623 (2011).
[CrossRef]

Baker, C.

C. Baker, J. Heikenfeld, Z. Yu, and A. Steckl, “Optical amplification and electroluminescence at 1.54μm in Er-doped Zinc silicate Germanate on Silicon,” Appl. Phys. Lett.84(9), 1462–1464 (2004).
[CrossRef]

Barbosa-Garcia, O.

A. Martinez-Rios, I. Torres-Gomez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering & fattening,” Rev. Mex. Fis.56, 80–84 (2010).

Beguin, A.

R. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow loss high delta silica germania planar waveguides,” J. Electrochem. Soc.151(8), G541–G547 (2004).
[CrossRef]

Bellman, R.

R. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow loss high delta silica germania planar waveguides,” J. Electrochem. Soc.151(8), G541–G547 (2004).
[CrossRef]

Ben Bakir, B.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm Silicon-on-insulator Wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

Berglund, W.

R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534nm in Erbium-doped Zirconia waveguides,” IEEE J. Quant. Elec.39(1), 154–159 (2003).
[CrossRef]

Boisen, A.

Bolten, J.

T. Wahlbrink, W. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng.86(4-6), 1117–1119 (2009).
[CrossRef]

Bourdon, G.

R. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow loss high delta silica germania planar waveguides,” J. Electrochem. Soc.151(8), G541–G547 (2004).
[CrossRef]

Bowers, J. E.

Bradley, J.

Broaddus, D.

E. Teraoka, D. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett.97(7), 071105 (2010).
[CrossRef]

Bulla, D.

M. Pelusi, F. Luan, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, and B. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

M. Pelusi, F. Luan, D. Choi, S. Madden, D. Bulla, B. Luther-Davies, and B. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Exp.18(25), 26686–26694 (2010).
[CrossRef]

X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550nm,” Opt. Exp.18(18), 18866–18874 (2010).
[CrossRef]

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

J. Van Erps, F. Luan, M. Pelusi, T. Iredale, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, H. Thienpont, and B. Eggleton, “High-resolution optical sampling of 640-Gb/s data using Four-Wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol.28(2), 209–215 (2010).
[CrossRef]

D. Bulla, R. Wang, A. Prasad, A. Rode, S. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process.96(3), 615–625 (2009).
[CrossRef]

V. Ta'eed, M. Pelusi, B. Eggleton, D. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Exp.15(23), 15047–15052 (2007).
[CrossRef]

Bulla, D. A.

Bulters, M.

Carlie, N.

Cassan, E.

L. Vivien, X. Le Roux, S. Laval, E. Cassan, and D. Marris-Morini, “Design, realization, and characterization of 3-D taper for fiber/micro-waveguide coupling,” IEEE J. Sel. Top. Quantum Electron.12(6), 1354–1358 (2006).
[CrossRef]

Chen, Q.

Choi, D.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

M. Pelusi, F. Luan, D. Choi, S. Madden, D. Bulla, B. Luther-Davies, and B. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Exp.18(25), 26686–26694 (2010).
[CrossRef]

M. Pelusi, F. Luan, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, and B. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550nm,” Opt. Exp.18(18), 18866–18874 (2010).
[CrossRef]

J. Van Erps, F. Luan, M. Pelusi, T. Iredale, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, H. Thienpont, and B. Eggleton, “High-resolution optical sampling of 640-Gb/s data using Four-Wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol.28(2), 209–215 (2010).
[CrossRef]

M. Lamont, V. Ta'eed, M. Roelens, D. Moss, B. Eggleton, D. Choi, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross-phase modulation in 5cm of As2S3 Chalcogenide glass rib waveguide,” Elec. Lett.43(17), 945–947 (2007).
[CrossRef]

V. Ta'eed, M. Pelusi, B. Eggleton, D. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Exp.15(23), 15047–15052 (2007).
[CrossRef]

Choi, D. Y.

Chu, S.

A. Pasquazi, M. Peccianti, Y. Park, B. Little, S. Chu, R. Morandotti, J. Azaña, and D. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics5(10), 618–623 (2011).
[CrossRef]

D. Duchesne, M. Peccianti, M. R. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express18(2), 923–930 (2010).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Clark, A.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

Dai, D.

Davies, B.

R. Pant, C. Xiong, S. Madden, B. Davies, and B. Eggleton, “Investigation of all-optical analog-to-digital quantization using a Chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun.283(10), 2258–2262 (2010).
[CrossRef]

de Gyves, A. V.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm Silicon-on-insulator Wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

Debbarma, S.

Demeester, P.

I. Moerman, P. Van Daele, and P. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 1308–1320 (1997).
[CrossRef]

Dorenbos, S.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

Duchesne, D.

D. Duchesne, M. Peccianti, M. R. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express18(2), 923–930 (2010).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Duran-Ramirez, V.

A. Martinez-Rios, I. Torres-Gomez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering & fattening,” Rev. Mex. Fis.56, 80–84 (2010).

