Abstract

The room-temperature photoluminescence (PL) spectra of hydrothermal grown ZnO film and nanowires coated with Al are investigated, which exhibit much less UV emission enhancement ratio as against that of nanowires fabricated by thermal evaporation method. A model is suggested at last to interpret the experimental results considering the influence of the defect on the contact property between metal and ZnO, which is further evidenced by the weak PL enhancement ratio of thermal evaporation grown ZnO nanowires with H2O2 treatment.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett.96(7), 071107 (2010).
    [CrossRef]
  2. Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett.98(3), 033103 (2011).
    [CrossRef]
  3. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett.86(25), 251105 (2005).
    [CrossRef]
  4. J. Song, X. Y. An, J. Y. Zhou, Y. X. Liu, W. Wang, X. D. Li, W. Lan, and E. Q. Xie, “Investigation of enhanced ultraviolet emission from different Ti-capped ZnO structures via surface passivation and surface plasmon coupling,” Appl. Phys. Lett.97(12), 122103 (2010).
    [CrossRef]
  5. J. P. Richters, A. Dev, S. Muller, R. Niepelt, C. Borschel, C. Ronning, and T. Voss, “Influence of metallic coatings on the photoluminescence properties of ZnO nanowires,” Phys. Status Solidi (RRL)3(5), 166–168 (2009).
    [CrossRef]
  6. M. Mahanti, T. Ghosh, and D. Basak, “Enhanced near band edge luminescence of Ti/ZnO nanorod heterostructures due to the surface diffusion of Ti,” Nanoscale3(10), 4427–4433 (2011).
    [CrossRef] [PubMed]
  7. A. Dev, J. P. Richters, J. Sartor, H. Kalt, J. Gutowski, and T. Voss, “Enhancement of the near-band-edge photoluminescence of ZnO nanowires: Important role of hydrogen incorporation versus plasmon resonances,” Appl. Phys. Lett.98(13), 131111 (2011).
    [CrossRef]
  8. X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL93(5), 57009 (2011).
    [CrossRef]
  9. Y. Tak and K. J. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method,” J. Phys. Chem. B109(41), 19263–19269 (2005).
    [CrossRef] [PubMed]
  10. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. D. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett.5(7), 1231–1236 (2005).
    [CrossRef] [PubMed]
  11. Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. Sha, “Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
    [CrossRef]
  12. Z. Xu, H. P. He, L. W. Sun, Y. Z. Jin, B. H. Zhao, and Z. Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys.107(5), 053524 (2010).
    [CrossRef]
  13. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
    [CrossRef]
  14. M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys.86(7), 3721–3728 (1999).
    [CrossRef]
  15. Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett.100(11), 112103 (2012).
    [CrossRef]
  16. V. Kolkovsky, L. Scheffler, E. Hieckmann, E. V. Lavrov, and J. Weber, “Schottky contacts on differently grown n-type ZnO single crystals,” Appl. Phys. Lett.98(8), 082104 (2011).
    [CrossRef]
  17. M. Riaz, J. H. Song, O. Nur, Z. L. Wang, and M. Willander, “Study of the Piezoelectric Power Generation of ZnO Nanowire Arrays Grown by Different Methods,” Adv. Funct. Mater.21(4), 628–633 (2011).
    [CrossRef]
  18. K. Ip, G. T. Thaler, H. Yang, S. Youn Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, and F. Ren, “Contacts to ZnO,” J. Cryst. Growth287(1), 149–156 (2006).
    [CrossRef]
  19. S. Lany and A. Zunger, “Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides,” Phys. Rev. Lett.98(4), 045501 (2007).
    [CrossRef] [PubMed]
  20. D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett.85(9), 1601–1603 (2004).
    [CrossRef]
  21. C. H. Tsai, W. C. Wang, F. L. Jenq, C. C. Liu, C. I. Hung, and M. P. Houng, “Surface modification of ZnO film by hydrogen peroxide solution,” J. Appl. Phys.104(5), 053521 (2008).
    [CrossRef]
  22. P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, “Intrinsic n-Type Behavior in Transparent Conducting Oxides: A Comparative Hybrid-Functional Study of In2O3, SnO2, and ZnO,” Phys. Rev. Lett.103(24), 245501 (2009).
    [CrossRef] [PubMed]
  23. Y. S. Kim and C. H. Park, “Rich Variety of Defects in ZnO via an Attractive Interaction between O Vacancies and Zn Interstitials: Origin of n-Type Doping,” Phys. Rev. Lett.102(8), 086403 (2009).
    [CrossRef] [PubMed]

