Abstract

Illumination based on objective-type total internal reflection (TIR) is nowadays widely used in high-performance fluorescence microscopy. However, the desirable application of such setups for dark-field imaging of scattering entities is cumbersome due to the spatial overlap of illumination and detection light, which cannot be separated spectrally. Here, we report a novel TIR approach based on a parabolically shaped quartz prism that allows for the detection of single-molecule fluorescence as well as single-particle scattering with high signal-to-noise ratios. We demonstrate homogeneous and spatially invariant illumination profiles in combination with a convenient control over a wide range of illumination angles. Moreover, we quantitatively compare the fluorescence performance of our setup to objective-type TIR and demonstrate sub-nanometer localization accuracies for the scattering of 40 nm gold nanoparticles (AuNPs). When bound to individual kinesin-1 motors, the AuNPs reliably report on the characteristic 8 nm stepping along microtubules.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Leeuwenhoek and R. de Graaf, “A Specimen of Some Observations Made by a Microscope,” Philos. Trans. Roy. Soc. A.8(92-100), 6037–6038 (1673).
    [CrossRef]
  2. G. Nomarski, “From phase contrast to contrast by interference,” Rev. Hematol. (Paris)12(4), 439–442 (1957).
    [PubMed]
  3. M. Minsky, “Microscopy apparatus,“ U.S. Patent 3,013,467, filed November 7, 1957, and issued December 19, 1961.
  4. I. Newton, Opticks (William Innys, London, 1704).
  5. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol.89(1), 141–145 (1981).
    [CrossRef] [PubMed]
  6. D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng.13(1), 247–268 (1984).
    [CrossRef] [PubMed]
  7. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic2(11), 764–774 (2001).
    [CrossRef] [PubMed]
  8. R. M. Fulbright and D. Axelrod, “Dynamics of nonspecific adsorption of insulin to erythrocyte membranes,” J. Fluoresc.3(1), 1–16 (1993).
    [CrossRef]
  9. T. Lang, I. Wacker, J. Steyer, C. Kaether, I. Wunderlich, T. Soldati, H. H. Gerdes, and W. Almers, “Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy,” Neuron18(6), 857–863 (1997).
    [CrossRef] [PubMed]
  10. U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
    [CrossRef] [PubMed]
  11. C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem.77(1), 51–76 (2008).
    [CrossRef] [PubMed]
  12. X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
    [CrossRef] [PubMed]
  13. M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys.8(30), 3486–3495 (2006).
    [CrossRef] [PubMed]
  14. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys-Berlin330(3), 377–445 (1908).
    [CrossRef]
  15. H. Ueno, S. Nishikawa, R. Iino, K. V. Tabata, S. Sakakihara, T. Yanagida, and H. Noji, “Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution,” Biophys. J.98(9), 2014–2023 (2010).
    [CrossRef] [PubMed]
  16. M. van ’t Hoff, M. Reuter, D. T. F. Dryden, and M. Oheim, “Screening by imaging: scaling up single-DNA-molecule analysis with a novel parabolic VA-TIRF reflector and noise-reduction techniques,” Phys. Chem. Chem. Phys.11(35), 7713–7720 (2009).
    [CrossRef] [PubMed]
  17. H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol.16(1), 13–18 (2005).
    [CrossRef] [PubMed]
  18. T. Ruckstuhl, M. Rankl, and S. Seeger, “Confocal TIRF microscopy of single molecules,” P. Soc. Photo-Opt. Ins., Proc. of SPIEE 4962, 126–134 (2003).
  19. T. Ruckstuhl and S. Seeger, “Confocal total-internal-reflection fluorescence microscopy with a high-aperture parabolic mirror lens,” Appl. Opt.42(16), 3277–3283 (2003).
    [CrossRef] [PubMed]
  20. H. Välimäki and K. Tappura, “A novel platform for highly surface-sensitive fluorescent measurements applying simultaneous total internal reflection excitation and super critical angle detection,” Chem. Phys. Lett.473(4-6), 358–362 (2009).
    [CrossRef]
  21. C. M. Winterflood, T. Ruckstuhl, D. Verdes, and S. Seeger, “Nanometer axial resolution by three-dimensional supercritical angle fluorescence microscopy,” Phys. Rev. Lett.105(10), 108103 (2010).
    [CrossRef] [PubMed]
  22. E. Lassila, T. Alahautala, and R. Hernberg, “Focusing diode lasers using a truncated paraboloid with spherical output surface,” Opt. Eng.46(5), 054301 (2007).
    [CrossRef]
  23. A. L. Mattheyses, K. Shaw, and D. Axelrod, “Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle,” Microsc. Res. Tech.69(8), 642–647 (2006).
    [CrossRef] [PubMed]
  24. R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, “Even illumination in total internal reflection fluorescence microscopy using laser light,” Microsc. Res. Tech.71(1), 45–50 (2008).
    [CrossRef] [PubMed]
  25. C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc.234(1), 38–46 (2009).
    [CrossRef] [PubMed]
  26. W. P. Ambrose, P. M. Goodwin, and J. P. Nolan, “Single-molecule detection with total internal reflection excitation: Comparing signal-to-background and total signals in different geometries,” Cytometry36(3), 224–231 (1999).
    [CrossRef] [PubMed]
  27. S. Verbrugge, S. M. J. L. van den Wildenberg, and E. J. G. Peterman, “Novel ways to determine kinesin-1’s run length and randomness using fluorescence microscopy,” Biophys. J.97(8), 2287–2294 (2009).
    [CrossRef] [PubMed]
  28. G. I. Mashanov, D. Tacon, M. Peckham, and J. E. Molloy, “The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts,” J. Biol. Chem.279(15), 15274–15280 (2004).
    [CrossRef] [PubMed]
  29. T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden Light Detection from Single Molecules,” Anal. Chem.72(9), 2117–2123 (2000).
    [CrossRef] [PubMed]
  30. J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express13(22), 8855–8865 (2005).
    [CrossRef] [PubMed]
  31. A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, “Kinesin walks hand-over-hand,” Science303(5658), 676–678 (2004).
    [CrossRef] [PubMed]
  32. A. R. Dunn and J. A. Spudich, “Dynamics of the unbound head during myosin V processive translocation,” Nat. Struct. Mol. Biol.14(3), 246–248 (2007).
    [CrossRef] [PubMed]
  33. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
    [CrossRef] [PubMed]
  34. R. Swaminathan, C. P. Hoang, and A. S. Verkman, “Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion,” Biophys. J.72(4), 1900–1907 (1997).
    [CrossRef] [PubMed]
  35. F. Ruhnow, D. Zwicker, and S. Diez, “Tracking single particles and elongated filaments with nanometer precision,” Biophys. J.100(11), 2820–2828 (2011).
    [CrossRef] [PubMed]
  36. J. W. J. Kerssemakers, E. L. Munteanu, L. Laan, T. L. Noetzel, M. E. Janson, and M. Dogterom, “Assembly dynamics of microtubules at molecular resolution,” Nature442(7103), 709–712 (2006).
    [CrossRef] [PubMed]
  37. M. J. Schnitzer and S. M. Block, “Kinesin hydrolyses one ATP per 8-nm step,” Nature388(6640), 386–390 (1997).
    [CrossRef] [PubMed]
  38. C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
    [CrossRef] [PubMed]
  39. K. R. Rogers, S. Weiss, I. Crevel, P. J. Brophy, M. Geeves, and R. Cross, “KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry,” EMBO J.20(18), 5101–5113 (2001).
    [CrossRef] [PubMed]
  40. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, “Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra,” Anal. Chem.79(11), 4215–4221 (2007).
    [CrossRef] [PubMed]