Eggleton, B.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

R. Pant, C. Xiong, S. Madden, B. Davies, and B. Eggleton, “Investigation of all-optical analog-to-digital quantization using a Chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun.283(10), 2258–2262 (2010).
[CrossRef]

M. Pelusi, F. Luan, D. Choi, S. Madden, D. Bulla, B. Luther-Davies, and B. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Exp.18(25), 26686–26694 (2010).
[CrossRef]

M. Pelusi, F. Luan, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, and B. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

J. Van Erps, F. Luan, M. Pelusi, T. Iredale, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, H. Thienpont, and B. Eggleton, “High-resolution optical sampling of 640-Gb/s data using Four-Wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol.28(2), 209–215 (2010).
[CrossRef]

M. Lamont, V. Ta'eed, M. Roelens, D. Moss, B. Eggleton, D. Choi, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross-phase modulation in 5cm of As2S3 Chalcogenide glass rib waveguide,” Elec. Lett.43(17), 945–947 (2007).
[CrossRef]

V. Ta'eed, M. Pelusi, B. Eggleton, D. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Exp.15(23), 15047–15052 (2007).
[CrossRef]

Eggleton, B. J.

Fadel, M.

Fedeli, J.-M.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm Silicon-on-insulator Wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

Feng, N. N.

Ferrera, M.

D. Duchesne, M. Peccianti, M. R. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express18(2), 923–930 (2010).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Ford, C.

R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534nm in Erbium-doped Zirconia waveguides,” IEEE J. Quant. Elec.39(1), 154–159 (2003).
[CrossRef]

Forst, M.

T. Wahlbrink, W. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng.86(4-6), 1117–1119 (2009).
[CrossRef]

Foster, M.

K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Exp.21(1), 1335–1343 (2013).
[CrossRef]

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Gaeta, A.

K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Exp.21(1), 1335–1343 (2013).
[CrossRef]

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

E. Teraoka, D. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett.97(7), 071105 (2010).
[CrossRef]

Gaeta, A. L.

Gai, X.

X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550nm,” Opt. Exp.18(18), 18866–18874 (2010).
[CrossRef]

Genty, G.

T. Ning, O. Hyvärinen, H. Pietarinen, T. Kaplas, M. Kauranen, and G. Genty, “Third-harmonic UV generation in Silicon nitride nanostructures,” Opt. Exp.21(2), 2012–2017 (2013).
[CrossRef]

Geskus, D.

Giorgetti, E.

S. Sottini, D. Grando, L. Palchetti, and E. Giorgetti, “Optical fiber-polymer guide coupling by a tapered graded index glass guide,” IEEE J. Quant. Elec.31(6), 1123–1130 (1995).
[CrossRef]

Gondarenko, A.

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Gopinath, A.

R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534nm in Erbium-doped Zirconia waveguides,” IEEE J. Quant. Elec.39(1), 154–159 (2003).
[CrossRef]

Grando, D.

S. Sottini, D. Grando, L. Palchetti, and E. Giorgetti, “Optical fiber-polymer guide coupling by a tapered graded index glass guide,” IEEE J. Quant. Elec.31(6), 1123–1130 (1995).
[CrossRef]

Guiot, E.

R. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow loss high delta silica germania planar waveguides,” J. Electrochem. Soc.151(8), G541–G547 (2004).
[CrossRef]

Guiziou, L.

R. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow loss high delta silica germania planar waveguides,” J. Electrochem. Soc.151(8), G541–G547 (2004).
[CrossRef]

Hadfield, R.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

Han, T.

Hanafusa, H.

H. Hanafusa, M. Horiguchi, and J. Noda, “Thermally diffused expanded core fibers for low loss and inexpensive photonic components,” Elec. Lett.27(21), 1968–1969 (1991).
[CrossRef]

He, S.

Heikenfeld, J.

C. Baker, J. Heikenfeld, Z. Yu, and A. Steckl, “Optical amplification and electroluminescence at 1.54μm in Er-doped Zinc silicate Germanate on Silicon,” Appl. Phys. Lett.84(9), 1462–1464 (2004).
[CrossRef]

Horiguchi, M.

H. Hanafusa, M. Horiguchi, and J. Noda, “Thermally diffused expanded core fibers for low loss and inexpensive photonic components,” Elec. Lett.27(21), 1968–1969 (1991).
[CrossRef]

Hu, J.

Hu, R.

Hubner, J.

Hyvärinen, O.

T. Ning, O. Hyvärinen, H. Pietarinen, T. Kaplas, M. Kauranen, and G. Genty, “Third-harmonic UV generation in Silicon nitride nanostructures,” Opt. Exp.21(2), 2012–2017 (2013).
[CrossRef]

Iredale, T.

Itabashi,

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Johnson, A.

K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Exp.21(1), 1335–1343 (2013).
[CrossRef]

Jun-ichi Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Kaplas, T.

T. Ning, O. Hyvärinen, H. Pietarinen, T. Kaplas, M. Kauranen, and G. Genty, “Third-harmonic UV generation in Silicon nitride nanostructures,” Opt. Exp.21(2), 2012–2017 (2013).
[CrossRef]

Kauranen, M.

T. Ning, O. Hyvärinen, H. Pietarinen, T. Kaplas, M. Kauranen, and G. Genty, “Third-harmonic UV generation in Silicon nitride nanostructures,” Opt. Exp.21(2), 2012–2017 (2013).
[CrossRef]

Kawasaki, M.

E. Teraoka, D. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett.97(7), 071105 (2010).
[CrossRef]

Kimerling, L.

Kita, T.

E. Teraoka, D. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett.97(7), 071105 (2010).
[CrossRef]

Krummrich, P.

Kurz, H.

T. Wahlbrink, W. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng.86(4-6), 1117–1119 (2009).
[CrossRef]

Lamont, M.

K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Exp.21(1), 1335–1343 (2013).
[CrossRef]

M. Lamont, V. Ta'eed, M. Roelens, D. Moss, B. Eggleton, D. Choi, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross-phase modulation in 5cm of As2S3 Chalcogenide glass rib waveguide,” Elec. Lett.43(17), 945–947 (2007).
[CrossRef]

Lamont, M. R.