2012

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett.100(11), 112103 (2012).
[CrossRef]

2011

V. Kolkovsky, L. Scheffler, E. Hieckmann, E. V. Lavrov, and J. Weber, “Schottky contacts on differently grown n-type ZnO single crystals,” Appl. Phys. Lett.98(8), 082104 (2011).
[CrossRef]

M. Riaz, J. H. Song, O. Nur, Z. L. Wang, and M. Willander, “Study of the Piezoelectric Power Generation of ZnO Nanowire Arrays Grown by Different Methods,” Adv. Funct. Mater.21(4), 628–633 (2011).
[CrossRef]

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett.98(3), 033103 (2011).
[CrossRef]

M. Mahanti, T. Ghosh, and D. Basak, “Enhanced near band edge luminescence of Ti/ZnO nanorod heterostructures due to the surface diffusion of Ti,” Nanoscale3(10), 4427–4433 (2011).
[CrossRef] [PubMed]

A. Dev, J. P. Richters, J. Sartor, H. Kalt, J. Gutowski, and T. Voss, “Enhancement of the near-band-edge photoluminescence of ZnO nanowires: Important role of hydrogen incorporation versus plasmon resonances,” Appl. Phys. Lett.98(13), 131111 (2011).
[CrossRef]

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL93(5), 57009 (2011).
[CrossRef]

2010

J. Song, X. Y. An, J. Y. Zhou, Y. X. Liu, W. Wang, X. D. Li, W. Lan, and E. Q. Xie, “Investigation of enhanced ultraviolet emission from different Ti-capped ZnO structures via surface passivation and surface plasmon coupling,” Appl. Phys. Lett.97(12), 122103 (2010).
[CrossRef]

Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. Sha, “Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
[CrossRef]

Z. Xu, H. P. He, L. W. Sun, Y. Z. Jin, B. H. Zhao, and Z. Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys.107(5), 053524 (2010).
[CrossRef]

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett.96(7), 071107 (2010).
[CrossRef]

2009

P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, “Intrinsic n-Type Behavior in Transparent Conducting Oxides: A Comparative Hybrid-Functional Study of In2O3, SnO2, and ZnO,” Phys. Rev. Lett.103(24), 245501 (2009).
[CrossRef] [PubMed]

Y. S. Kim and C. H. Park, “Rich Variety of Defects in ZnO via an Attractive Interaction between O Vacancies and Zn Interstitials: Origin of n-Type Doping,” Phys. Rev. Lett.102(8), 086403 (2009).
[CrossRef] [PubMed]

J. P. Richters, A. Dev, S. Muller, R. Niepelt, C. Borschel, C. Ronning, and T. Voss, “Influence of metallic coatings on the photoluminescence properties of ZnO nanowires,” Phys. Status Solidi (RRL)3(5), 166–168 (2009).
[CrossRef]

2008

C. H. Tsai, W. C. Wang, F. L. Jenq, C. C. Liu, C. I. Hung, and M. P. Houng, “Surface modification of ZnO film by hydrogen peroxide solution,” J. Appl. Phys.104(5), 053521 (2008).
[CrossRef]

2007

S. Lany and A. Zunger, “Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides,” Phys. Rev. Lett.98(4), 045501 (2007).
[CrossRef] [PubMed]

2006

K. Ip, G. T. Thaler, H. Yang, S. Youn Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, and F. Ren, “Contacts to ZnO,” J. Cryst. Growth287(1), 149–156 (2006).
[CrossRef]

2005

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett.86(25), 251105 (2005).
[CrossRef]

Y. Tak and K. J. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method,” J. Phys. Chem. B109(41), 19263–19269 (2005).
[CrossRef] [PubMed]

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. D. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

2004

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[CrossRef]

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett.85(9), 1601–1603 (2004).
[CrossRef]

1999

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys.86(7), 3721–3728 (1999).
[CrossRef]

Ágoston, P.

