Abstract

A novel nonlinear mirror structure is presented. A 23 nm-thick Au thin film separated from a 100 nm-thick Ag film by a dielectric spacer is used to drive the nonlinear optical response of the mirror. The linear and nonlinear optical properties of the mirror can be tuned by optimizing its layer thickness distribution. A figure-of-merit for the change in reflectance is derived for the nonlinear mirror and the nonlinear refractive index change of the Au layer is shown to be significantly enhanced in the mirror structure. The ultrafast reflectance change of the nonlinear mirror, studied using femtosecond white-light continuum pump-probe experiments, shows an extremely large magnitude and is both spectrally and angularly broad in the visible range.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Brzozowski and E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron.36(5), 550–555 (2000).
    [CrossRef]
  2. Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett.126(3-4), 280–284 (1986).
    [CrossRef]
  3. D. J. Harter, M. L. Shand, and Y. B. Band, “Power energy limiter using reverse saturable absorption,” J. Appl. Phys.56(3), 865–868 (1984).
    [CrossRef]
  4. C. S. Yelleswarapu, P. F. Wu, S. R. Kothapalli, D. V. Rao, B. R. Kimball, S. S. S. Sai, R. Gowrishankar, and S. Sivaramakrishnan, “All-optical spatial filtering with power limiting materials,” Opt. Express14(4), 1451–1457 (2006).
    [CrossRef] [PubMed]
  5. C. S. Yelleswarapu, S. R. Kothapalli, and D. V. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun.281(7), 1876–1888 (2008).
    [CrossRef] [PubMed]
  6. K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B45(3), 191–195 (1988).
    [CrossRef]
  7. J. B. Dherbecourt, A. Denoeud, J. M. Melkonian, M. Raybaut, A. Godard, M. Lefebvre, and E. Rosencher, “Picosecond tunable mode locking of a Cr(2+):ZnSe laser with a nonlinear mirror,” Opt. Lett.36(5), 751–753 (2011).
    [CrossRef] [PubMed]
  8. L. Brozozowski, V. Sukhovatkin, E. T. H. Sargent, A. T. J. Springthorpe, and M. Extavour, “Intensity-dependent reflectance and transmittance of semiconductor periodic structures,” IEEE J. Quantum Electron.39, 924–930 (2003).
  9. N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B75(15), 155426 (2007).
    [CrossRef]
  10. W. J. Scouler, “Temperature-modulated reflectance of gold from 2 to 10 ev,” Phys. Rev. Lett.18(12), 445–448 (1967).
    [CrossRef]
  11. J. Hsu, C. Fuentes-Hernandez, A. R. Ernst, J. M. Hales, J. W. Perry, and B. Kippelen, “Linear and nonlinear optical properties of Ag/Au bilayer thin films,” Opt. Express20(8), 8629–8640 (2012).
    [CrossRef] [PubMed]
  12. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, 2001), pp. 52–53.
  13. D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys.107(12), 123114 (2010).
    [CrossRef]
  14. K. H. Bennemann, ed., Nonlinear Optics in Metals, Femtosecond Time-Resolved Linear and Second-Order Reflectivity of Metals (Oxford University, 1998), Vol. 98, pp. 220–239.
  15. R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett.58(16), 1680–1683 (1987).
    [CrossRef] [PubMed]
  16. C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter50(20), 15337–15348 (1994).
    [CrossRef] [PubMed]

2012

2011

2010

D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys.107(12), 123114 (2010).
[CrossRef]

2008

C. S. Yelleswarapu, S. R. Kothapalli, and D. V. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun.281(7), 1876–1888 (2008).
[CrossRef] [PubMed]

2007

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B75(15), 155426 (2007).
[CrossRef]

2006

2003

L. Brozozowski, V. Sukhovatkin, E. T. H. Sargent, A. T. J. Springthorpe, and M. Extavour, “Intensity-dependent reflectance and transmittance of semiconductor periodic structures,” IEEE J. Quantum Electron.39, 924–930 (2003).

2000

L. Brzozowski and E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron.36(5), 550–555 (2000).
[CrossRef]

1994

C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter50(20), 15337–15348 (1994).
[CrossRef] [PubMed]

1988

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B45(3), 191–195 (1988).
[CrossRef]

1987

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett.58(16), 1680–1683 (1987).
[CrossRef] [PubMed]

1986

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett.126(3-4), 280–284 (1986).
[CrossRef]

1984

D. J. Harter, M. L. Shand, and Y. B. Band, “Power energy limiter using reverse saturable absorption,” J. Appl. Phys.56(3), 865–868 (1984).
[CrossRef]

1967

W. J. Scouler, “Temperature-modulated reflectance of gold from 2 to 10 ev,” Phys. Rev. Lett.18(12), 445–448 (1967).
[CrossRef]

Acioli, L. H.