Laval, S.

L. Vivien, X. Le Roux, S. Laval, E. Cassan, and D. Marris-Morini, “Design, realization, and characterization of 3-D taper for fiber/micro-waveguide coupling,” IEEE J. Sel. Top. Quantum Electron.12(6), 1354–1358 (2006).
[CrossRef]

Le Roux, X.

L. Vivien, X. Le Roux, S. Laval, E. Cassan, and D. Marris-Morini, “Design, realization, and characterization of 3-D taper for fiber/micro-waveguide coupling,” IEEE J. Sel. Top. Quantum Electron.12(6), 1354–1358 (2006).
[CrossRef]

Légaré, F.

LeGuen, E.

R. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow loss high delta silica germania planar waveguides,” J. Electrochem. Soc.151(8), G541–G547 (2004).
[CrossRef]

Lehuede, P.

R. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow loss high delta silica germania planar waveguides,” J. Electrochem. Soc.151(8), G541–G547 (2004).
[CrossRef]

Levy, J.

K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Exp.21(1), 1335–1343 (2013).
[CrossRef]

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Levy, J. S.

Lipson, M.

K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Exp.21(1), 1335–1343 (2013).
[CrossRef]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011).
[CrossRef] [PubMed]

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003).
[CrossRef] [PubMed]

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Little, B.

A. Pasquazi, M. Peccianti, Y. Park, B. Little, S. Chu, R. Morandotti, J. Azaña, and D. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics5(10), 618–623 (2011).
[CrossRef]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Little, B. E.

Liu, Q.

Lobino, M.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

Luan, F.

M. Pelusi, F. Luan, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, and B. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

M. Pelusi, F. Luan, D. Choi, S. Madden, D. Bulla, B. Luther-Davies, and B. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Exp.18(25), 26686–26694 (2010).
[CrossRef]

J. Van Erps, F. Luan, M. Pelusi, T. Iredale, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, H. Thienpont, and B. Eggleton, “High-resolution optical sampling of 640-Gb/s data using Four-Wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol.28(2), 209–215 (2010).
[CrossRef]

M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a Chalcogenide chip,” Opt. Express17(11), 9314–9322 (2009).
[CrossRef] [PubMed]

Luther-Davies, B.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

T. Han, S. Madden, S. Debbarma, and B. Luther-Davies, “Improved method for hot embossing As2S3 waveguides employing a thermally stable Chalcogenide coating,” Opt. Express19(25), 25447–25453 (2011).
[CrossRef] [PubMed]

J. Van Erps, J. Schröder, T. D. Vo, M. D. Pelusi, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Automatic dispersion compensation for 1.28Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express18(24), 25415–25421 (2010).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, D. Choi, S. Madden, D. Bulla, B. Luther-Davies, and B. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Exp.18(25), 26686–26694 (2010).
[CrossRef]

M. Pelusi, F. Luan, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, and B. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550nm,” Opt. Exp.18(18), 18866–18874 (2010).
[CrossRef]

J. Van Erps, F. Luan, M. Pelusi, T. Iredale, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, H. Thienpont, and B. Eggleton, “High-resolution optical sampling of 640-Gb/s data using Four-Wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol.28(2), 209–215 (2010).
[CrossRef]

M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a Chalcogenide chip,” Opt. Express17(11), 9314–9322 (2009).
[CrossRef] [PubMed]

D. Bulla, R. Wang, A. Prasad, A. Rode, S. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process.96(3), 615–625 (2009).
[CrossRef]

M. Lamont, V. Ta'eed, M. Roelens, D. Moss, B. Eggleton, D. Choi, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross-phase modulation in 5cm of As2S3 Chalcogenide glass rib waveguide,” Elec. Lett.43(17), 945–947 (2007).
[CrossRef]

V. Ta'eed, M. Pelusi, B. Eggleton, D. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Exp.15(23), 15047–15052 (2007).
[CrossRef]

V. G. Ta’eed, M. R. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in Chalcogenide glass rib waveguides,” Opt. Express14(23), 11242–11247 (2006).
[CrossRef] [PubMed]

Lyan, P.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm Silicon-on-insulator Wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

Madden, S.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

T. Han, S. Madden, S. Debbarma, and B. Luther-Davies, “Improved method for hot embossing As2S3 waveguides employing a thermally stable Chalcogenide coating,” Opt. Express19(25), 25447–25453 (2011).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, D. Choi, S. Madden, D. Bulla, B. Luther-Davies, and B. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Exp.18(25), 26686–26694 (2010).
[CrossRef]

R. Pant, C. Xiong, S. Madden, B. Davies, and B. Eggleton, “Investigation of all-optical analog-to-digital quantization using a Chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun.283(10), 2258–2262 (2010).
[CrossRef]

M. Pelusi, F. Luan, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, and B. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550nm,” Opt. Exp.18(18), 18866–18874 (2010).
[CrossRef]

K. Vu and S. Madden, “Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8dB/cm internal gain,” Opt. Exp.18(18), 19192–19200 (2010).
[CrossRef]

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

J. Van Erps, F. Luan, M. Pelusi, T. Iredale, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, H. Thienpont, and B. Eggleton, “High-resolution optical sampling of 640-Gb/s data using Four-Wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol.28(2), 209–215 (2010).
[CrossRef]

J. Van Erps, J. Schröder, T. D. Vo, M. D. Pelusi, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Automatic dispersion compensation for 1.28Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express18(24), 25415–25421 (2010).
[CrossRef] [PubMed]