P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, “Intrinsic n-Type Behavior in Transparent Conducting Oxides: A Comparative Hybrid-Functional Study of In2O3, SnO2, and ZnO,” Phys. Rev. Lett.103(24), 245501 (2009).
[CrossRef] [PubMed]

Albe, K.

P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, “Intrinsic n-Type Behavior in Transparent Conducting Oxides: A Comparative Hybrid-Functional Study of In2O3, SnO2, and ZnO,” Phys. Rev. Lett.103(24), 245501 (2009).
[CrossRef] [PubMed]

Alves, H.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[CrossRef]

An, J.

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett.86(25), 251105 (2005).
[CrossRef]

An, X. Y.

J. Song, X. Y. An, J. Y. Zhou, Y. X. Liu, W. Wang, X. D. Li, W. Lan, and E. Q. Xie, “Investigation of enhanced ultraviolet emission from different Ti-capped ZnO structures via surface passivation and surface plasmon coupling,” Appl. Phys. Lett.97(12), 122103 (2010).
[CrossRef]

Basak, D.

M. Mahanti, T. Ghosh, and D. Basak, “Enhanced near band edge luminescence of Ti/ZnO nanorod heterostructures due to the surface diffusion of Ti,” Nanoscale3(10), 4427–4433 (2011).
[CrossRef] [PubMed]

Beaumont, B.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys.86(7), 3721–3728 (1999).
[CrossRef]

Bertram, F.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[CrossRef]

Borschel, C.

J. P. Richters, A. Dev, S. Muller, R. Niepelt, C. Borschel, C. Ronning, and T. Voss, “Influence of metallic coatings on the photoluminescence properties of ZnO nanowires,” Phys. Status Solidi (RRL)3(5), 166–168 (2009).
[CrossRef]

Cai, G. X.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL93(5), 57009 (2011).
[CrossRef]

Chan, W. K.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett.85(9), 1601–1603 (2004).
[CrossRef]

Cheng, C. W.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett.96(7), 071107 (2010).
[CrossRef]

Christen, J.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[CrossRef]

Dev, A.

A. Dev, J. P. Richters, J. Sartor, H. Kalt, J. Gutowski, and T. Voss, “Enhancement of the near-band-edge photoluminescence of ZnO nanowires: Important role of hydrogen incorporation versus plasmon resonances,” Appl. Phys. Lett.98(13), 131111 (2011).
[CrossRef]

J. P. Richters, A. Dev, S. Muller, R. Niepelt, C. Borschel, C. Ronning, and T. Voss, “Influence of metallic coatings on the photoluminescence properties of ZnO nanowires,” Phys. Status Solidi (RRL)3(5), 166–168 (2009).
[CrossRef]

Djurišic, A. B.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett.85(9), 1601–1603 (2004).
[CrossRef]

Dworzak, M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[CrossRef]

Fan, H. J.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett.96(7), 071107 (2010).
[CrossRef]

Fang, Y. J.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett.98(3), 033103 (2011).
[CrossRef]

Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. Sha, “Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
[CrossRef]

Forster, D.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[CrossRef]

Ghosh, T.

M. Mahanti, T. Ghosh, and D. Basak, “Enhanced near band edge luminescence of Ti/ZnO nanorod heterostructures due to the surface diffusion of Ti,” Nanoscale3(10), 4427–4433 (2011).
[CrossRef] [PubMed]

Gibart, P.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys.86(7), 3721–3728 (1999).
[CrossRef]

Goldberger, J.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. D. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

Grandjean, N.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys.86(7), 3721–3728 (1999).
[CrossRef]

Greene, L. E.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. D. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

Gutowski, J.

A. Dev, J. P. Richters, J. Sartor, H. Kalt, J. Gutowski, and T. Voss, “Enhancement of the near-band-edge photoluminescence of ZnO nanowires: Important role of hydrogen incorporation versus plasmon resonances,” Appl. Phys. Lett.98(13), 131111 (2011).
[CrossRef]

Haboeck, U.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[CrossRef]

He, H.

