Abstract

A novel method for fabricating lens arrays and other non-rotationally symmetric free-form optics is presented. This is a diamond machining technique using 4 controlled axes of motion – X, Y, Z, and C. As in 3-axis diamond micro-milling, a diamond ball endmill is mounted to the work spindle of a 4-axis ultra-precision computer numerical control (CNC) machine. Unlike 3-axis micro-milling, the C-axis is used to hold the cutting edge of the tool in contact with the lens surface for the entire cut. This allows the feed rates to be doubled compared to the current state of the art of micro-milling while producing an optically smooth surface with very low surface form error and exceptionally low radius error.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
    [CrossRef] [PubMed]
  2. B. McCall, M. Pierce, E. A. Graviss, R. Richards-Kortum, and T. Tkaczyk, “Toward a low-cost compact array microscopy platform for detection of tuberculosis,” Tuberculosis (Edinb.)91(Suppl 1), S54–S60 (2011).
    [CrossRef] [PubMed]
  3. E. Schonbrun, S. S. Gorthi, and D. Schaak, “Microfabricated multiple field of view imaging flow cytometry,” Lab Chip12(2), 268–273 (2011).
    [CrossRef] [PubMed]
  4. L. Gao, N. Bedard, N. Hagen, R. T. Kester, and T. S. Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination,” Opt. Express19(18), 17439–17452 (2011).
    [CrossRef] [PubMed]
  5. R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005–02 (Stanford University, 2005).
  6. D. Miyazaki, K. Ito, Y. Nakao, T. Toyoda, and Y. Masaki, “Retrieval of three-dimensional image from compound-eye imaging with defocus using ray tracing,” in Proceedings of IEEE International Conference on Innovative Computing Information and Control (Institute of Electrical and Electronics Engineers, Dalian, Liaoning, 2008), 51–54.
  7. P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE5942, 59420K, 59420K-9 (2005).
    [CrossRef]
  8. A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett.30(13), 1707–1709 (2005).
    [CrossRef] [PubMed]
  9. G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” Proc. SPIE7426, 742605, 742605-8 (2009).
    [CrossRef]
  10. C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE8126, 812617, 812617-9 (2011).
    [CrossRef]
  11. S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express19(24), 23938–23951 (2011).
    [CrossRef] [PubMed]
  12. Contour Fine Tooling and Technodiamont, “Reaching new heights in clearance and sweep,” http://contour-diamonds.com/GB/publications/CuttingEdge/Contour%20Cutting%20Edge%20April%202012/Contour%20Cutting%20Edge%20Apr%202012.pdf .
  13. J. Rogers, A. Kärkkäinen, T. Tkaczyk, J. Rantala, and M. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express12(7), 1294–1303 (2004).
    [CrossRef] [PubMed]
  14. T. D. Milster and T. S. Tkaczyk, “Miniature and Micro-Optics,” in Handbook of Optics1, M. Bass, ed. (McGraw-Hill Professional, 2010), 22.1–22.50.
  15. Z. D. Popovic, R. A. Sprague, and G. A. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt.27(7), 1281–1284 (1988).
    [CrossRef] [PubMed]
  16. W. Cox, T. Chen, and D. Hayes, “Micro-optics fabrication by ink-jet printers,” Opt. Photon. News12(6), 32–35 (2001).
    [CrossRef]
  17. F. T. O'Neill, C. R. Walsh, and J. T. Sheridan, “Photoresist reflow method of microlens production: modeling and fabrication techniques,” Proc. SPIE5456, 197–208 (2004).
    [CrossRef]
  18. S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng.83(4-9), 1087–1090 (2006).
    [CrossRef]
  19. W. H. Hsieh and J. H. Chen, “Lens-profile control by electrowetting fabrication technique,” IEEE Photon. Technol. Lett.17(3), 606–608 (2005).
    [CrossRef]
  20. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt.8(7), S407–S429 (2006).
    [CrossRef]
  21. N. C. R. Holme, T. W. Berg, and P. G. Dinesen, “Diamond micro-milling for array mastering,” Proc. SPIE7062, 70620J, 70620J-8 (2008).
    [CrossRef]
  22. S. Scheiding, R. Steinkopf, A. Kolbmüller, S. Risse, R. Eberhardt, and A. Tünnerman, “Lens array manufacturing using a driven diamond tool on an ultra precision lathe,” in Vol 2 of 9th International Conference of the European Society for Precision Engineering and Nanotechnology, H. van Brussel ed. (EUSPN 2009), 423–426.
  23. S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnerman, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE7927, 79270N, 79270N-11 (2011).
    [CrossRef]
  24. B. McCall and T. S. Tkaczyk, “Fabrication of plastic microlens array for array microscopy by three-dimensional diamond micromilling,” Opt. Eng.49(10), 103401 (2010).
    [CrossRef] [PubMed]
  25. L. L. C. Moore Nanotechnology Systems, “General diamond machining parameters for ultra-precision machining systems.” (Moore Nanotechnology Systems, Keene NH, 2003).
  26. T. Stewart, A. Engineer, and M. N. Systems, LLC. (Nanotech®), 230 Old Homestead Hwy., Swanzey, N.H, 03446 (personal communication, 2013).
  27. M. Pfeffer, “Optomechanics of plastic optical components,” in Handbook of Plastic Optics, S. Bäumer, ed. (Wiley-VCH, New York, 2005), 7–33.