D. Bulla, R. Wang, A. Prasad, A. Rode, S. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process.96(3), 615–625 (2009).
[CrossRef]

M. Lamont, V. Ta'eed, M. Roelens, D. Moss, B. Eggleton, D. Choi, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross-phase modulation in 5cm of As2S3 Chalcogenide glass rib waveguide,” Elec. Lett.43(17), 945–947 (2007).
[CrossRef]

V. Ta'eed, M. Pelusi, B. Eggleton, D. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Exp.15(23), 15047–15052 (2007).
[CrossRef]

V. G. Ta’eed, M. R. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in Chalcogenide glass rib waveguides,” Opt. Express14(23), 11242–11247 (2006).
[CrossRef] [PubMed]

Madden, S. J.

Madsen, C. K.

Marris-Morini, D.

L. Vivien, X. Le Roux, S. Laval, E. Cassan, and D. Marris-Morini, “Design, realization, and characterization of 3-D taper for fiber/micro-waveguide coupling,” IEEE J. Sel. Top. Quantum Electron.12(6), 1354–1358 (2006).
[CrossRef]

Marshall, G.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

Martin, R. J.

Martinez-Rios, A.

A. Martinez-Rios, I. Torres-Gomez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering & fattening,” Rev. Mex. Fis.56, 80–84 (2010).

McNab, S.

Moerman, I.

I. Moerman, P. Van Daele, and P. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 1308–1320 (1997).
[CrossRef]

Moll, N.

Mollenhauer, T.

T. Wahlbrink, W. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng.86(4-6), 1117–1119 (2009).
[CrossRef]

Monzon-Hernandez, D.

A. Martinez-Rios, I. Torres-Gomez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering & fattening,” Rev. Mex. Fis.56, 80–84 (2010).

Morandotti, R.

A. Pasquazi, M. Peccianti, Y. Park, B. Little, S. Chu, R. Morandotti, J. Azaña, and D. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics5(10), 618–623 (2011).
[CrossRef]

D. Duchesne, M. Peccianti, M. R. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express18(2), 923–930 (2010).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Elec. Lett.38(25), 1669–1670 (2002).
[CrossRef]

Moss, D.

A. Pasquazi, M. Peccianti, Y. Park, B. Little, S. Chu, R. Morandotti, J. Azaña, and D. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics5(10), 618–623 (2011).
[CrossRef]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

M. Lamont, V. Ta'eed, M. Roelens, D. Moss, B. Eggleton, D. Choi, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross-phase modulation in 5cm of As2S3 Chalcogenide glass rib waveguide,” Elec. Lett.43(17), 945–947 (2007).
[CrossRef]

Moss, D. J.

Murugan, G.

A. Subramanian, G. Murugan, M. Zervas, and J. Wilkinson, “High index contrast Er:Ta2O5 waveguide amplifier on oxidised silicon,” Opt. Commun.285(2), 124–127 (2012).
[CrossRef]

Natarajan, C.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

Niemand, M.

Ning, T.

T. Ning, O. Hyvärinen, H. Pietarinen, T. Kaplas, M. Kauranen, and G. Genty, “Third-harmonic UV generation in Silicon nitride nanostructures,” Opt. Exp.21(2), 2012–2017 (2013).
[CrossRef]

Noda, J.

H. Hanafusa, M. Horiguchi, and J. Noda, “Thermally diffused expanded core fibers for low loss and inexpensive photonic components,” Elec. Lett.27(21), 1968–1969 (1991).
[CrossRef]

Nordstrom, M.

Obrien, J.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

Okawachi, Y.

K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Exp.21(1), 1335–1343 (2013).
[CrossRef]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011).
[CrossRef] [PubMed]

Orobtchouk, R.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm Silicon-on-insulator Wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

Palchetti, L.

S. Sottini, D. Grando, L. Palchetti, and E. Giorgetti, “Optical fiber-polymer guide coupling by a tapered graded index glass guide,” IEEE J. Quant. Elec.31(6), 1123–1130 (1995).
[CrossRef]

Panepucci, R. R.

Pant, R.

R. Pant, C. Xiong, S. Madden, B. Davies, and B. Eggleton, “Investigation of all-optical analog-to-digital quantization using a Chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun.283(10), 2258–2262 (2010).
[CrossRef]

Park, Y.

A. Pasquazi, M. Peccianti, Y. Park, B. Little, S. Chu, R. Morandotti, J. Azaña, and D. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics5(10), 618–623 (2011).
[CrossRef]

Pasquazi, A.

A. Pasquazi, M. Peccianti, Y. Park, B. Little, S. Chu, R. Morandotti, J. Azaña, and D. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics5(10), 618–623 (2011).
[CrossRef]

Peccianti, M.

A. Pasquazi, M. Peccianti, Y. Park, B. Little, S. Chu, R. Morandotti, J. Azaña, and D. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics5(10), 618–623 (2011).
[CrossRef]

D. Duchesne, M. Peccianti, M. R. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express18(2), 923–930 (2010).
[CrossRef] [PubMed]

Pelusi, M.

J. Van Erps, F. Luan, M. Pelusi, T. Iredale, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, H. Thienpont, and B. Eggleton, “High-resolution optical sampling of 640-Gb/s data using Four-Wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides,” J. Lightwave Technol.28(2), 209–215 (2010).
[CrossRef]

M. Pelusi, F. Luan, D. Choi, S. Madden, D. Bulla, B. Luther-Davies, and B. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Exp.18(25), 26686–26694 (2010).
[CrossRef]

M. Pelusi, F. Luan, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, and B. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

V. Ta'eed, M. Pelusi, B. Eggleton, D. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Exp.15(23), 15047–15052 (2007).
[CrossRef]

Pelusi, M. D.