2011

F. Ruhnow, D. Zwicker, and S. Diez, “Tracking single particles and elongated filaments with nanometer precision,” Biophys. J.100(11), 2820–2828 (2011).
[CrossRef] [PubMed]

2010

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

H. Ueno, S. Nishikawa, R. Iino, K. V. Tabata, S. Sakakihara, T. Yanagida, and H. Noji, “Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution,” Biophys. J.98(9), 2014–2023 (2010).
[CrossRef] [PubMed]

C. M. Winterflood, T. Ruckstuhl, D. Verdes, and S. Seeger, “Nanometer axial resolution by three-dimensional supercritical angle fluorescence microscopy,” Phys. Rev. Lett.105(10), 108103 (2010).
[CrossRef] [PubMed]

2009

H. Välimäki and K. Tappura, “A novel platform for highly surface-sensitive fluorescent measurements applying simultaneous total internal reflection excitation and super critical angle detection,” Chem. Phys. Lett.473(4-6), 358–362 (2009).
[CrossRef]

M. van ’t Hoff, M. Reuter, D. T. F. Dryden, and M. Oheim, “Screening by imaging: scaling up single-DNA-molecule analysis with a novel parabolic VA-TIRF reflector and noise-reduction techniques,” Phys. Chem. Chem. Phys.11(35), 7713–7720 (2009).
[CrossRef] [PubMed]

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc.234(1), 38–46 (2009).
[CrossRef] [PubMed]

S. Verbrugge, S. M. J. L. van den Wildenberg, and E. J. G. Peterman, “Novel ways to determine kinesin-1’s run length and randomness using fluorescence microscopy,” Biophys. J.97(8), 2287–2294 (2009).
[CrossRef] [PubMed]

2008

R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, “Even illumination in total internal reflection fluorescence microscopy using laser light,” Microsc. Res. Tech.71(1), 45–50 (2008).
[CrossRef] [PubMed]

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
[CrossRef] [PubMed]

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem.77(1), 51–76 (2008).
[CrossRef] [PubMed]

2007

E. Lassila, T. Alahautala, and R. Hernberg, “Focusing diode lasers using a truncated paraboloid with spherical output surface,” Opt. Eng.46(5), 054301 (2007).
[CrossRef]

A. R. Dunn and J. A. Spudich, “Dynamics of the unbound head during myosin V processive translocation,” Nat. Struct. Mol. Biol.14(3), 246–248 (2007).
[CrossRef] [PubMed]

W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, “Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra,” Anal. Chem.79(11), 4215–4221 (2007).
[CrossRef] [PubMed]

2006

J. W. J. Kerssemakers, E. L. Munteanu, L. Laan, T. L. Noetzel, M. E. Janson, and M. Dogterom, “Assembly dynamics of microtubules at molecular resolution,” Nature442(7103), 709–712 (2006).
[CrossRef] [PubMed]

A. L. Mattheyses, K. Shaw, and D. Axelrod, “Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle,” Microsc. Res. Tech.69(8), 642–647 (2006).
[CrossRef] [PubMed]

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys.8(30), 3486–3495 (2006).
[CrossRef] [PubMed]

2005

H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol.16(1), 13–18 (2005).
[CrossRef] [PubMed]

J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express13(22), 8855–8865 (2005).
[CrossRef] [PubMed]

2004

A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, “Kinesin walks hand-over-hand,” Science303(5658), 676–678 (2004).
[CrossRef] [PubMed]

G. I. Mashanov, D. Tacon, M. Peckham, and J. E. Molloy, “The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts,” J. Biol. Chem.279(15), 15274–15280 (2004).
[CrossRef] [PubMed]

2003

2002

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

2001

K. R. Rogers, S. Weiss, I. Crevel, P. J. Brophy, M. Geeves, and R. Cross, “KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry,” EMBO J.20(18), 5101–5113 (2001).
[CrossRef] [PubMed]

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic2(11), 764–774 (2001).
[CrossRef] [PubMed]

2000

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden Light Detection from Single Molecules,” Anal. Chem.72(9), 2117–2123 (2000).
[CrossRef] [PubMed]

1999

W. P. Ambrose, P. M. Goodwin, and J. P. Nolan, “Single-molecule detection with total internal reflection excitation: Comparing signal-to-background and total signals in different geometries,” Cytometry36(3), 224–231 (1999).
[CrossRef] [PubMed]

1997

R. Swaminathan, C. P. Hoang, and A. S. Verkman, “Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion,” Biophys. J.72(4), 1900–1907 (1997).
[CrossRef] [PubMed]

M. J. Schnitzer and S. M. Block, “Kinesin hydrolyses one ATP per 8-nm step,” Nature388(6640), 386–390 (1997).
[CrossRef] [PubMed]

T. Lang, I. Wacker, J. Steyer, C. Kaether, I. Wunderlich, T. Soldati, H. H. Gerdes, and W. Almers, “Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy,” Neuron18(6), 857–863 (1997).
[CrossRef] [PubMed]

1993

R. M. Fulbright and D. Axelrod, “Dynamics of nonspecific adsorption of insulin to erythrocyte membranes,” J. Fluoresc.3(1), 1–16 (1993).
[CrossRef]

1984

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng.13(1), 247–268 (1984).
[CrossRef] [PubMed]

1981

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol.89(1), 141–145 (1981).
[CrossRef] [PubMed]

1957

G. Nomarski, “From phase contrast to contrast by interference,” Rev. Hematol. (Paris)12(4), 439–442 (1957).
[PubMed]

1908

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys-Berlin330(3), 377–445 (1908).
[CrossRef]

1673

M. Leeuwenhoek and R. de Graaf, “A Specimen of Some Observations Made by a Microscope,” Philos. Trans. Roy. Soc. A.8(92-100), 6037–6038 (1673).
[CrossRef]

Alahautala, T.