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett.100(11), 112103 (2012).
[CrossRef]

He, H. P.

Z. Xu, H. P. He, L. W. Sun, Y. Z. Jin, B. H. Zhao, and Z. Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys.107(5), 053524 (2010).
[CrossRef]

Hieckmann, E.

V. Kolkovsky, L. Scheffler, E. Hieckmann, E. V. Lavrov, and J. Weber, “Schottky contacts on differently grown n-type ZnO single crystals,” Appl. Phys. Lett.98(8), 082104 (2011).
[CrossRef]

Hoffmann, A.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[CrossRef]

Hofmann, D. M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[CrossRef]

Houng, M. P.

C. H. Tsai, W. C. Wang, F. L. Jenq, C. C. Liu, C. I. Hung, and M. P. Houng, “Surface modification of ZnO film by hydrogen peroxide solution,” J. Appl. Phys.104(5), 053521 (2008).
[CrossRef]

Hu, L.

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett.100(11), 112103 (2012).
[CrossRef]

Huan, C. H. A.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett.96(7), 071107 (2010).
[CrossRef]

Huang, J.

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett.100(11), 112103 (2012).
[CrossRef]

Hung, C. I.

C. H. Tsai, W. C. Wang, F. L. Jenq, C. C. Liu, C. I. Hung, and M. P. Houng, “Surface modification of ZnO film by hydrogen peroxide solution,” J. Appl. Phys.104(5), 053521 (2008).
[CrossRef]

Ip, K.

K. Ip, G. T. Thaler, H. Yang, S. Youn Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, and F. Ren, “Contacts to ZnO,” J. Cryst. Growth287(1), 149–156 (2006).
[CrossRef]

Jang, S.

K. Ip, G. T. Thaler, H. Yang, S. Youn Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, and F. Ren, “Contacts to ZnO,” J. Cryst. Growth287(1), 149–156 (2006).
[CrossRef]

Jenq, F. L.

C. H. Tsai, W. C. Wang, F. L. Jenq, C. C. Liu, C. I. Hung, and M. P. Houng, “Surface modification of ZnO film by hydrogen peroxide solution,” J. Appl. Phys.104(5), 053521 (2008).
[CrossRef]

Jiang, C. Z.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL93(5), 57009 (2011).
[CrossRef]

Jin, Y. Z.

Z. Xu, H. P. He, L. W. Sun, Y. Z. Jin, B. H. Zhao, and Z. Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys.107(5), 053524 (2010).
[CrossRef]

Kalt, H.

A. Dev, J. P. Richters, J. Sartor, H. Kalt, J. Gutowski, and T. Voss, “Enhancement of the near-band-edge photoluminescence of ZnO nanowires: Important role of hydrogen incorporation versus plasmon resonances,” Appl. Phys. Lett.98(13), 131111 (2011).
[CrossRef]

Kim, Y. S.

Y. S. Kim and C. H. Park, “Rich Variety of Defects in ZnO via an Attractive Interaction between O Vacancies and Zn Interstitials: Origin of n-Type Doping,” Phys. Rev. Lett.102(8), 086403 (2009).
[CrossRef] [PubMed]

Kolkovsky, V.

V. Kolkovsky, L. Scheffler, E. Hieckmann, E. V. Lavrov, and J. Weber, “Schottky contacts on differently grown n-type ZnO single crystals,” Appl. Phys. Lett.98(8), 082104 (2011).
[CrossRef]

Kriegseis, W.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[CrossRef]

Lai, C. W.

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett.86(25), 251105 (2005).
[CrossRef]

Lan, W.

J. Song, X. Y. An, J. Y. Zhou, Y. X. Liu, W. Wang, X. D. Li, W. Lan, and E. Q. Xie, “Investigation of enhanced ultraviolet emission from different Ti-capped ZnO structures via surface passivation and surface plasmon coupling,” Appl. Phys. Lett.97(12), 122103 (2010).
[CrossRef]

Lany, S.