Pernice, W.

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett.100(22), 223501 (2012).
[CrossRef]

Peruzzo, A.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

Petit, L.

Pietarinen, H.

T. Ning, O. Hyvärinen, H. Pietarinen, T. Kaplas, M. Kauranen, and G. Genty, “Third-harmonic UV generation in Silicon nitride nanostructures,” Opt. Exp.21(2), 2012–2017 (2013).
[CrossRef]

Pollnau, M.

Porzier, C.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm Silicon-on-insulator Wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

Prasad, A.

D. Bulla, R. Wang, A. Prasad, A. Rode, S. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process.96(3), 615–625 (2009).
[CrossRef]

Ramberg, R.

R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534nm in Erbium-doped Zirconia waveguides,” IEEE J. Quant. Elec.39(1), 154–159 (2003).
[CrossRef]

Rarity, J.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

Razzari, L.

D. Duchesne, M. Peccianti, M. R. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express18(2), 923–930 (2010).
[CrossRef] [PubMed]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Richardson, K.

Rode, A.

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

D. Bulla, R. Wang, A. Prasad, A. Rode, S. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process.96(3), 615–625 (2009).
[CrossRef]

Roelens, M.

M. Lamont, V. Ta'eed, M. Roelens, D. Moss, B. Eggleton, D. Choi, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross-phase modulation in 5cm of As2S3 Chalcogenide glass rib waveguide,” Elec. Lett.43(17), 945–947 (2007).
[CrossRef]

Roman, A.

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm Silicon-on-insulator Wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

Saha, K.

K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Exp.21(1), 1335–1343 (2013).
[CrossRef]

Y. Okawachi, K. Saha, J. S. Levy, Y. H. Wen, M. Lipson, and A. L. Gaeta, “Octave-spanning frequency comb generation in a silicon nitride chip,” Opt. Lett.36(17), 3398–3400 (2011).
[CrossRef] [PubMed]

Salem, R.

K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Exp.21(1), 1335–1343 (2013).
[CrossRef]

Schermer, R.

R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534nm in Erbium-doped Zirconia waveguides,” IEEE J. Quant. Elec.39(1), 154–159 (2003).
[CrossRef]

Schröder, J.

Schuck, C.

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett.100(22), 223501 (2012).
[CrossRef]

Sheng, Z.

Shim, B.

K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Exp.21(1), 1335–1343 (2013).
[CrossRef]

Shoji, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Elec. Lett.38(25), 1669–1670 (2002).
[CrossRef]

Simpson, L.

R. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow loss high delta silica germania planar waveguides,” J. Electrochem. Soc.151(8), G541–G547 (2004).
[CrossRef]

Sipe, J.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Smolinsky, G.

Sottini, S.

S. Sottini, D. Grando, L. Palchetti, and E. Giorgetti, “Optical fiber-polymer guide coupling by a tapered graded index glass guide,” IEEE J. Quant. Elec.31(6), 1123–1130 (1995).
[CrossRef]

Steckl, A.

C. Baker, J. Heikenfeld, Z. Yu, and A. Steckl, “Optical amplification and electroluminescence at 1.54μm in Er-doped Zinc silicate Germanate on Silicon,” Appl. Phys. Lett.84(9), 1462–1464 (2004).
[CrossRef]

Steel, M.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

Subramanian, A.

A. Subramanian, G. Murugan, M. Zervas, and J. Wilkinson, “High index contrast Er:Ta2O5 waveguide amplifier on oxidised silicon,” Opt. Commun.285(2), 124–127 (2012).
[CrossRef]

Ta’eed, V. G.

Ta'eed, V.

M. Lamont, V. Ta'eed, M. Roelens, D. Moss, B. Eggleton, D. Choi, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross-phase modulation in 5cm of As2S3 Chalcogenide glass rib waveguide,” Elec. Lett.43(17), 945–947 (2007).
[CrossRef]

V. Ta'eed, M. Pelusi, B. Eggleton, D. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Exp.15(23), 15047–15052 (2007).
[CrossRef]

Takahashi, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Tamechika, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

Tang, H.

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett.100(22), 223501 (2012).
[CrossRef]

Tang, Y.

Tanner, M.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

Teraoka, E.

E. Teraoka, D. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett.97(7), 071105 (2010).
[CrossRef]

Thienpont, H.

Thompson, M.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

Tien, P. K.

Torres-Gomez, I.

A. Martinez-Rios, I. Torres-Gomez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering & fattening,” Rev. Mex. Fis.56, 80–84 (2010).

Tsai, W.

T. Wahlbrink, W. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng.86(4-6), 1117–1119 (2009).
[CrossRef]

Tsay, C.

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Elec. Lett.38(25), 1669–1670 (2002).
[CrossRef]

Tsukazaki, A.

E. Teraoka, D. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett.97(7), 071105 (2010).
[CrossRef]

Turner-Foster, A.

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Van Daele, P.

I. Moerman, P. Van Daele, and P. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 1308–1320 (1997).
[CrossRef]

Van Erps, J.

Vivien, L.