E. Lassila, T. Alahautala, and R. Hernberg, “Focusing diode lasers using a truncated paraboloid with spherical output surface,” Opt. Eng.46(5), 054301 (2007).
[CrossRef]

Almers, W.

T. Lang, I. Wacker, J. Steyer, C. Kaether, I. Wunderlich, T. Soldati, H. H. Gerdes, and W. Almers, “Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy,” Neuron18(6), 857–863 (1997).
[CrossRef] [PubMed]

Ambrose, W. P.

W. P. Ambrose, P. M. Goodwin, and J. P. Nolan, “Single-molecule detection with total internal reflection excitation: Comparing signal-to-background and total signals in different geometries,” Cytometry36(3), 224–231 (1999).
[CrossRef] [PubMed]

Aveyard, J.

W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, “Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra,” Anal. Chem.79(11), 4215–4221 (2007).
[CrossRef] [PubMed]

Axelrod, D.

A. L. Mattheyses, K. Shaw, and D. Axelrod, “Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle,” Microsc. Res. Tech.69(8), 642–647 (2006).
[CrossRef] [PubMed]

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic2(11), 764–774 (2001).
[CrossRef] [PubMed]

R. M. Fulbright and D. Axelrod, “Dynamics of nonspecific adsorption of insulin to erythrocyte membranes,” J. Fluoresc.3(1), 1–16 (1993).
[CrossRef]

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng.13(1), 247–268 (1984).
[CrossRef] [PubMed]

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol.89(1), 141–145 (1981).
[CrossRef] [PubMed]

Balci, H.

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem.77(1), 51–76 (2008).
[CrossRef] [PubMed]

Belyaev, Y.

R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, “Even illumination in total internal reflection fluorescence microscopy using laser light,” Microsc. Res. Tech.71(1), 45–50 (2008).
[CrossRef] [PubMed]

Berciaud, S.

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys.8(30), 3486–3495 (2006).
[CrossRef] [PubMed]

Berndt, M.

C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc.234(1), 38–46 (2009).
[CrossRef] [PubMed]

Block, S. M.

M. J. Schnitzer and S. M. Block, “Kinesin hydrolyses one ATP per 8-nm step,” Nature388(6640), 386–390 (1997).
[CrossRef] [PubMed]

Bormuth, V.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Brophy, P. J.

K. R. Rogers, S. Weiss, I. Crevel, P. J. Brophy, M. Geeves, and R. Cross, “KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry,” EMBO J.20(18), 5101–5113 (2001).
[CrossRef] [PubMed]

Brouhard, G. J.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Buranachai, C.

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem.77(1), 51–76 (2008).
[CrossRef] [PubMed]

Burghardt, T. P.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng.13(1), 247–268 (1984).
[CrossRef] [PubMed]

Cavaliere-Jaricot, S.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
[CrossRef] [PubMed]

Cognet, L.

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys.8(30), 3486–3495 (2006).
[CrossRef] [PubMed]

Cohen, D. N.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Cragg, G. E.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Crevel, I.

K. R. Rogers, S. Weiss, I. Crevel, P. J. Brophy, M. Geeves, and R. Cross, “KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry,” EMBO J.20(18), 5101–5113 (2001).
[CrossRef] [PubMed]

Cross, R.

K. R. Rogers, S. Weiss, I. Crevel, P. J. Brophy, M. Geeves, and R. Cross, “KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry,” EMBO J.20(18), 5101–5113 (2001).
[CrossRef] [PubMed]

de Graaf, R.

M. Leeuwenhoek and R. de Graaf, “A Specimen of Some Observations Made by a Microscope,” Philos. Trans. Roy. Soc. A.8(92-100), 6037–6038 (1673).
[CrossRef]

Diez, S.

F. Ruhnow, D. Zwicker, and S. Diez, “Tracking single particles and elongated filaments with nanometer precision,” Biophys. J.100(11), 2820–2828 (2011).
[CrossRef] [PubMed]

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc.234(1), 38–46 (2009).
[CrossRef] [PubMed]

Dogterom, M.

J. W. J. Kerssemakers, E. L. Munteanu, L. Laan, T. L. Noetzel, M. E. Janson, and M. Dogterom, “Assembly dynamics of microtubules at molecular resolution,” Nature442(7103), 709–712 (2006).
[CrossRef] [PubMed]

Dryden, D. T. F.

M. van ’t Hoff, M. Reuter, D. T. F. Dryden, and M. Oheim, “Screening by imaging: scaling up single-DNA-molecule analysis with a novel parabolic VA-TIRF reflector and noise-reduction techniques,” Phys. Chem. Chem. Phys.11(35), 7713–7720 (2009).
[CrossRef] [PubMed]

Dunn, A. R.

A. R. Dunn and J. A. Spudich, “Dynamics of the unbound head during myosin V processive translocation,” Nat. Struct. Mol. Biol.14(3), 246–248 (2007).
[CrossRef] [PubMed]

Efros, A. L.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Enderlein, J.

C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc.234(1), 38–46 (2009).
[CrossRef] [PubMed]

J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express13(22), 8855–8865 (2005).
[CrossRef] [PubMed]

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden Light Detection from Single Molecules,” Anal. Chem.72(9), 2117–2123 (2000).
[CrossRef] [PubMed]

Ewers, H.

R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, “Even illumination in total internal reflection fluorescence microscopy using laser light,” Microsc. Res. Tech.71(1), 45–50 (2008).
[CrossRef] [PubMed]

Fernig, D. G.

W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, “Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra,” Anal. Chem.79(11), 4215–4221 (2007).
[CrossRef] [PubMed]

Fiolka, R.

R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, “Even illumination in total internal reflection fluorescence microscopy using laser light,” Microsc. Res. Tech.71(1), 45–50 (2008).
[CrossRef] [PubMed]

Friel, C. T.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Fulbright, R. M.

R. M. Fulbright and D. Axelrod, “Dynamics of nonspecific adsorption of insulin to erythrocyte membranes,” J. Fluoresc.3(1), 1–16 (1993).
[CrossRef]

Geeves, M.