C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter50(20), 15337–15348 (1994).
[CrossRef] [PubMed]

Band, Y. B.

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett.126(3-4), 280–284 (1986).
[CrossRef]

D. J. Harter, M. L. Shand, and Y. B. Band, “Power energy limiter using reverse saturable absorption,” J. Appl. Phys.56(3), 865–868 (1984).
[CrossRef]

Bavli, R.

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett.126(3-4), 280–284 (1986).
[CrossRef]

Betz, M.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B75(15), 155426 (2007).
[CrossRef]

Bristow, A. D.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B75(15), 155426 (2007).
[CrossRef]

Brozozowski, L.

L. Brozozowski, V. Sukhovatkin, E. T. H. Sargent, A. T. J. Springthorpe, and M. Extavour, “Intensity-dependent reflectance and transmittance of semiconductor periodic structures,” IEEE J. Quantum Electron.39, 924–930 (2003).

Brzozowski, L.

L. Brzozowski and E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron.36(5), 550–555 (2000).
[CrossRef]

Denoeud, A.

Dherbecourt, J. B.

Eesley, G. L.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett.58(16), 1680–1683 (1987).
[CrossRef] [PubMed]

Ernst, A. R.

Extavour, M.

L. Brozozowski, V. Sukhovatkin, E. T. H. Sargent, A. T. J. Springthorpe, and M. Extavour, “Intensity-dependent reflectance and transmittance of semiconductor periodic structures,” IEEE J. Quantum Electron.39, 924–930 (2003).

Fuentes-Hernandez, C.

J. Hsu, C. Fuentes-Hernandez, A. R. Ernst, J. M. Hales, J. W. Perry, and B. Kippelen, “Linear and nonlinear optical properties of Ag/Au bilayer thin films,” Opt. Express20(8), 8629–8640 (2012).
[CrossRef] [PubMed]

D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys.107(12), 123114 (2010).
[CrossRef]

Fujimoto, J. G.

C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter50(20), 15337–15348 (1994).
[CrossRef] [PubMed]

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett.58(16), 1680–1683 (1987).
[CrossRef] [PubMed]

Godard, A.

Gowrishankar, R.

Hales, J. M.

J. Hsu, C. Fuentes-Hernandez, A. R. Ernst, J. M. Hales, J. W. Perry, and B. Kippelen, “Linear and nonlinear optical properties of Ag/Au bilayer thin films,” Opt. Express20(8), 8629–8640 (2012).
[CrossRef] [PubMed]

D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys.107(12), 123114 (2010).
[CrossRef]

Harter, D. J.

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett.126(3-4), 280–284 (1986).
[CrossRef]

D. J. Harter, M. L. Shand, and Y. B. Band, “Power energy limiter using reverse saturable absorption,” J. Appl. Phys.56(3), 865–868 (1984).
[CrossRef]

Hsu, J.

Ippen, E. P.

C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter50(20), 15337–15348 (1994).
[CrossRef] [PubMed]

Kimball, B. R.

Kippelen, B.

J. Hsu, C. Fuentes-Hernandez, A. R. Ernst, J. M. Hales, J. W. Perry, and B. Kippelen, “Linear and nonlinear optical properties of Ag/Au bilayer thin films,” Opt. Express20(8), 8629–8640 (2012).
[CrossRef] [PubMed]

D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys.107(12), 123114 (2010).
[CrossRef]

Kothapalli, S. R.

C. S. Yelleswarapu, S. R. Kothapalli, and D. V. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun.281(7), 1876–1888 (2008).
[CrossRef] [PubMed]

C. S. Yelleswarapu, P. F. Wu, S. R. Kothapalli, D. V. Rao, B. R. Kimball, S. S. S. Sai, R. Gowrishankar, and S. Sivaramakrishnan, “All-optical spatial filtering with power limiting materials,” Opt. Express14(4), 1451–1457 (2006).
[CrossRef] [PubMed]

Lefebvre, M.