S. Lany and A. Zunger, “Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides,” Phys. Rev. Lett.98(4), 045501 (2007).
[CrossRef] [PubMed]

Lavrov, E. V.

V. Kolkovsky, L. Scheffler, E. Hieckmann, E. V. Lavrov, and J. Weber, “Schottky contacts on differently grown n-type ZnO single crystals,” Appl. Phys. Lett.98(8), 082104 (2011).
[CrossRef]

Law, M.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. D. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

Leroux, M.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys.86(7), 3721–3728 (1999).
[CrossRef]

Leung, Y. H.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett.85(9), 1601–1603 (2004).
[CrossRef]

Li, D.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett.85(9), 1601–1603 (2004).
[CrossRef]

Li, X. D.

J. Song, X. Y. An, J. Y. Zhou, Y. X. Liu, W. Wang, X. D. Li, W. Lan, and E. Q. Xie, “Investigation of enhanced ultraviolet emission from different Ti-capped ZnO structures via surface passivation and surface plasmon coupling,” Appl. Phys. Lett.97(12), 122103 (2010).
[CrossRef]

Li, Y.

K. Ip, G. T. Thaler, H. Yang, S. Youn Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, and F. Ren, “Contacts to ZnO,” J. Cryst. Growth287(1), 149–156 (2006).
[CrossRef]

Liu, B.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett.96(7), 071107 (2010).
[CrossRef]

Liu, C. C.

C. H. Tsai, W. C. Wang, F. L. Jenq, C. C. Liu, C. I. Hung, and M. P. Houng, “Surface modification of ZnO film by hydrogen peroxide solution,” J. Appl. Phys.104(5), 053521 (2008).
[CrossRef]

Liu, Y. X.

J. Song, X. Y. An, J. Y. Zhou, Y. X. Liu, W. Wang, X. D. Li, W. Lan, and E. Q. Xie, “Investigation of enhanced ultraviolet emission from different Ti-capped ZnO structures via surface passivation and surface plasmon coupling,” Appl. Phys. Lett.97(12), 122103 (2010).
[CrossRef]

Liu, Z. T.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett.85(9), 1601–1603 (2004).
[CrossRef]

Mahanti, M.

M. Mahanti, T. Ghosh, and D. Basak, “Enhanced near band edge luminescence of Ti/ZnO nanorod heterostructures due to the surface diffusion of Ti,” Nanoscale3(10), 4427–4433 (2011).
[CrossRef] [PubMed]

Massies, J.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys.86(7), 3721–3728 (1999).
[CrossRef]

Meyer, B. K.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[CrossRef]

Montano, M.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. D. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

Muller, S.

J. P. Richters, A. Dev, S. Muller, R. Niepelt, C. Borschel, C. Ronning, and T. Voss, “Influence of metallic coatings on the photoluminescence properties of ZnO nanowires,” Phys. Status Solidi (RRL)3(5), 166–168 (2009).
[CrossRef]

Nataf, G.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys.86(7), 3721–3728 (1999).
[CrossRef]

Nieminen, R. M.

P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, “Intrinsic n-Type Behavior in Transparent Conducting Oxides: A Comparative Hybrid-Functional Study of In2O3, SnO2, and ZnO,” Phys. Rev. Lett.103(24), 245501 (2009).
[CrossRef] [PubMed]

Niepelt, R.

J. P. Richters, A. Dev, S. Muller, R. Niepelt, C. Borschel, C. Ronning, and T. Voss, “Influence of metallic coatings on the photoluminescence properties of ZnO nanowires,” Phys. Status Solidi (RRL)3(5), 166–168 (2009).
[CrossRef]

Norton, D. P.

K. Ip, G. T. Thaler, H. Yang, S. Youn Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, and F. Ren, “Contacts to ZnO,” J. Cryst. Growth287(1), 149–156 (2006).
[CrossRef]

Nur, O.

M. Riaz, J. H. Song, O. Nur, Z. L. Wang, and M. Willander, “Study of the Piezoelectric Power Generation of ZnO Nanowire Arrays Grown by Different Methods,” Adv. Funct. Mater.21(4), 628–633 (2011).
[CrossRef]

Ong, H. C.