K. R. Rogers, S. Weiss, I. Crevel, P. J. Brophy, M. Geeves, and R. Cross, “KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry,” EMBO J.20(18), 5101–5113 (2001).
[CrossRef] [PubMed]

Gell, C.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc.234(1), 38–46 (2009).
[CrossRef] [PubMed]

Gerdes, H. H.

T. Lang, I. Wacker, J. Steyer, C. Kaether, I. Wunderlich, T. Soldati, H. H. Gerdes, and W. Almers, “Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy,” Neuron18(6), 857–863 (1997).
[CrossRef] [PubMed]

Goodwin, P. M.

W. P. Ambrose, P. M. Goodwin, and J. P. Nolan, “Single-molecule detection with total internal reflection excitation: Comparing signal-to-background and total signals in different geometries,” Cytometry36(3), 224–231 (1999).
[CrossRef] [PubMed]

Grabolle, M.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
[CrossRef] [PubMed]

Ha, T.

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem.77(1), 51–76 (2008).
[CrossRef] [PubMed]

Hahn, M. A.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Haiss, W.

W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, “Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra,” Anal. Chem.79(11), 4215–4221 (2007).
[CrossRef] [PubMed]

Helenius, J.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Hernberg, R.

E. Lassila, T. Alahautala, and R. Hernberg, “Focusing diode lasers using a truncated paraboloid with spherical output surface,” Opt. Eng.46(5), 054301 (2007).
[CrossRef]

Hoang, C. P.

R. Swaminathan, C. P. Hoang, and A. S. Verkman, “Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion,” Biophys. J.72(4), 1900–1907 (1997).
[CrossRef] [PubMed]

Howard, J.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Iino, R.

H. Ueno, S. Nishikawa, R. Iino, K. V. Tabata, S. Sakakihara, T. Yanagida, and H. Noji, “Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution,” Biophys. J.98(9), 2014–2023 (2010).
[CrossRef] [PubMed]

Ishitsuka, Y.

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem.77(1), 51–76 (2008).
[CrossRef] [PubMed]

Janson, M. E.

J. W. J. Kerssemakers, E. L. Munteanu, L. Laan, T. L. Noetzel, M. E. Janson, and M. Dogterom, “Assembly dynamics of microtubules at molecular resolution,” Nature442(7103), 709–712 (2006).
[CrossRef] [PubMed]

Joo, C.

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem.77(1), 51–76 (2008).
[CrossRef] [PubMed]

Jung, S.

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden Light Detection from Single Molecules,” Anal. Chem.72(9), 2117–2123 (2000).
[CrossRef] [PubMed]

Kaether, C.

T. Lang, I. Wacker, J. Steyer, C. Kaether, I. Wunderlich, T. Soldati, H. H. Gerdes, and W. Almers, “Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy,” Neuron18(6), 857–863 (1997).
[CrossRef] [PubMed]

Kahen, K.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Kerssemakers, J. W. J.

J. W. J. Kerssemakers, E. L. Munteanu, L. Laan, T. L. Noetzel, M. E. Janson, and M. Dogterom, “Assembly dynamics of microtubules at molecular resolution,” Nature442(7103), 709–712 (2006).
[CrossRef] [PubMed]

Krauss, T. D.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Laan, L.

J. W. J. Kerssemakers, E. L. Munteanu, L. Laan, T. L. Noetzel, M. E. Janson, and M. Dogterom, “Assembly dynamics of microtubules at molecular resolution,” Nature442(7103), 709–712 (2006).
[CrossRef] [PubMed]

Lang, T.

T. Lang, I. Wacker, J. Steyer, C. Kaether, I. Wunderlich, T. Soldati, H. H. Gerdes, and W. Almers, “Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy,” Neuron18(6), 857–863 (1997).
[CrossRef] [PubMed]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

Lasne, D.

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys.8(30), 3486–3495 (2006).
[CrossRef] [PubMed]

Lassila, E.

E. Lassila, T. Alahautala, and R. Hernberg, “Focusing diode lasers using a truncated paraboloid with spherical output surface,” Opt. Eng.46(5), 054301 (2007).
[CrossRef]

Leeuwenhoek, M.

M. Leeuwenhoek and R. de Graaf, “A Specimen of Some Observations Made by a Microscope,” Philos. Trans. Roy. Soc. A.8(92-100), 6037–6038 (1673).
[CrossRef]

Lippitz, M.

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys.8(30), 3486–3495 (2006).
[CrossRef] [PubMed]

Lounis, B.

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys.8(30), 3486–3495 (2006).
[CrossRef] [PubMed]

Maccagnano-Zacher, S.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Mashanov, G. I.

G. I. Mashanov, D. Tacon, M. Peckham, and J. E. Molloy, “The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts,” J. Biol. Chem.279(15), 15274–15280 (2004).
[CrossRef] [PubMed]

Mattheyses, A. L.

A. L. Mattheyses, K. Shaw, and D. Axelrod, “Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle,” Microsc. Res. Tech.69(8), 642–647 (2006).
[CrossRef] [PubMed]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys-Berlin330(3), 377–445 (1908).
[CrossRef]

Molloy, J. E.

G. I. Mashanov, D. Tacon, M. Peckham, and J. E. Molloy, “The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts,” J. Biol. Chem.279(15), 15274–15280 (2004).
[CrossRef] [PubMed]

Munteanu, E. L.

J. W. J. Kerssemakers, E. L. Munteanu, L. Laan, T. L. Noetzel, M. E. Janson, and M. Dogterom, “Assembly dynamics of microtubules at molecular resolution,” Nature442(7103), 709–712 (2006).
[CrossRef] [PubMed]

Nann, T.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
[CrossRef] [PubMed]

Nishikawa, S.

H. Ueno, S. Nishikawa, R. Iino, K. V. Tabata, S. Sakakihara, T. Yanagida, and H. Noji, “Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution,” Biophys. J.98(9), 2014–2023 (2010).
[CrossRef] [PubMed]

Nitschke, R.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
[CrossRef] [PubMed]

Nitzsche, B.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Noetzel, T. L.

J. W. J. Kerssemakers, E. L. Munteanu, L. Laan, T. L. Noetzel, M. E. Janson, and M. Dogterom, “Assembly dynamics of microtubules at molecular resolution,” Nature442(7103), 709–712 (2006).
[CrossRef] [PubMed]

Noji, H.

H. Ueno, S. Nishikawa, R. Iino, K. V. Tabata, S. Sakakihara, T. Yanagida, and H. Noji, “Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution,” Biophys. J.98(9), 2014–2023 (2010).
[CrossRef] [PubMed]

Nolan, J. P.