L. Vivien, X. Le Roux, S. Laval, E. Cassan, and D. Marris-Morini, “Design, realization, and characterization of 3-D taper for fiber/micro-waveguide coupling,” IEEE J. Sel. Top. Quantum Electron.12(6), 1354–1358 (2006).
[CrossRef]

Vlasov, Y.

Vo, T. D.

Voges, E.

Vu, K.

K. Vu and S. Madden, “Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8dB/cm internal gain,” Opt. Exp.18(18), 19192–19200 (2010).
[CrossRef]

Vu, K. T.

Wahlbrink, T.

T. Wahlbrink, W. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng.86(4-6), 1117–1119 (2009).
[CrossRef]

Waldow, M.

T. Wahlbrink, W. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng.86(4-6), 1117–1119 (2009).
[CrossRef]

Wang, J.

Wang, R.

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

D. Bulla, R. Wang, A. Prasad, A. Rode, S. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process.96(3), 615–625 (2009).
[CrossRef]

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Elec. Lett.38(25), 1669–1670 (2002).
[CrossRef]

Wen, Y. H.

Wilkinson, J.

A. Subramanian, G. Murugan, M. Zervas, and J. Wilkinson, “High index contrast Er:Ta2O5 waveguide amplifier on oxidised silicon,” Opt. Commun.285(2), 124–127 (2012).
[CrossRef]

Wörhoff, K.

Xia, X.

Xiong, C.

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett.100(22), 223501 (2012).
[CrossRef]

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

R. Pant, C. Xiong, S. Madden, B. Davies, and B. Eggleton, “Investigation of all-optical analog-to-digital quantization using a Chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun.283(10), 2258–2262 (2010).
[CrossRef]

Yamada, H.

E. Teraoka, D. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett.97(7), 071105 (2010).
[CrossRef]

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Elec. Lett.38(25), 1669–1670 (2002).
[CrossRef]

Yang, B.

Yang, L.

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

Yu, Z.

C. Baker, J. Heikenfeld, Z. Yu, and A. Steckl, “Optical amplification and electroluminescence at 1.54μm in Er-doped Zinc silicate Germanate on Silicon,” Appl. Phys. Lett.84(9), 1462–1464 (2004).
[CrossRef]

Zauner, D.

Zervas, M.

A. Subramanian, G. Murugan, M. Zervas, and J. Wilkinson, “High index contrast Er:Ta2O5 waveguide amplifier on oxidised silicon,” Opt. Commun.285(2), 124–127 (2012).
[CrossRef]

Zijlstra, T.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

Zwiller, V.

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

App. Phys. Lett. (1)

C. Xiong, G. Marshall, A. Peruzzo, M. Lobino, A. Clark, D. Choi, S. Madden, C. Natarajan, M. Tanner, R. Hadfield, S. Dorenbos, T. Zijlstra, V. Zwiller, M. Thompson, J. Rarity, M. Steel, B. Luther-Davies, B. Eggleton, and J. Obrien, “Generation of correlated photon pairs in a Chalcogenide As2S3 waveguide,” App. Phys. Lett.98, 051101–051103 (2011).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

E. Teraoka, D. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Appl. Phys. Lett.97(7), 071105 (2010).
[CrossRef]

W. Pernice, C. Xiong, C. Schuck, and H. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett.100(22), 223501 (2012).
[CrossRef]

C. Baker, J. Heikenfeld, Z. Yu, and A. Steckl, “Optical amplification and electroluminescence at 1.54μm in Er-doped Zinc silicate Germanate on Silicon,” Appl. Phys. Lett.84(9), 1462–1464 (2004).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

D. Bulla, R. Wang, A. Prasad, A. Rode, S. Madden, and B. Luther-Davies, “On the properties and stability of thermally evaporated Ge-As-Se thin films,” Appl. Phys., A Mater. Sci. Process.96(3), 615–625 (2009).
[CrossRef]

Elec. Lett. (3)

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibers,” Elec. Lett.38(25), 1669–1670 (2002).
[CrossRef]

H. Hanafusa, M. Horiguchi, and J. Noda, “Thermally diffused expanded core fibers for low loss and inexpensive photonic components,” Elec. Lett.27(21), 1968–1969 (1991).
[CrossRef]

M. Lamont, V. Ta'eed, M. Roelens, D. Moss, B. Eggleton, D. Choi, S. Madden, and B. Luther-Davies, “Error-free wavelength conversion via cross-phase modulation in 5cm of As2S3 Chalcogenide glass rib waveguide,” Elec. Lett.43(17), 945–947 (2007).
[CrossRef]

IEEE J. Quant. Elec. (2)

R. Schermer, W. Berglund, C. Ford, R. Ramberg, and A. Gopinath, “Optical amplification at 1534nm in Erbium-doped Zirconia waveguides,” IEEE J. Quant. Elec.39(1), 154–159 (2003).
[CrossRef]

S. Sottini, D. Grando, L. Palchetti, and E. Giorgetti, “Optical fiber-polymer guide coupling by a tapered graded index glass guide,” IEEE J. Quant. Elec.31(6), 1123–1130 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

I. Moerman, P. Van Daele, and P. Demeester, “A review on fabrication technologies for the monolithic integration of tapers with III-V semiconductor devices,” IEEE J. Sel. Top. Quantum Electron.3(6), 1308–1320 (1997).
[CrossRef]