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett.86(25), 251105 (2005).
[CrossRef]

Park, C. H.

Y. S. Kim and C. H. Park, “Rich Variety of Defects in ZnO via an Attractive Interaction between O Vacancies and Zn Interstitials: Origin of n-Type Doping,” Phys. Rev. Lett.102(8), 086403 (2009).
[CrossRef] [PubMed]

Pearton, S. J.

K. Ip, G. T. Thaler, H. Yang, S. Youn Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, and F. Ren, “Contacts to ZnO,” J. Cryst. Growth287(1), 149–156 (2006).
[CrossRef]

Puska, M. J.

P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, “Intrinsic n-Type Behavior in Transparent Conducting Oxides: A Comparative Hybrid-Functional Study of In2O3, SnO2, and ZnO,” Phys. Rev. Lett.103(24), 245501 (2009).
[CrossRef] [PubMed]

Ren, F.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL93(5), 57009 (2011).
[CrossRef]

K. Ip, G. T. Thaler, H. Yang, S. Youn Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, and F. Ren, “Contacts to ZnO,” J. Cryst. Growth287(1), 149–156 (2006).
[CrossRef]

Riaz, M.

M. Riaz, J. H. Song, O. Nur, Z. L. Wang, and M. Willander, “Study of the Piezoelectric Power Generation of ZnO Nanowire Arrays Grown by Different Methods,” Adv. Funct. Mater.21(4), 628–633 (2011).
[CrossRef]

Richters, J. P.

A. Dev, J. P. Richters, J. Sartor, H. Kalt, J. Gutowski, and T. Voss, “Enhancement of the near-band-edge photoluminescence of ZnO nanowires: Important role of hydrogen incorporation versus plasmon resonances,” Appl. Phys. Lett.98(13), 131111 (2011).
[CrossRef]

J. P. Richters, A. Dev, S. Muller, R. Niepelt, C. Borschel, C. Ronning, and T. Voss, “Influence of metallic coatings on the photoluminescence properties of ZnO nanowires,” Phys. Status Solidi (RRL)3(5), 166–168 (2009).
[CrossRef]

Rodina, A. V.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[CrossRef]

Ronning, C.

J. P. Richters, A. Dev, S. Muller, R. Niepelt, C. Borschel, C. Ronning, and T. Voss, “Influence of metallic coatings on the photoluminescence properties of ZnO nanowires,” Phys. Status Solidi (RRL)3(5), 166–168 (2009).
[CrossRef]

Sartor, J.

A. Dev, J. P. Richters, J. Sartor, H. Kalt, J. Gutowski, and T. Voss, “Enhancement of the near-band-edge photoluminescence of ZnO nanowires: Important role of hydrogen incorporation versus plasmon resonances,” Appl. Phys. Lett.98(13), 131111 (2011).
[CrossRef]

Scheffler, L.

V. Kolkovsky, L. Scheffler, E. Hieckmann, E. V. Lavrov, and J. Weber, “Schottky contacts on differently grown n-type ZnO single crystals,” Appl. Phys. Lett.98(8), 082104 (2011).
[CrossRef]

Semond, F.

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys.86(7), 3721–3728 (1999).
[CrossRef]

Sha, J.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett.98(3), 033103 (2011).
[CrossRef]

Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. Sha, “Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
[CrossRef]

Shi, S. L.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett.85(9), 1601–1603 (2004).
[CrossRef]

Sie, E. J.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett.96(7), 071107 (2010).
[CrossRef]

Somorjai, G.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. D. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

Song, J.

J. Song, X. Y. An, J. Y. Zhou, Y. X. Liu, W. Wang, X. D. Li, W. Lan, and E. Q. Xie, “Investigation of enhanced ultraviolet emission from different Ti-capped ZnO structures via surface passivation and surface plasmon coupling,” Appl. Phys. Lett.97(12), 122103 (2010).
[CrossRef]

Song, J. H.

M. Riaz, J. H. Song, O. Nur, Z. L. Wang, and M. Willander, “Study of the Piezoelectric Power Generation of ZnO Nanowire Arrays Grown by Different Methods,” Adv. Funct. Mater.21(4), 628–633 (2011).
[CrossRef]

Straßburg, M.