W. P. Ambrose, P. M. Goodwin, and J. P. Nolan, “Single-molecule detection with total internal reflection excitation: Comparing signal-to-background and total signals in different geometries,” Cytometry36(3), 224–231 (1999).
[CrossRef] [PubMed]

Nomarski, G.

G. Nomarski, “From phase contrast to contrast by interference,” Rev. Hematol. (Paris)12(4), 439–442 (1957).
[PubMed]

Oheim, M.

M. van ’t Hoff, M. Reuter, D. T. F. Dryden, and M. Oheim, “Screening by imaging: scaling up single-DNA-molecule analysis with a novel parabolic VA-TIRF reflector and noise-reduction techniques,” Phys. Chem. Chem. Phys.11(35), 7713–7720 (2009).
[CrossRef] [PubMed]

Orrit, M.

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys.8(30), 3486–3495 (2006).
[CrossRef] [PubMed]

Peckham, M.

G. I. Mashanov, D. Tacon, M. Peckham, and J. E. Molloy, “The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts,” J. Biol. Chem.279(15), 15274–15280 (2004).
[CrossRef] [PubMed]

Peterman, E. J. G.

S. Verbrugge, S. M. J. L. van den Wildenberg, and E. J. G. Peterman, “Novel ways to determine kinesin-1’s run length and randomness using fluorescence microscopy,” Biophys. J.97(8), 2287–2294 (2009).
[CrossRef] [PubMed]

Petzold, H.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Rajeswaran, M.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Ren, X.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Resch-Genger, U.

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
[CrossRef] [PubMed]

Reuter, M.

M. van ’t Hoff, M. Reuter, D. T. F. Dryden, and M. Oheim, “Screening by imaging: scaling up single-DNA-molecule analysis with a novel parabolic VA-TIRF reflector and noise-reduction techniques,” Phys. Chem. Chem. Phys.11(35), 7713–7720 (2009).
[CrossRef] [PubMed]

Ribbe, J.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Rogers, K. R.

K. R. Rogers, S. Weiss, I. Crevel, P. J. Brophy, M. Geeves, and R. Cross, “KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry,” EMBO J.20(18), 5101–5113 (2001).
[CrossRef] [PubMed]

Ruckstuhl, T.

C. M. Winterflood, T. Ruckstuhl, D. Verdes, and S. Seeger, “Nanometer axial resolution by three-dimensional supercritical angle fluorescence microscopy,” Phys. Rev. Lett.105(10), 108103 (2010).
[CrossRef] [PubMed]

J. Enderlein and T. Ruckstuhl, “The efficiency of surface-plasmon coupled emission for sensitive fluorescence detection,” Opt. Express13(22), 8855–8865 (2005).
[CrossRef] [PubMed]

T. Ruckstuhl and S. Seeger, “Confocal total-internal-reflection fluorescence microscopy with a high-aperture parabolic mirror lens,” Appl. Opt.42(16), 3277–3283 (2003).
[CrossRef] [PubMed]

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden Light Detection from Single Molecules,” Anal. Chem.72(9), 2117–2123 (2000).
[CrossRef] [PubMed]

Ruhnow, F.

F. Ruhnow, D. Zwicker, and S. Diez, “Tracking single particles and elongated filaments with nanometer precision,” Biophys. J.100(11), 2820–2828 (2011).
[CrossRef] [PubMed]

Sakakihara, S.

H. Ueno, S. Nishikawa, R. Iino, K. V. Tabata, S. Sakakihara, T. Yanagida, and H. Noji, “Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution,” Biophys. J.98(9), 2014–2023 (2010).
[CrossRef] [PubMed]

Schäffer, E.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Schneckenburger, H.

H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol.16(1), 13–18 (2005).
[CrossRef] [PubMed]

Schnitzer, M. J.

M. J. Schnitzer and S. M. Block, “Kinesin hydrolyses one ATP per 8-nm step,” Nature388(6640), 386–390 (1997).
[CrossRef] [PubMed]

Seeger, S.

C. M. Winterflood, T. Ruckstuhl, D. Verdes, and S. Seeger, “Nanometer axial resolution by three-dimensional supercritical angle fluorescence microscopy,” Phys. Rev. Lett.105(10), 108103 (2010).
[CrossRef] [PubMed]

T. Ruckstuhl and S. Seeger, “Confocal total-internal-reflection fluorescence microscopy with a high-aperture parabolic mirror lens,” Appl. Opt.42(16), 3277–3283 (2003).
[CrossRef] [PubMed]

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden Light Detection from Single Molecules,” Anal. Chem.72(9), 2117–2123 (2000).
[CrossRef] [PubMed]

Selvin, P. R.

A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, “Kinesin walks hand-over-hand,” Science303(5658), 676–678 (2004).
[CrossRef] [PubMed]

Shaw, K.

A. L. Mattheyses, K. Shaw, and D. Axelrod, “Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle,” Microsc. Res. Tech.69(8), 642–647 (2006).
[CrossRef] [PubMed]

Silcox, J.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Soldati, T.

T. Lang, I. Wacker, J. Steyer, C. Kaether, I. Wunderlich, T. Soldati, H. H. Gerdes, and W. Almers, “Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy,” Neuron18(6), 857–863 (1997).
[CrossRef] [PubMed]

Spudich, J. A.

A. R. Dunn and J. A. Spudich, “Dynamics of the unbound head during myosin V processive translocation,” Nat. Struct. Mol. Biol.14(3), 246–248 (2007).
[CrossRef] [PubMed]

Stear, J. H.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Stemmer, A.

R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, “Even illumination in total internal reflection fluorescence microscopy using laser light,” Microsc. Res. Tech.71(1), 45–50 (2008).
[CrossRef] [PubMed]

Steyer, J.

T. Lang, I. Wacker, J. Steyer, C. Kaether, I. Wunderlich, T. Soldati, H. H. Gerdes, and W. Almers, “Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy,” Neuron18(6), 857–863 (1997).
[CrossRef] [PubMed]

Swaminathan, R.

R. Swaminathan, C. P. Hoang, and A. S. Verkman, “Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion,” Biophys. J.72(4), 1900–1907 (1997).
[CrossRef] [PubMed]

Tabata, K. V.

H. Ueno, S. Nishikawa, R. Iino, K. V. Tabata, S. Sakakihara, T. Yanagida, and H. Noji, “Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution,” Biophys. J.98(9), 2014–2023 (2010).
[CrossRef] [PubMed]

Tacon, D.

G. I. Mashanov, D. Tacon, M. Peckham, and J. E. Molloy, “The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts,” J. Biol. Chem.279(15), 15274–15280 (2004).
[CrossRef] [PubMed]

Tappura, K.