2011 (6)

B. McCall, M. Pierce, E. A. Graviss, R. Richards-Kortum, and T. Tkaczyk, “Toward a low-cost compact array microscopy platform for detection of tuberculosis,” Tuberculosis (Edinb.)91(Suppl 1), S54–S60 (2011).
[CrossRef] [PubMed]

E. Schonbrun, S. S. Gorthi, and D. Schaak, “Microfabricated multiple field of view imaging flow cytometry,” Lab Chip12(2), 268–273 (2011).
[CrossRef] [PubMed]

L. Gao, N. Bedard, N. Hagen, R. T. Kester, and T. S. Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination,” Opt. Express19(18), 17439–17452 (2011).
[CrossRef] [PubMed]

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE8126, 812617, 812617-9 (2011).
[CrossRef]

S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express19(24), 23938–23951 (2011).
[CrossRef] [PubMed]

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnerman, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE7927, 79270N, 79270N-11 (2011).
[CrossRef]

2010 (1)

B. McCall and T. S. Tkaczyk, “Fabrication of plastic microlens array for array microscopy by three-dimensional diamond micromilling,” Opt. Eng.49(10), 103401 (2010).
[CrossRef] [PubMed]

2009 (1)

G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” Proc. SPIE7426, 742605, 742605-8 (2009).
[CrossRef]

2008 (1)

N. C. R. Holme, T. W. Berg, and P. G. Dinesen, “Diamond micro-milling for array mastering,” Proc. SPIE7062, 70620J, 70620J-8 (2008).
[CrossRef]

2006 (2)

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt.8(7), S407–S429 (2006).
[CrossRef]

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng.83(4-9), 1087–1090 (2006).
[CrossRef]

2005 (3)

W. H. Hsieh and J. H. Chen, “Lens-profile control by electrowetting fabrication technique,” IEEE Photon. Technol. Lett.17(3), 606–608 (2005).
[CrossRef]

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE5942, 59420K, 59420K-9 (2005).
[CrossRef]

A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett.30(13), 1707–1709 (2005).
[CrossRef] [PubMed]

2004 (3)

J. Rogers, A. Kärkkäinen, T. Tkaczyk, J. Rantala, and M. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express12(7), 1294–1303 (2004).
[CrossRef] [PubMed]

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

F. T. O'Neill, C. R. Walsh, and J. T. Sheridan, “Photoresist reflow method of microlens production: modeling and fabrication techniques,” Proc. SPIE5456, 197–208 (2004).
[CrossRef]

2001 (1)

W. Cox, T. Chen, and D. Hayes, “Micro-optics fabrication by ink-jet printers,” Opt. Photon. News12(6), 32–35 (2001).
[CrossRef]

1988 (1)

Audran, S.

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng.83(4-9), 1087–1090 (2006).
[CrossRef]

Barker, G.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Bartels, P. H.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Bedard, N.

Berg, T. W.

N. C. R. Holme, T. W. Berg, and P. G. Dinesen, “Diamond micro-milling for array mastering,” Proc. SPIE7062, 70620J, 70620J-8 (2008).
[CrossRef]

Bhattacharyya, A. K.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Chen, C. C.