L. Vivien, X. Le Roux, S. Laval, E. Cassan, and D. Marris-Morini, “Design, realization, and characterization of 3-D taper for fiber/micro-waveguide coupling,” IEEE J. Sel. Top. Quantum Electron.12(6), 1354–1358 (2006).
[CrossRef]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, M. Jun-ichi Takahashi, T. Takahashi, E. Shoji, S. Tamechika, Itabashi, and H. Morita, “Microphotonics devices based on silicon microfabrication technology,” IEEE J. Sel. Top. Quantum Electron.11(1), 232–240 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

D. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. Luther-Davies, “Submicrometer-thick low-loss As2S3 planar waveguides for nonlinear optical devices,” IEEE Photon. Technol. Lett.22(7), 495–497 (2010).
[CrossRef]

M. Pelusi, F. Luan, S. Madden, D. Choi, D. Bulla, B. Luther-Davies, and B. Eggleton, “Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear Chalcogenide glass chip,” IEEE Photon. Technol. Lett.22(1), 3–5 (2010).
[CrossRef]

B. Ben Bakir, A. V. de Gyves, R. Orobtchouk, P. Lyan, C. Porzier, A. Roman, and J.-M. Fedeli, “Low-loss (< 1 dB) and polarization-insensitive edge fiber couplers fabricated on 200-mm Silicon-on-insulator Wafers,” IEEE Photon. Technol. Lett.22(11), 739–741 (2010).
[CrossRef]

J. Electrochem. Soc. (1)

R. Bellman, G. Bourdon, G. Alibert, A. Beguin, E. Guiot, L. Simpson, P. Lehuede, L. Guiziou, and E. LeGuen, “Ultralow loss high delta silica germania planar waveguides,” J. Electrochem. Soc.151(8), G541–G547 (2004).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

Microelectron. Eng. (1)

T. Wahlbrink, W. Tsai, M. Waldow, M. Forst, J. Bolten, T. Mollenhauer, and H. Kurz, “Fabrication of high efficiency SOI taper structures,” Microelectron. Eng.86(4-6), 1117–1119 (2009).
[CrossRef]

Nat. Photonics (3)

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. Sipe, S. Chu, B. Little, and D. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics2(12), 737–740 (2008).
[CrossRef]

A. Pasquazi, M. Peccianti, Y. Park, B. Little, S. Chu, R. Morandotti, J. Azaña, and D. Moss, “Sub-picosecond phase-sensitive optical pulse characterization on a chip,” Nat. Photonics5(10), 618–623 (2011).
[CrossRef]

J. Levy, A. Gondarenko, M. Foster, A. Turner-Foster, A. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Opt. Commun. (2)

R. Pant, C. Xiong, S. Madden, B. Davies, and B. Eggleton, “Investigation of all-optical analog-to-digital quantization using a Chalcogenide waveguide: A step towards on-chip analog-to-digital conversion,” Opt. Commun.283(10), 2258–2262 (2010).
[CrossRef]

A. Subramanian, G. Murugan, M. Zervas, and J. Wilkinson, “High index contrast Er:Ta2O5 waveguide amplifier on oxidised silicon,” Opt. Commun.285(2), 124–127 (2012).
[CrossRef]

Opt. Exp. (6)

K. Vu and S. Madden, “Tellurium dioxide Erbium doped planar rib waveguide amplifiers with net gain and 2.8dB/cm internal gain,” Opt. Exp.18(18), 19192–19200 (2010).
[CrossRef]

T. Ning, O. Hyvärinen, H. Pietarinen, T. Kaplas, M. Kauranen, and G. Genty, “Third-harmonic UV generation in Silicon nitride nanostructures,” Opt. Exp.21(2), 2012–2017 (2013).
[CrossRef]

K. Saha, Y. Okawachi, B. Shim, J. Levy, R. Salem, A. Johnson, M. Foster, M. Lamont, M. Lipson, and A. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Exp.21(1), 1335–1343 (2013).
[CrossRef]

V. Ta'eed, M. Pelusi, B. Eggleton, D. Choi, S. Madden, D. Bulla, and B. Luther-Davies, “Broadband wavelength conversion at 40 Gb/s using long serpentine As2S3 planar waveguides,” Opt. Exp.15(23), 15047–15052 (2007).
[CrossRef]

M. Pelusi, F. Luan, D. Choi, S. Madden, D. Bulla, B. Luther-Davies, and B. Eggleton, “Optical phase conjugation by an As2S3 glass planar waveguide for dispersion-free transmission of WDM-DPSK signals over fiber,” Opt. Exp.18(25), 26686–26694 (2010).
[CrossRef]

X. Gai, S. Madden, D. Choi, D. Bulla, and B. Luther-Davies, “Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136W−1m−1 at 1550nm,” Opt. Exp.18(18), 18866–18874 (2010).
[CrossRef]

Opt. Express (9)

D. Duchesne, M. Peccianti, M. R. Lamont, M. Ferrera, L. Razzari, F. Légaré, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “Supercontinuum generation in a high index doped silica glass spiral waveguide,” Opt. Express18(2), 923–930 (2010).
[CrossRef] [PubMed]

S. J. Madden and K. T. Vu, “Very low loss reactively ion etched Tellurium dioxide planar rib waveguides for linear and non-linear optics,” Opt. Express17(20), 17645–17651 (2009).
[CrossRef] [PubMed]

J. Hu, N. N. Feng, N. Carlie, L. Petit, J. Wang, A. Agarwal, K. Richardson, and L. Kimerling, “Low-loss high-index-contrast planar waveguides with graded-index cladding layers,” Opt. Express15(22), 14566–14572 (2007).
[CrossRef] [PubMed]

M. D. Pelusi, T. D. Vo, F. Luan, S. J. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a Chalcogenide chip,” Opt. Express17(11), 9314–9322 (2009).
[CrossRef] [PubMed]