H. Välimäki and K. Tappura, “A novel platform for highly surface-sensitive fluorescent measurements applying simultaneous total internal reflection excitation and super critical angle detection,” Chem. Phys. Lett.473(4-6), 358–362 (2009).
[CrossRef]

Tchebotareva, A. L.

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys.8(30), 3486–3495 (2006).
[CrossRef] [PubMed]

Thanh, N. T. K.

W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, “Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra,” Anal. Chem.79(11), 4215–4221 (2007).
[CrossRef] [PubMed]

Thompson, N. L.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng.13(1), 247–268 (1984).
[CrossRef] [PubMed]

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

Tomishige, M.

A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, “Kinesin walks hand-over-hand,” Science303(5658), 676–678 (2004).
[CrossRef] [PubMed]

Trushko, A.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Ueno, H.

H. Ueno, S. Nishikawa, R. Iino, K. V. Tabata, S. Sakakihara, T. Yanagida, and H. Noji, “Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution,” Biophys. J.98(9), 2014–2023 (2010).
[CrossRef] [PubMed]

Vale, R. D.

A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, “Kinesin walks hand-over-hand,” Science303(5658), 676–678 (2004).
[CrossRef] [PubMed]

Välimäki, H.

H. Välimäki and K. Tappura, “A novel platform for highly surface-sensitive fluorescent measurements applying simultaneous total internal reflection excitation and super critical angle detection,” Chem. Phys. Lett.473(4-6), 358–362 (2009).
[CrossRef]

van ’t Hoff, M.

M. van ’t Hoff, M. Reuter, D. T. F. Dryden, and M. Oheim, “Screening by imaging: scaling up single-DNA-molecule analysis with a novel parabolic VA-TIRF reflector and noise-reduction techniques,” Phys. Chem. Chem. Phys.11(35), 7713–7720 (2009).
[CrossRef] [PubMed]

van den Wildenberg, S. M. J. L.

S. Verbrugge, S. M. J. L. van den Wildenberg, and E. J. G. Peterman, “Novel ways to determine kinesin-1’s run length and randomness using fluorescence microscopy,” Biophys. J.97(8), 2287–2294 (2009).
[CrossRef] [PubMed]

van Dijk, M. A.

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys.8(30), 3486–3495 (2006).
[CrossRef] [PubMed]

Varga, V.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Verbrugge, S.

S. Verbrugge, S. M. J. L. van den Wildenberg, and E. J. G. Peterman, “Novel ways to determine kinesin-1’s run length and randomness using fluorescence microscopy,” Biophys. J.97(8), 2287–2294 (2009).
[CrossRef] [PubMed]

Verdes, D.

C. M. Winterflood, T. Ruckstuhl, D. Verdes, and S. Seeger, “Nanometer axial resolution by three-dimensional supercritical angle fluorescence microscopy,” Phys. Rev. Lett.105(10), 108103 (2010).
[CrossRef] [PubMed]

Verkman, A. S.

R. Swaminathan, C. P. Hoang, and A. S. Verkman, “Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion,” Biophys. J.72(4), 1900–1907 (1997).
[CrossRef] [PubMed]

Wacker, I.

T. Lang, I. Wacker, J. Steyer, C. Kaether, I. Wunderlich, T. Soldati, H. H. Gerdes, and W. Almers, “Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy,” Neuron18(6), 857–863 (1997).
[CrossRef] [PubMed]

Wang, X.

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

Weiss, S.

K. R. Rogers, S. Weiss, I. Crevel, P. J. Brophy, M. Geeves, and R. Cross, “KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry,” EMBO J.20(18), 5101–5113 (2001).
[CrossRef] [PubMed]

Widlund, P. O.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Winterflood, C. M.

C. M. Winterflood, T. Ruckstuhl, D. Verdes, and S. Seeger, “Nanometer axial resolution by three-dimensional supercritical angle fluorescence microscopy,” Phys. Rev. Lett.105(10), 108103 (2010).
[CrossRef] [PubMed]

Wunderlich, I.

T. Lang, I. Wacker, J. Steyer, C. Kaether, I. Wunderlich, T. Soldati, H. H. Gerdes, and W. Almers, “Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy,” Neuron18(6), 857–863 (1997).
[CrossRef] [PubMed]

Yanagida, T.

H. Ueno, S. Nishikawa, R. Iino, K. V. Tabata, S. Sakakihara, T. Yanagida, and H. Noji, “Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution,” Biophys. J.98(9), 2014–2023 (2010).
[CrossRef] [PubMed]

Yildiz, A.

A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, “Kinesin walks hand-over-hand,” Science303(5658), 676–678 (2004).
[CrossRef] [PubMed]

Zanic, M.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Zwicker, D.

F. Ruhnow, D. Zwicker, and S. Diez, “Tracking single particles and elongated filaments with nanometer precision,” Biophys. J.100(11), 2820–2828 (2011).
[CrossRef] [PubMed]

Anal. Chem.

T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden Light Detection from Single Molecules,” Anal. Chem.72(9), 2117–2123 (2000).
[CrossRef] [PubMed]

W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, “Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra,” Anal. Chem.79(11), 4215–4221 (2007).
[CrossRef] [PubMed]

Ann. Phys-Berlin

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys-Berlin330(3), 377–445 (1908).
[CrossRef]

Annu. Rev. Biochem.

C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai, and T. Ha, “Advances in single-molecule fluorescence methods for molecular biology,” Annu. Rev. Biochem.77(1), 51–76 (2008).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Bioeng.

D. Axelrod, T. P. Burghardt, and N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng.13(1), 247–268 (1984).
[CrossRef] [PubMed]

Appl. Opt.

Biophys. J.

H. Ueno, S. Nishikawa, R. Iino, K. V. Tabata, S. Sakakihara, T. Yanagida, and H. Noji, “Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution,” Biophys. J.98(9), 2014–2023 (2010).
[CrossRef] [PubMed]

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82(5), 2775–2783 (2002).
[CrossRef] [PubMed]

R. Swaminathan, C. P. Hoang, and A. S. Verkman, “Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion,” Biophys. J.72(4), 1900–1907 (1997).
[CrossRef] [PubMed]

F. Ruhnow, D. Zwicker, and S. Diez, “Tracking single particles and elongated filaments with nanometer precision,” Biophys. J.100(11), 2820–2828 (2011).
[CrossRef] [PubMed]

S. Verbrugge, S. M. J. L. van den Wildenberg, and E. J. G. Peterman, “Novel ways to determine kinesin-1’s run length and randomness using fluorescence microscopy,” Biophys. J.97(8), 2287–2294 (2009).
[CrossRef] [PubMed]

Chem. Phys. Lett.