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE8126, 812617, 812617-9 (2011).
[CrossRef]

Chen, J. H.

W. H. Hsieh and J. H. Chen, “Lens-profile control by electrowetting fabrication technique,” IEEE Photon. Technol. Lett.17(3), 606–608 (2005).
[CrossRef]

Chen, T.

W. Cox, T. Chen, and D. Hayes, “Micro-optics fabrication by ink-jet printers,” Opt. Photon. News12(6), 32–35 (2001).
[CrossRef]

Cheng, Y. C.

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE8126, 812617, 812617-9 (2011).
[CrossRef]

Chou, H. Y.

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE8126, 812617, 812617-9 (2011).
[CrossRef]

Connell, G. A.

Cox, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt.8(7), S407–S429 (2006).
[CrossRef]

Cox, W.

W. Cox, T. Chen, and D. Hayes, “Micro-optics fabrication by ink-jet printers,” Opt. Photon. News12(6), 32–35 (2001).
[CrossRef]

Dannberg, P.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE5942, 59420K, 59420K-9 (2005).
[CrossRef]

Davis, G. E.

G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” Proc. SPIE7426, 742605, 742605-8 (2009).
[CrossRef]

Davis, J. R.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Descour, M.

Descour, M. R.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Dinesen, P. G.

N. C. R. Holme, T. W. Berg, and P. G. Dinesen, “Diamond micro-milling for array mastering,” Proc. SPIE7062, 70620J, 70620J-8 (2008).
[CrossRef]

Eberhardt, R.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnerman, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE7927, 79270N, 79270N-11 (2011).
[CrossRef]

S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express19(24), 23938–23951 (2011).
[CrossRef] [PubMed]

Faure, B.

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng.83(4-9), 1087–1090 (2006).
[CrossRef]

Gao, L.

Gebhardt, A.

S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express19(24), 23938–23951 (2011).
[CrossRef] [PubMed]

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnerman, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE7927, 79270N, 79270N-11 (2011).
[CrossRef]

Goodall, J. F.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Gorthi, S. S.

E. Schonbrun, S. S. Gorthi, and D. Schaak, “Microfabricated multiple field of view imaging flow cytometry,” Lab Chip12(2), 268–273 (2011).
[CrossRef] [PubMed]

Graham, A. R.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Graviss, E. A.

B. McCall, M. Pierce, E. A. Graviss, R. Richards-Kortum, and T. Tkaczyk, “Toward a low-cost compact array microscopy platform for detection of tuberculosis,” Tuberculosis (Edinb.)91(Suppl 1), S54–S60 (2011).
[CrossRef] [PubMed]

Hadziioannou, G.

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng.83(4-9), 1087–1090 (2006).
[CrossRef]

Hagen, N.

Hayes, D.

W. Cox, T. Chen, and D. Hayes, “Micro-optics fabrication by ink-jet printers,” Opt. Photon. News12(6), 32–35 (2001).
[CrossRef]

Hedges, A. R.

G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” Proc. SPIE7426, 742605, 742605-8 (2009).
[CrossRef]

Herzig, H. P.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt.8(7), S407–S429 (2006).
[CrossRef]

Holme, N. C. R.

N. C. R. Holme, T. W. Berg, and P. G. Dinesen, “Diamond micro-milling for array mastering,” Proc. SPIE7062, 70620J, 70620J-8 (2008).
[CrossRef]

Hsieh, W. H.

W. H. Hsieh and J. H. Chen, “Lens-profile control by electrowetting fabrication technique,” IEEE Photon. Technol. Lett.17(3), 606–608 (2005).
[CrossRef]

Hsu, W. Y.

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE8126, 812617, 812617-9 (2011).
[CrossRef]

Kärkkäinen, A.

Kester, R. T.

Krupinski, E. A.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Kudaev, S.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE5942, 59420K, 59420K-9 (2005).
[CrossRef]

Li, L.

Liang, C.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Loose, R.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnerman, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE7927, 79270N, 79270N-11 (2011).
[CrossRef]

McCall, B.