Lin, W. Z.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett.58(16), 1680–1683 (1987).
[CrossRef] [PubMed]

Melkonian, J. M.

Owens, D. T.

D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys.107(12), 123114 (2010).
[CrossRef]

Perry, J. W.

J. Hsu, C. Fuentes-Hernandez, A. R. Ernst, J. M. Hales, J. W. Perry, and B. Kippelen, “Linear and nonlinear optical properties of Ag/Au bilayer thin films,” Opt. Express20(8), 8629–8640 (2012).
[CrossRef] [PubMed]

D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys.107(12), 123114 (2010).
[CrossRef]

Pfeiffer, M.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B75(15), 155426 (2007).
[CrossRef]

Rao, D. V.

C. S. Yelleswarapu, S. R. Kothapalli, and D. V. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun.281(7), 1876–1888 (2008).
[CrossRef] [PubMed]

C. S. Yelleswarapu, P. F. Wu, S. R. Kothapalli, D. V. Rao, B. R. Kimball, S. S. S. Sai, R. Gowrishankar, and S. Sivaramakrishnan, “All-optical spatial filtering with power limiting materials,” Opt. Express14(4), 1451–1457 (2006).
[CrossRef] [PubMed]

Raybaut, M.

Rosencher, E.

Rotenberg, N.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B75(15), 155426 (2007).
[CrossRef]

Sai, S. S. S.

Sargent, E. H.

L. Brzozowski and E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron.36(5), 550–555 (2000).
[CrossRef]

Sargent, E. T. H.

L. Brozozowski, V. Sukhovatkin, E. T. H. Sargent, A. T. J. Springthorpe, and M. Extavour, “Intensity-dependent reflectance and transmittance of semiconductor periodic structures,” IEEE J. Quantum Electron.39, 924–930 (2003).

Schoenlein, R. W.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett.58(16), 1680–1683 (1987).
[CrossRef] [PubMed]

Scouler, W. J.

W. J. Scouler, “Temperature-modulated reflectance of gold from 2 to 10 ev,” Phys. Rev. Lett.18(12), 445–448 (1967).
[CrossRef]

Shand, M. L.

D. J. Harter, M. L. Shand, and Y. B. Band, “Power energy limiter using reverse saturable absorption,” J. Appl. Phys.56(3), 865–868 (1984).
[CrossRef]

Sivaramakrishnan, S.

Springthorpe, A. T. J.

L. Brozozowski, V. Sukhovatkin, E. T. H. Sargent, A. T. J. Springthorpe, and M. Extavour, “Intensity-dependent reflectance and transmittance of semiconductor periodic structures,” IEEE J. Quantum Electron.39, 924–930 (2003).

Stankov, K. A.

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B45(3), 191–195 (1988).
[CrossRef]

Sukhovatkin, V.

L. Brozozowski, V. Sukhovatkin, E. T. H. Sargent, A. T. J. Springthorpe, and M. Extavour, “Intensity-dependent reflectance and transmittance of semiconductor periodic structures,” IEEE J. Quantum Electron.39, 924–930 (2003).

Sun, C. K.

C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter50(20), 15337–15348 (1994).
[CrossRef] [PubMed]

Vallée, F.

C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter50(20), 15337–15348 (1994).
[CrossRef] [PubMed]

van Driel, H. M.

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B75(15), 155426 (2007).
[CrossRef]

Wu, P. F.

Yelleswarapu, C. S.

C. S. Yelleswarapu, S. R. Kothapalli, and D. V. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun.281(7), 1876–1888 (2008).
[CrossRef] [PubMed]

C. S. Yelleswarapu, P. F. Wu, S. R. Kothapalli, D. V. Rao, B. R. Kimball, S. S. S. Sai, R. Gowrishankar, and S. Sivaramakrishnan, “All-optical spatial filtering with power limiting materials,” Opt. Express14(4), 1451–1457 (2006).
[CrossRef] [PubMed]

Appl. Phys. B

K. A. Stankov, “A mirror with an intensity-dependent reflection coefficient,” Appl. Phys. B45(3), 191–195 (1988).
[CrossRef]

Chem. Phys. Lett.

Y. B. Band, D. J. Harter, and R. Bavli, “Optical pulse compressor composed of saturable and reverse saturable absorbers,” Chem. Phys. Lett.126(3-4), 280–284 (1986).
[CrossRef]

IEEE J. Quantum Electron.