H. Välimäki and K. Tappura, “A novel platform for highly surface-sensitive fluorescent measurements applying simultaneous total internal reflection excitation and super critical angle detection,” Chem. Phys. Lett.473(4-6), 358–362 (2009).
[CrossRef]

Curr. Opin. Biotechnol.

H. Schneckenburger, “Total internal reflection fluorescence microscopy: technical innovations and novel applications,” Curr. Opin. Biotechnol.16(1), 13–18 (2005).
[CrossRef] [PubMed]

Cytometry

W. P. Ambrose, P. M. Goodwin, and J. P. Nolan, “Single-molecule detection with total internal reflection excitation: Comparing signal-to-background and total signals in different geometries,” Cytometry36(3), 224–231 (1999).
[CrossRef] [PubMed]

EMBO J.

K. R. Rogers, S. Weiss, I. Crevel, P. J. Brophy, M. Geeves, and R. Cross, “KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry,” EMBO J.20(18), 5101–5113 (2001).
[CrossRef] [PubMed]

J. Biol. Chem.

G. I. Mashanov, D. Tacon, M. Peckham, and J. E. Molloy, “The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts,” J. Biol. Chem.279(15), 15274–15280 (2004).
[CrossRef] [PubMed]

J. Cell Biol.

D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol.89(1), 141–145 (1981).
[CrossRef] [PubMed]

J. Fluoresc.

R. M. Fulbright and D. Axelrod, “Dynamics of nonspecific adsorption of insulin to erythrocyte membranes,” J. Fluoresc.3(1), 1–16 (1993).
[CrossRef]

J. Microsc.

C. Gell, M. Berndt, J. Enderlein, and S. Diez, “TIRF microscopy evanescent field calibration using tilted fluorescent microtubules,” J. Microsc.234(1), 38–46 (2009).
[CrossRef] [PubMed]

Methods Cell Biol.

C. Gell, V. Bormuth, G. J. Brouhard, D. N. Cohen, S. Diez, C. T. Friel, J. Helenius, B. Nitzsche, H. Petzold, J. Ribbe, E. Schäffer, J. H. Stear, A. Trushko, V. Varga, P. O. Widlund, M. Zanic, and J. Howard, “Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy,” Methods Cell Biol.95, 221–245 (2010).
[CrossRef] [PubMed]

Microsc. Res. Tech.

A. L. Mattheyses, K. Shaw, and D. Axelrod, “Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle,” Microsc. Res. Tech.69(8), 642–647 (2006).
[CrossRef] [PubMed]

R. Fiolka, Y. Belyaev, H. Ewers, and A. Stemmer, “Even illumination in total internal reflection fluorescence microscopy using laser light,” Microsc. Res. Tech.71(1), 45–50 (2008).
[CrossRef] [PubMed]

Nat. Methods

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, “Quantum dots versus organic dyes as fluorescent labels,” Nat. Methods5(9), 763–775 (2008).
[CrossRef] [PubMed]

Nat. Struct. Mol. Biol.

A. R. Dunn and J. A. Spudich, “Dynamics of the unbound head during myosin V processive translocation,” Nat. Struct. Mol. Biol.14(3), 246–248 (2007).
[CrossRef] [PubMed]

Nature

J. W. J. Kerssemakers, E. L. Munteanu, L. Laan, T. L. Noetzel, M. E. Janson, and M. Dogterom, “Assembly dynamics of microtubules at molecular resolution,” Nature442(7103), 709–712 (2006).
[CrossRef] [PubMed]

M. J. Schnitzer and S. M. Block, “Kinesin hydrolyses one ATP per 8-nm step,” Nature388(6640), 386–390 (1997).
[CrossRef] [PubMed]

X. Wang, X. Ren, K. Kahen, M. A. Hahn, M. Rajeswaran, S. Maccagnano-Zacher, J. Silcox, G. E. Cragg, A. L. Efros, and T. D. Krauss, “Non-blinking semiconductor nanocrystals,” Nature459(7247), 686–689 (2009).
[CrossRef] [PubMed]

Neuron

T. Lang, I. Wacker, J. Steyer, C. Kaether, I. Wunderlich, T. Soldati, H. H. Gerdes, and W. Almers, “Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy,” Neuron18(6), 857–863 (1997).
[CrossRef] [PubMed]

Opt. Eng.

E. Lassila, T. Alahautala, and R. Hernberg, “Focusing diode lasers using a truncated paraboloid with spherical output surface,” Opt. Eng.46(5), 054301 (2007).
[CrossRef]

Opt. Express

Philos. Trans. Roy. Soc. A.

M. Leeuwenhoek and R. de Graaf, “A Specimen of Some Observations Made by a Microscope,” Philos. Trans. Roy. Soc. A.8(92-100), 6037–6038 (1673).
[CrossRef]

Phys. Chem. Chem. Phys.

M. A. van Dijk, A. L. Tchebotareva, M. Orrit, M. Lippitz, S. Berciaud, D. Lasne, L. Cognet, and B. Lounis, “Absorption and scattering microscopy of single metal nanoparticles,” Phys. Chem. Chem. Phys.8(30), 3486–3495 (2006).
[CrossRef] [PubMed]

M. van ’t Hoff, M. Reuter, D. T. F. Dryden, and M. Oheim, “Screening by imaging: scaling up single-DNA-molecule analysis with a novel parabolic VA-TIRF reflector and noise-reduction techniques,” Phys. Chem. Chem. Phys.11(35), 7713–7720 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett.

C. M. Winterflood, T. Ruckstuhl, D. Verdes, and S. Seeger, “Nanometer axial resolution by three-dimensional supercritical angle fluorescence microscopy,” Phys. Rev. Lett.105(10), 108103 (2010).
[CrossRef] [PubMed]

Rev. Hematol. (Paris)

G. Nomarski, “From phase contrast to contrast by interference,” Rev. Hematol. (Paris)12(4), 439–442 (1957).
[PubMed]

Science

A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, “Kinesin walks hand-over-hand,” Science303(5658), 676–678 (2004).
[CrossRef] [PubMed]

Traffic

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” Traffic2(11), 764–774 (2001).
[CrossRef] [PubMed]