B. McCall, M. Pierce, E. A. Graviss, R. Richards-Kortum, and T. Tkaczyk, “Toward a low-cost compact array microscopy platform for detection of tuberculosis,” Tuberculosis (Edinb.)91(Suppl 1), S54–S60 (2011).
[CrossRef] [PubMed]

B. McCall and T. S. Tkaczyk, “Fabrication of plastic microlens array for array microscopy by three-dimensional diamond micromilling,” Opt. Eng.49(10), 103401 (2010).
[CrossRef] [PubMed]

Miyashita, T.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt.8(7), S407–S429 (2006).
[CrossRef]

Mortini, B.

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng.83(4-9), 1087–1090 (2006).
[CrossRef]

Naessens, K.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt.8(7), S407–S429 (2006).
[CrossRef]

Olszak, A. G.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

O'Neill, F. T.

F. T. O'Neill, C. R. Walsh, and J. T. Sheridan, “Photoresist reflow method of microlens production: modeling and fabrication techniques,” Proc. SPIE5456, 197–208 (2004).
[CrossRef]

Ottevaere, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt.8(7), S407–S429 (2006).
[CrossRef]

Pierce, M.

B. McCall, M. Pierce, E. A. Graviss, R. Richards-Kortum, and T. Tkaczyk, “Toward a low-cost compact array microscopy platform for detection of tuberculosis,” Tuberculosis (Edinb.)91(Suppl 1), S54–S60 (2011).
[CrossRef] [PubMed]

Popovic, Z. D.

Rantala, J.

Regolini, J.

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng.83(4-9), 1087–1090 (2006).
[CrossRef]

Rennels, M.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Richards-Kortum, R.

B. McCall, M. Pierce, E. A. Graviss, R. Richards-Kortum, and T. Tkaczyk, “Toward a low-cost compact array microscopy platform for detection of tuberculosis,” Tuberculosis (Edinb.)91(Suppl 1), S54–S60 (2011).
[CrossRef] [PubMed]

Richter, L.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Risse, S.

S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express19(24), 23938–23951 (2011).
[CrossRef] [PubMed]

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnerman, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE7927, 79270N, 79270N-11 (2011).
[CrossRef]

Roblee, J. W.

G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” Proc. SPIE7426, 742605, 742605-8 (2009).
[CrossRef]

Rogers, J.

Russum, W. C.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Schaak, D.

E. Schonbrun, S. S. Gorthi, and D. Schaak, “Microfabricated multiple field of view imaging flow cytometry,” Lab Chip12(2), 268–273 (2011).
[CrossRef] [PubMed]

Scheiding, S.

S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express19(24), 23938–23951 (2011).
[CrossRef] [PubMed]

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnerman, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE7927, 79270N, 79270N-11 (2011).
[CrossRef]

Schlatter, G.

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng.83(4-9), 1087–1090 (2006).
[CrossRef]

Schonbrun, E.

E. Schonbrun, S. S. Gorthi, and D. Schaak, “Microfabricated multiple field of view imaging flow cytometry,” Lab Chip12(2), 268–273 (2011).
[CrossRef] [PubMed]

Schreiber, P.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE5942, 59420K, 59420K-9 (2005).
[CrossRef]

Scott, K. M.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Sheridan, J. T.

F. T. O'Neill, C. R. Walsh, and J. T. Sheridan, “Photoresist reflow method of microlens production: modeling and fabrication techniques,” Proc. SPIE5456, 197–208 (2004).
[CrossRef]

Sprague, R. A.

Taghizadeh, M.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt.8(7), S407–S429 (2006).
[CrossRef]

Thienpont, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt.8(7), S407–S429 (2006).
[CrossRef]

Tkaczyk, T.

B. McCall, M. Pierce, E. A. Graviss, R. Richards-Kortum, and T. Tkaczyk, “Toward a low-cost compact array microscopy platform for detection of tuberculosis,” Tuberculosis (Edinb.)91(Suppl 1), S54–S60 (2011).
[CrossRef] [PubMed]

J. Rogers, A. Kärkkäinen, T. Tkaczyk, J. Rantala, and M. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express12(7), 1294–1303 (2004).
[CrossRef] [PubMed]

Tkaczyk, T. S.

L. Gao, N. Bedard, N. Hagen, R. T. Kester, and T. S. Tkaczyk, “Depth-resolved image mapping spectrometer (IMS) with structured illumination,” Opt. Express19(18), 17439–17452 (2011).
[CrossRef] [PubMed]

B. McCall and T. S. Tkaczyk, “Fabrication of plastic microlens array for array microscopy by three-dimensional diamond micromilling,” Opt. Eng.49(10), 103401 (2010).
[CrossRef] [PubMed]

Tsai, D. P.