S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11(22), 2927–2939 (2003).
[CrossRef] [PubMed]

V. G. Ta’eed, M. R. Lamont, D. J. Moss, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “All optical wavelength conversion via cross phase modulation in Chalcogenide glass rib waveguides,” Opt. Express14(23), 11242–11247 (2006).
[CrossRef] [PubMed]

J. Van Erps, J. Schröder, T. D. Vo, M. D. Pelusi, S. Madden, D. Y. Choi, D. A. Bulla, B. Luther-Davies, and B. J. Eggleton, “Automatic dispersion compensation for 1.28Tb/s OTDM signal transmission using photonic-chip-based dispersion monitoring,” Opt. Express18(24), 25415–25421 (2010).
[CrossRef] [PubMed]

T. Han, S. Madden, S. Debbarma, and B. Luther-Davies, “Improved method for hot embossing As2S3 waveguides employing a thermally stable Chalcogenide coating,” Opt. Express19(25), 25447–25453 (2011).
[CrossRef] [PubMed]

D. Dai, Y. Tang, and J. E. Bowers, “Mode conversion in tapered submicron silicon ridge optical waveguides,” Opt. Express20(12), 13425–13439 (2012).
[CrossRef] [PubMed]

Opt. Lett. (3)

Rev. Mex. Fis. (1)

A. Martinez-Rios, I. Torres-Gomez, D. Monzon-Hernandez, O. Barbosa-Garcia, and V. Duran-Ramirez, “Reduction of splice loss between dissimilar fibers by tapering & fattening,” Rev. Mex. Fis.56, 80–84 (2010).

Other (12)

www.feasa.com .

www.microchem.com .

F. Soares, F. Karouta, E. Geluk, J. van Zantvoort, H. de Waardt, R. Baets, and M. Smit, “Low loss InP based spot size converter based on a vertical taper,” in 12th European Conference on Integrated Optics (Grenoble, France, 2005), pp. 104–107.

http://www.ozoptics.com .

B. Batagelj, “Conversion efficiency of fiber wavelength converter based on degenerate FWM,” in 2nd International Conference on Transparent Optical Networks, 2000 (2000), pp. 179–182.

T. Tsuchizawa, K. Yamada, T. Watanabe, H. Fukuda, H. Nishi, H. Shinojima, and S. Itabashi, “Spot-size converters for rib-type Silicon photonic wire waveguides” in 2008 5th IEEE International Conference on Group IV Photonics(2008), pp. 200–202 (2008).

C. C. Evans, K. Shtyrkova, J. D. Bradley, E. Ippen, and E. Mazur, “Spectral broadening of femtosecond pulses in polycrystalline anatase titanium dioxide waveguides,” paper JW4D.4. in Nonlinear Photonics, OSA Technical Digest, Optical Society of America, 2012.

C. Evans, J. Bradley, O. Reshef, E. Marti-Panameño, and E. Mazur, “Ultrafast all-optical switching in TiO2,” Nano-Optics for Enhancing Light-Matter Interactions on a Molecular Scale, NATO Science for Peace and Security Series B: Physics and Biophysics, ISBN 978–94–007–5312–9. Springer Science + Business Media Dordrecht, 2013, p. 377.

S. Madden, D. Choi, A. Rode, and B. Luther-Davies, “Low loss etched Ge33As12Se55 Chalcogenide waveguides,” in Australian Conference on Optical Fiber Technology (2006), pp. 75–78.

www.nufern.com .

www.fibercore.com .

www.microresist.de/home_en.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of vertical taper coupler from HIC rib waveguide core to intermediate waveguide.

Fig. 2
Fig. 2

a) Waveguide design with final refractive index values, b) Waveguide dimension and overlap loss to UHNA-3 fiber for optimum sized SU-8 core vs top cladding index at 1550nm. Green line shows transition from single mode operation on right hand side to multimode on left.

Fig. 3
Fig. 3

Measured fabricated vertical taper profiles in 0.85μm evaporated As2S3 films as function of evaporant source position (see inset for positions A and B relative to wafer rotation).

Fig. 4
Fig. 4

Linear taper transmission vs length for a) 4 x 0.85μm As2S3 rib waveguide in TM mode, b) 550 x 550nm As2S3 nanowire waveguide in TE and TM polarizations

Fig. 5
Fig. 5

Impact of lateral offset of SU-8 intermediate waveguide on transmission of 600μm long nanowire waveguide linear taper for TE and TM modes.

Fig. 6
Fig. 6

SU-8 waveguide propagation loss curve.

Fig. 7
Fig. 7

(a) Part of finished die showing stepped length As2S3 (orange) region with tapers at left and right sides and SU-8 coupling waveguides overlaying them at right and left sides (brighter white lines); (b) top view of end of taper structure: dark line pair delineates SU-8 overlay waveguide, color fringed line inside the SU-8 waveguide is the As2S3 vertical taper.

Fig. 8
Fig. 8

Insertion loss measurement results for taper waveguides showing raw data for 15 waveguides, five of each length, averaged points, and best fit line with parameters as per text.

Fig. 9
Fig. 9

Insertion loss spectrum of As2S3 waveguide with two taper couplers.

Fig. 10
Fig. 10

Pre and length compensated post dicing insertion loss results for SU-8 waveguides

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P DFWM = 4 27 η P s [ γ P pump α ] 2
P DFWMout P sin = 4 27 η η in η out [ γ η in P pump α ] 2

Metrics