L. Brzozowski and E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron.36(5), 550–555 (2000).
[CrossRef]

L. Brozozowski, V. Sukhovatkin, E. T. H. Sargent, A. T. J. Springthorpe, and M. Extavour, “Intensity-dependent reflectance and transmittance of semiconductor periodic structures,” IEEE J. Quantum Electron.39, 924–930 (2003).

J. Appl. Phys.

D. J. Harter, M. L. Shand, and Y. B. Band, “Power energy limiter using reverse saturable absorption,” J. Appl. Phys.56(3), 865–868 (1984).
[CrossRef]

D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys.107(12), 123114 (2010).
[CrossRef]

Opt. Commun.

C. S. Yelleswarapu, S. R. Kothapalli, and D. V. Rao, “Optical Fourier techniques for medical image processing and phase contrast imaging,” Opt. Commun.281(7), 1876–1888 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B75(15), 155426 (2007).
[CrossRef]

Phys. Rev. B Condens. Matter

C. K. Sun, F. Vallée, L. H. Acioli, E. P. Ippen, and J. G. Fujimoto, “Femtosecond-tunable measurement of electron thermalization in gold,” Phys. Rev. B Condens. Matter50(20), 15337–15348 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett.

R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, “Femtosecond studies of nonequilibrium electronic processes in metals,” Phys. Rev. Lett.58(16), 1680–1683 (1987).
[CrossRef] [PubMed]

W. J. Scouler, “Temperature-modulated reflectance of gold from 2 to 10 ev,” Phys. Rev. Lett.18(12), 445–448 (1967).
[CrossRef]

Other

H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, 2001), pp. 52–53.

K. H. Bennemann, ed., Nonlinear Optics in Metals, Femtosecond Time-Resolved Linear and Second-Order Reflectivity of Metals (Oxford University, 1998), Vol. 98, pp. 220–239.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Comparison of measured (symbols) and simulated (lines) transmittance (T, blue), reflectance (R, green), and absorptance (A, red) spectra in the visible range of the fabricated NLO mirror sample. The inset shows the generalized thin film structure of the NLO mirror. (b) Measured reflectance spectra at varied incidence angles. (c) Absorptance A(j,k) and (d) reflectance R(j,k) at 550 nm of the NLO mirror with different thickness combinations of reflection modifier (j) and cavity (k) layers.

Fig. 2
Fig. 2

Spectral comparison of simulated (a) real and (b) imaginary refractive index changes between the 23 nm-thick Au film inside the NLO mirror (orange lines) and a 23 nm-thick Au film on a glass substrate (Au Ref) (dark yellow symbols). Simulations shown for an incident peak irradiance of 13 GW/cm2 at 550 nm. (c) Spectral comparison of simulated R/n and R/k for the same Au containing structures.

Fig. 3
Fig. 3

(a) Absorptance A(j,k) at 550 nm of the NLO mirror with different thickness combinations of reflection modifier (j) and cavity (k) layers within the region (1,1) defined in Fig. 1(c). The red line represents all thickness combinations leading to A(j,k) = 55%. Points a(81,81), b(116,98), c(30, 65), and d(156,94) represent four different illustrative thickness combinations used for the evaluation of ΔR(λ, tpeak). Numbers inside the parenthesis are thicknesses given in nm. The point a(81,81), highlighted, corresponds to the fabricated NLO mirror. (b) Reflectance changes ΔR of the selected mirror combinations.

Fig. 4
Fig. 4

Reflectance changes (ΔR) of the NLO mirror pumped at 550 nm of (a) spectral spectrum ΔR(λ, tpeak) with respect to different incidence angles of <5þ (purple line), 10þ (orange line), 15þ (pink line) and 20þ (dark blue line); (b) ΔR(λ, tpeak) at the peak response time tpeak, and (c) temporal dependence ΔR(600 nm, t) at probe wavelength 600 nm for different peak pump irradiance 3 (green line), 6 (red line), 9 (blue line), and 15 (dark yellow line) GW/cm2; (c) irradiance dependent reflectance (%) at 550 nm (dark green line and symbol) and 600 nm (dark red line and symbol) by adding linear reflectance R0(λ) with measured ΔR(λ, tpeak); (d) temporal dependence ΔR(600 nm, t) at probe wavelength 600 nm for different peak pump irradiances

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ΔR(λ,t)=R( N Au (λ)+Δ N Au (λ,t)) R 0 (λ).
ΔR= R n Δn+ R k Δk R n Δn.

Metrics