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE8126, 812617, 812617-9 (2011).
[CrossRef]

Tünnerman, A.

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnerman, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE7927, 79270N, 79270N-11 (2011).
[CrossRef]

Tünnermann, A.

Völkel, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt.8(7), S407–S429 (2006).
[CrossRef]

Walsh, C. R.

F. T. O'Neill, C. R. Walsh, and J. T. Sheridan, “Photoresist reflow method of microlens production: modeling and fabrication techniques,” Proc. SPIE5456, 197–208 (2004).
[CrossRef]

Wang, P. J.

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE8126, 812617, 812617-9 (2011).
[CrossRef]

Weinstein, R. S.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Williams, B. H.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Woo, H. J.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt.8(7), S407–S429 (2006).
[CrossRef]

Wyant, J. C.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Yi, A. Y.

Zeitner, U. D.

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE5942, 59420K, 59420K-9 (2005).
[CrossRef]

Zhou, P.

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Hum. Pathol. (1)

R. S. Weinstein, M. R. Descour, C. Liang, G. Barker, K. M. Scott, L. Richter, E. A. Krupinski, A. K. Bhattacharyya, J. R. Davis, A. R. Graham, M. Rennels, W. C. Russum, J. F. Goodall, P. Zhou, A. G. Olszak, B. H. Williams, J. C. Wyant, and P. H. Bartels, “An array microscope for ultrarapid virtual slide processing and telepathology. Design, fabrication, and validation study,” Hum. Pathol.35(11), 1303–1314 (2004).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

W. H. Hsieh and J. H. Chen, “Lens-profile control by electrowetting fabrication technique,” IEEE Photon. Technol. Lett.17(3), 606–608 (2005).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A, Pure Appl. Opt.8(7), S407–S429 (2006).
[CrossRef]

Lab Chip (1)

E. Schonbrun, S. S. Gorthi, and D. Schaak, “Microfabricated multiple field of view imaging flow cytometry,” Lab Chip12(2), 268–273 (2011).
[CrossRef] [PubMed]

Microelectron. Eng. (1)

S. Audran, B. Faure, B. Mortini, J. Regolini, G. Schlatter, and G. Hadziioannou, “Study of mechanisms involved in photoresist microlens formation,” Microelectron. Eng.83(4-9), 1087–1090 (2006).
[CrossRef]

Opt. Eng. (1)

B. McCall and T. S. Tkaczyk, “Fabrication of plastic microlens array for array microscopy by three-dimensional diamond micromilling,” Opt. Eng.49(10), 103401 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Photon. News (1)

W. Cox, T. Chen, and D. Hayes, “Micro-optics fabrication by ink-jet printers,” Opt. Photon. News12(6), 32–35 (2001).
[CrossRef]

Proc. SPIE (6)

F. T. O'Neill, C. R. Walsh, and J. T. Sheridan, “Photoresist reflow method of microlens production: modeling and fabrication techniques,” Proc. SPIE5456, 197–208 (2004).
[CrossRef]

P. Schreiber, S. Kudaev, P. Dannberg, and U. D. Zeitner, “Homogeneous LED-illumination using microlens arrays,” Proc. SPIE5942, 59420K, 59420K-9 (2005).
[CrossRef]

G. E. Davis, J. W. Roblee, and A. R. Hedges, “Comparison of freeform manufacturing techniques in the production of monolithic lens arrays,” Proc. SPIE7426, 742605, 742605-8 (2009).
[CrossRef]

C. C. Chen, Y. C. Cheng, W. Y. Hsu, H. Y. Chou, P. J. Wang, and D. P. Tsai, “Slow tool servo diamond turning of optical freeform surface for astigmatic contact lens,” Proc. SPIE8126, 812617, 812617-9 (2011).
[CrossRef]

N. C. R. Holme, T. W. Berg, and P. G. Dinesen, “Diamond micro-milling for array mastering,” Proc. SPIE7062, 70620J, 70620J-8 (2008).
[CrossRef]

S. Scheiding, A. Y. Yi, A. Gebhardt, R. Loose, L. Li, S. Risse, R. Eberhardt, and A. Tünnerman, “Diamond milling or turning for the fabrication of micro lens arrays: comparing different diamond machining technologies,” Proc. SPIE7927, 79270N, 79270N-11 (2011).
[CrossRef]