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[CrossRef]

Sum, T. C.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett.96(7), 071107 (2010).
[CrossRef]

Sun, H. D.

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett.96(7), 071107 (2010).
[CrossRef]

Sun, L.

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett.100(11), 112103 (2012).
[CrossRef]

Sun, L. W.

Z. Xu, H. P. He, L. W. Sun, Y. Z. Jin, B. H. Zhao, and Z. Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys.107(5), 053524 (2010).
[CrossRef]

Tak, Y.

Y. Tak and K. J. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method,” J. Phys. Chem. B109(41), 19263–19269 (2005).
[CrossRef] [PubMed]

Tan, D. H.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. D. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

Thaler, G. T.

K. Ip, G. T. Thaler, H. Yang, S. Youn Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, and F. Ren, “Contacts to ZnO,” J. Cryst. Growth287(1), 149–156 (2006).
[CrossRef]

Tsai, C. H.

C. H. Tsai, W. C. Wang, F. L. Jenq, C. C. Liu, C. I. Hung, and M. P. Houng, “Surface modification of ZnO film by hydrogen peroxide solution,” J. Appl. Phys.104(5), 053521 (2008).
[CrossRef]

Voss, T.

A. Dev, J. P. Richters, J. Sartor, H. Kalt, J. Gutowski, and T. Voss, “Enhancement of the near-band-edge photoluminescence of ZnO nanowires: Important role of hydrogen incorporation versus plasmon resonances,” Appl. Phys. Lett.98(13), 131111 (2011).
[CrossRef]

J. P. Richters, A. Dev, S. Muller, R. Niepelt, C. Borschel, C. Ronning, and T. Voss, “Influence of metallic coatings on the photoluminescence properties of ZnO nanowires,” Phys. Status Solidi (RRL)3(5), 166–168 (2009).
[CrossRef]

Wan, Y. T.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett.98(3), 033103 (2011).
[CrossRef]

Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. Sha, “Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
[CrossRef]

Wang, W.

J. Song, X. Y. An, J. Y. Zhou, Y. X. Liu, W. Wang, X. D. Li, W. Lan, and E. Q. Xie, “Investigation of enhanced ultraviolet emission from different Ti-capped ZnO structures via surface passivation and surface plasmon coupling,” Appl. Phys. Lett.97(12), 122103 (2010).
[CrossRef]

Wang, W. C.

C. H. Tsai, W. C. Wang, F. L. Jenq, C. C. Liu, C. I. Hung, and M. P. Houng, “Surface modification of ZnO film by hydrogen peroxide solution,” J. Appl. Phys.104(5), 053521 (2008).
[CrossRef]

Wang, Y.

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett.100(11), 112103 (2012).
[CrossRef]

Wang, Y. W.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett.98(3), 033103 (2011).
[CrossRef]

Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. Sha, “Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
[CrossRef]

Wang, Z. L.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett.98(3), 033103 (2011).
[CrossRef]

M. Riaz, J. H. Song, O. Nur, Z. L. Wang, and M. Willander, “Study of the Piezoelectric Power Generation of ZnO Nanowire Arrays Grown by Different Methods,” Adv. Funct. Mater.21(4), 628–633 (2011).
[CrossRef]

Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. Sha, “Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
[CrossRef]

Weber, J.

V. Kolkovsky, L. Scheffler, E. Hieckmann, E. V. Lavrov, and J. Weber, “Schottky contacts on differently grown n-type ZnO single crystals,” Appl. Phys. Lett.98(8), 082104 (2011).
[CrossRef]

Willander, M.

M. Riaz, J. H. Song, O. Nur, Z. L. Wang, and M. Willander, “Study of the Piezoelectric Power Generation of ZnO Nanowire Arrays Grown by Different Methods,” Adv. Funct. Mater.21(4), 628–633 (2011).
[CrossRef]

Wu, K.

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett.100(11), 112103 (2012).
[CrossRef]

Xia, W. W.

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett.98(3), 033103 (2011).
[CrossRef]

Xiao, X. H.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL93(5), 57009 (2011).
[CrossRef]

Xie, E. Q.