Other

M. Minsky, “Microscopy apparatus,“ U.S. Patent 3,013,467, filed November 7, 1957, and issued December 19, 1961.

I. Newton, Opticks (William Innys, London, 1704).

T. Ruckstuhl, M. Rankl, and S. Seeger, “Confocal TIRF microscopy of single molecules,” P. Soc. Photo-Opt. Ins., Proc. of SPIEE 4962, 126–134 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Design and application of parabolic prism-type TIR. (a) Collimated illumination light is vertically directed into the parabolic quartz prism by a 90° mirror which can be moved horizontally. Depending on the position of the mirror, the beam enters the prism at different distances from the optical axis (dashed black, solid green, and dotted black lines). They are totally reflected at different positions on the parabolic surface and reach the spatially invariant focal spot at the glass-water interface with different angles. Various modes of illumination (e.g. TIR illumination for angles larger than the critical angle) are achievable. Imaging is carried out on an inverted microscope through the objective from the bottom. (b) Constructional sketch of the parabolic quartz prism whose parabolic part (yellow, described by Eq. (1) has a circular bottom surface of 8 mm in diameter and stretches up to a height of 8.9 mm, where a sharp transition (green) leads into a cylindrically shaped part (grey). The laser beam enters and leaves the prism through the top surface (brown).

Fig. 2
Fig. 2

The size of the illumination area can be varied by the adjustable fiber collimator. Substrate-attached 40 nm AuNPs (a) and fluorescent streptavidin molecules unspecifically adsorbed to the substrate surface (b) were illuminated with a 532 nm laser and 488 nm laser, respectively. The illumination area was increased from a minimal size of 90 x 35 µm2 up to larger than 130 x 130 µm2 (left to right). Bar size: 25 µm.

Fig. 3
Fig. 3

The AOI can be varied using the translational movement of the 90° mirror. We recorded the scattering of surface-bound 200 nm Tetraspeck beads (a) and the fluorescence of rhodamine-labeled MTs (c), bound to the glass surface with one end and pointing away from the surface with their remaining parts in a tilted orientation, while successively increasing the AOI from low, sub-critical angles (left) to high, super-critical angles (right). Bar size: 25 µm and 10 µm. (b) The scattered intensity (mean ± sd, N = 262 beads) showed a clear peak at the critical angle of 63° (red dashed line).

Fig. 4
Fig. 4

Comparison of prism- and objective-type TIRF. Illustration of the parabolic prism-type (a) and objective-type TIRF (b) setups where critical-angle illumination (blue line) is performed on the far side (a) and the near side (b) of the objective, respectively. Single-molecule fluorescence (green line) is captured using a 63x NA1.2 water objective (a) and a 100x NA1.46 oil objective (b). Example images of individual eGFP-labeled kinesin-1 motor molecules (green) immobilized on MTs (red) in the presence of the non-hydrolyzable ATP-analogue AMP-PNP using parabolic prism-type (c) and objective-type TIRF (d). The illumination laser powers were adjusted such that equal bleaching times occurred in both setups. Bar size: 5 µm. (e) Intensity line scans taken from (c) and (d) showing lower background levels and lower noise for prism-type TIRF (solid curve) but higher signal amplitudes for objective-type TIRF (dashed curve). (f) Comparison of SNRs calculated from experiments performed at bleaching times of 2.5 s and 5.0 s shows lower SNRs for prism-type TIRF as compared to objective-type TIRF.

Fig. 5
Fig. 5

Noise and SNR depend on the square root of the number of collected photons. (a) The measured noise is plotted versus the mean amplitude of the molecules (mean ± sd; dots - prism-type TIRF, triangles – objective-type TIRF). The data was fit to a square root relationship because a scaling factor of 0.5 was found when fitting the data to a weighted power function. (b) The SNR (mean ± sd) was calculated from the single data points and compared to the calculated SNRs using the square root dependency found in (a). Each data point averages over at least 70 (100) molecules for prism-type (objective-type) TIRF.

Fig. 6
Fig. 6

The emission pattern of a dipole close to an optical interface is distorted toward the optically thicker medium (here: the glass). The distortion leads to increased emission toward the glass medium. This effect favors objective- over prism-type collection schemes in terms of detection efficiency. Dipole emission patterns adapted from [29].

Fig. 7
Fig. 7

Simulation of the illumination characteristics for various imaging conditions (n = 1.46). (a) Calculated path of a Gaussian laser beam (1/e2 diameter of 0.5 mm) entering the parabolic quartz prism at increasing distances x from the optical axis and hence decreasing AOIs. (b) Zoomed-in side view on the quartz-prism/quartz-cover slip/water interface showing the transition from super- to sub-critical angle illumination (left to right). (c) The profile of the optical power density in the field of view (maximum power density given below in arbitrary units) for the associated configurations in (a) and (b). Note, that the illumination spot stays centered in the field of view (40 x 40 µm2, dashed line). (d) In contrast, the illumination spot of a collimated beam shifts spatially along the x-axis, when immersion oil (noil = 1.52) and glass cover slips (nglass = 1.52) are used. Compared to the simulations, a smaller shift by approximately only 10 µm was observed in the experiments. This shift was found to be negligible because for the experiments described in the main text the illumination laser beam was expanded yielding a large illumination area (larger than 130 x 130 µm2). Simulated results were obtained using FRED (Photon Engineering, Tucson, AZ, USA).

Fig. 8
Fig. 8

Localization precision for eGFP molecules and 40 nm AuNPs. (a) Localization errors as functions of the number of detected photons per frame for: eGFP molecules at the tails of kinesin-1 motor proteins bound to substrate-attached MTs (green dots) and 40 nm AuNPs bound to the eGFP molecules (orange dots, see inset for molecular geometries) as well as 40 nm AuNPs directly attached to the substrate (yellow dots). Each dot represents the localization error of an individual eGFP molecule or 40 nm AuNP. Motor proteins were rendered immobile to the MTs by the presence of AMP-PNP. (b) Stepwise motion of 40 nm AuNPs attached to kinesin-1 motors walking along MTs in the presence of 1 µM MgATP (velocity of 17 ± 6 nm/s, mean ± sd, N = 22). The distance along the path (red line) was examined with a step-finding algorithm (black line). (c) Histogram of step sizes calculated from 22 AuNPs performing a total of 715 steps. A minor fraction of steps was found at + 16 nm, which corresponds to two consecutive steps that were too fast to be resolved individually.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

f(x)= x 2 7.2 mm 2.22 mm,
α quartz ( x )=2| arctan( 1 f (x) ) | 360 2π .
α glass =arcsin( sin( α quartz ) n quartz n glass ).
Noise=3 Amplitude .
SNR= Amplitude Noise = Amplitude 3 Amplitude = 1 3 Amplitude ,
Δx = σ 2 + a 2 / 12 N + σ 4 b 2 a 2 N 2 .

Metrics