Tuberculosis (Edinb.) (1)

B. McCall, M. Pierce, E. A. Graviss, R. Richards-Kortum, and T. Tkaczyk, “Toward a low-cost compact array microscopy platform for detection of tuberculosis,” Tuberculosis (Edinb.)91(Suppl 1), S54–S60 (2011).
[CrossRef] [PubMed]

Other (8)

R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-held plenoptic camera,” Stanford Tech. Rep. CTSR 2005–02 (Stanford University, 2005).

D. Miyazaki, K. Ito, Y. Nakao, T. Toyoda, and Y. Masaki, “Retrieval of three-dimensional image from compound-eye imaging with defocus using ray tracing,” in Proceedings of IEEE International Conference on Innovative Computing Information and Control (Institute of Electrical and Electronics Engineers, Dalian, Liaoning, 2008), 51–54.

T. D. Milster and T. S. Tkaczyk, “Miniature and Micro-Optics,” in Handbook of Optics1, M. Bass, ed. (McGraw-Hill Professional, 2010), 22.1–22.50.

Contour Fine Tooling and Technodiamont, “Reaching new heights in clearance and sweep,” http://contour-diamonds.com/GB/publications/CuttingEdge/Contour%20Cutting%20Edge%20April%202012/Contour%20Cutting%20Edge%20Apr%202012.pdf .

S. Scheiding, R. Steinkopf, A. Kolbmüller, S. Risse, R. Eberhardt, and A. Tünnerman, “Lens array manufacturing using a driven diamond tool on an ultra precision lathe,” in Vol 2 of 9th International Conference of the European Society for Precision Engineering and Nanotechnology, H. van Brussel ed. (EUSPN 2009), 423–426.

L. L. C. Moore Nanotechnology Systems, “General diamond machining parameters for ultra-precision machining systems.” (Moore Nanotechnology Systems, Keene NH, 2003).

T. Stewart, A. Engineer, and M. N. Systems, LLC. (Nanotech®), 230 Old Homestead Hwy., Swanzey, N.H, 03446 (personal communication, 2013).

M. Pfeffer, “Optomechanics of plastic optical components,” in Handbook of Plastic Optics, S. Bäumer, ed. (Wiley-VCH, New York, 2005), 7–33.

Supplementary Material (2)

» Media 1: MPG (1711 KB)     
» Media 2: MPG (2438 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Demonstration of 4-axis SPDM (Media 1). The tool moves around the part in a spiral path, rotating once for every loop the tool makes around the work piece. In the tool’s frame of reference, the motion is the same as in single point diamond turning.

Fig. 2
Fig. 2

(a) View from the side of the tool changing its orientation along with its position so that the face of the tool is always coplanar with the axis of symmetry. Shown in red is the spiral path of the tool in XYZ and an arrow indicating the direction of travel. The dashed red line is the axis of symmetry. (b) View along the axis of symmetry from behind the lens.

Fig. 3
Fig. 3

Micro-milling tool imprint on a plastic lens when chip per tooth is too large. The height and spacing of the divots depends on spindle speed, feed rate, and tool size. This surface was obtained using a 0.53 mm radius tool at a 14 µm chip per tooth.

Fig. 4
Fig. 4

(a) Segment of a 3-axis micro-milling NC program generated by NanoCAM 1.0. Highlighted in yellow are changes that were made to the program manually after it was generated in NanoCAM. (b) 4-axis SPDM NC program segment generated from the 3-axis micro-milling NC program on the left. Green highlights indicate changes made to the code in (a) by an automated Matlab script, which added C-axis coordinates to all XYZ coordinates. Yellow highlights indicate changes made in a text editor afterwards.

Fig. 5
Fig. 5

Four-axis SPDM tool misalignment errors when the C-axis coordinate is 0°. Tool height error, th, and tool past center error (or tool not to center error), tc are the vertical and horizontal distances from the spindle centerline to the tool apex. Tool orientation error, tθ, is the angle between the face of the tool and the plane containing the spindle centerline and the lens axis of symmetry.

Fig. 6
Fig. 6

(a) An uncorrected 4-axis SPDM NC program segment. (b) The same 4-axis SPDM NC program with numerical correction for tool height error (th) and tool not to center error (tc). th = −0.0067 and tc = 0.00296096.

Fig. 7
Fig. 7

Relationship between the surface profile, the profile of the commanded tool position, and the tool profile. The points along the cutting profile can be found by moving the ST coordinate system along the profile of the commanded tool position and finding the intersection between the tool and surface profiles.

Fig. 8
Fig. 8

Cutting profile of a misaligned tool in (S,T) coordinates. S and T are what the program radial and axial tool compensation offsets should be. The nominal tool profile is what the cutting profile would be if the tool had no orientation error (tθ = 0). The actual tool cutting profile is calculated using the measured test surface profile and Eqs. (2) and (3). An off-center ellipse is fit to the calculated cutting profile. Equation (4) gives a value of 14.244° for tθ.

Fig. 9
Fig. 9

(a) WEC error measurement of a 2 mm radius test part before applying corrections. The errors th and tc contribute to a nub in the middle of the lens. The 1 mm radius WEC probe has difficulty measuring features of this size, so the nub appears as wide spike instead. (b) WEC error measurement of a 2 mm radius test part after th, tc, and tθ have been compensated and/or corrected. The radius error of this test part as measured by WEC is 0.869 μm (0.04%), and the RMS form error as measured by WEC is 21 nm.

Fig. 10
Fig. 10

Two 3x3 polystyrene lens arrays with radii of 20 mm (left) and 2 mm (right). The finish cut for both of these lens arrays was done using the 4-axis SPDM technique.

Fig. 11
Fig. 11

A complete 4-axis SPDM finishing operation on a 2 mm lens (Media 2). The original video was cropped and compressed to fit the allowed media file size limits, but it is still real time. The playback speed has not been altered. The original, uncompressed, full size video is available upon request.

Fig. 12
Fig. 12

Surface profile measurements of a 2 mm lens (left) and a 20 mm lens (right) fabricated using 4-axis SPDM measured with the Zygo® NewViewTM 5032 Optical Profiler. RMS roughness and Rq are the same.

Fig. 13
Fig. 13

Surface form error of a 2 mm lens (top) and a 20 mm lens (bottom) fabricated using 4-axis SPDM measured with the Zygo® PTI250.

Fig. 14
Fig. 14

Fabrication times and fabrication rates of 4-axis SPDM vs. 3-axis micro-milling . The fastest published rate of fabrication for micro-milling is 0.4 mm2/min using a Precitech Nanoform 250 [9,23]. Peak feed rates of 250 mm/min and fabrication rates of 1.25 mm2/min are possible using a Nanotech 350 FG while maintaining a surface roughness of 5 nm [26]. The acceleration penalty is unknown at these feed rates. 4-axis SPDM at 500 mm/min has an acceleration penalty of approximately 29 s. For the sake of comparison, curves for expected micro-milling times at 1.25 mm2/min with acceleration penalties of 0 and 29 seconds are shown.

Tables (5)

Tables Icon

Table 1 Ultra-precision lens array fabrication techniques and their capabilities

Tables Icon

Table 2 Roughness, surface form error, and radius error measurements for a 3x3 array of lenses having 2 mm radii of curvature. These lenses were fabricated by 4-axis SPDM.

Tables Icon

Table 3 Roughness, surface form error, and radius error measurements for a 3x3 array of lenses having 20 mm radii of curvature. These lenses were fabricated by 4-axis SPDM.

Tables Icon

Table 4 Roughness, surface form error, and radius error measurements for three 20 mm radius micro-milled lenses.

Tables Icon

Table 5 Tolerances of 4-axis SPDM technique

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

[ X* Y* ]=( [ 1 0 0 1 ]+ 1 X 2 + Y 2 [ t c t h t h t c ] )[ X Y ]
S=X+ G 1 ( X )=X( R t + R s ) dZ dX 1+ ( dZ dX ) 2
T=Z+F( G 1 ( X ) )=Z+( R t + R s )( 1 1 1+ ( dZ dX ) 2 )
| t θ |= cos 1 ( minor diameter major diameter )
t= π D 2 4F F rad + P acc
t={ D 2 S max F rad + P acc , D< F π S max π D 2 4F F rad + F 4π S max 2 F rad + P acc , D F π S max

Metrics