J. Song, X. Y. An, J. Y. Zhou, Y. X. Liu, W. Wang, X. D. Li, W. Lan, and E. Q. Xie, “Investigation of enhanced ultraviolet emission from different Ti-capped ZnO structures via surface passivation and surface plasmon coupling,” Appl. Phys. Lett.97(12), 122103 (2010).
[CrossRef]

Xie, M. H.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett.85(9), 1601–1603 (2004).
[CrossRef]

Xu, J. X.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL93(5), 57009 (2011).
[CrossRef]

Xu, S. J.

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett.85(9), 1601–1603 (2004).
[CrossRef]

Xu, Z.

Z. Xu, H. P. He, L. W. Sun, Y. Z. Jin, B. H. Zhao, and Z. Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys.107(5), 053524 (2010).
[CrossRef]

Yang, H.

K. Ip, G. T. Thaler, H. Yang, S. Youn Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, and F. Ren, “Contacts to ZnO,” J. Cryst. Growth287(1), 149–156 (2006).
[CrossRef]

Yang, P. D.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. D. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

Ye, Z.

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett.100(11), 112103 (2012).
[CrossRef]

Ye, Z. Z.

Z. Xu, H. P. He, L. W. Sun, Y. Z. Jin, B. H. Zhao, and Z. Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys.107(5), 053524 (2010).
[CrossRef]

Yong, K. J.

Y. Tak and K. J. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method,” J. Phys. Chem. B109(41), 19263–19269 (2005).
[CrossRef] [PubMed]

Youn Han, S.

K. Ip, G. T. Thaler, H. Yang, S. Youn Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, and F. Ren, “Contacts to ZnO,” J. Cryst. Growth287(1), 149–156 (2006).
[CrossRef]

Zhang, Y.

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett.100(11), 112103 (2012).
[CrossRef]

Zhao, B. H.

Z. Xu, H. P. He, L. W. Sun, Y. Z. Jin, B. H. Zhao, and Z. Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys.107(5), 053524 (2010).
[CrossRef]

Zhou, J. Y.

J. Song, X. Y. An, J. Y. Zhou, Y. X. Liu, W. Wang, X. D. Li, W. Lan, and E. Q. Xie, “Investigation of enhanced ultraviolet emission from different Ti-capped ZnO structures via surface passivation and surface plasmon coupling,” Appl. Phys. Lett.97(12), 122103 (2010).
[CrossRef]

Zhou, X. D.

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL93(5), 57009 (2011).
[CrossRef]

Zunger, A.

S. Lany and A. Zunger, “Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides,” Phys. Rev. Lett.98(4), 045501 (2007).
[CrossRef] [PubMed]

Adv. Funct. Mater.

M. Riaz, J. H. Song, O. Nur, Z. L. Wang, and M. Willander, “Study of the Piezoelectric Power Generation of ZnO Nanowire Arrays Grown by Different Methods,” Adv. Funct. Mater.21(4), 628–633 (2011).
[CrossRef]

Appl. Phys. Lett.

Y. Wang, H. He, Y. Zhang, L. Sun, L. Hu, K. Wu, J. Huang, and Z. Ye, “Metal enhanced photoluminescence from Al-capped ZnMgO films: The roles of plasmonic coupling and non-radiative recombination,” Appl. Phys. Lett.100(11), 112103 (2012).
[CrossRef]

V. Kolkovsky, L. Scheffler, E. Hieckmann, E. V. Lavrov, and J. Weber, “Schottky contacts on differently grown n-type ZnO single crystals,” Appl. Phys. Lett.98(8), 082104 (2011).
[CrossRef]

C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, “Surface plasmon enhanced band edge luminescence of ZnO nanorods by capping Au nanoparticles,” Appl. Phys. Lett.96(7), 071107 (2010).
[CrossRef]

Y. J. Fang, J. Sha, Z. L. Wang, Y. T. Wan, W. W. Xia, and Y. W. Wang, “Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays,” Appl. Phys. Lett.98(3), 033103 (2011).
[CrossRef]

C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett.86(25), 251105 (2005).
[CrossRef]

J. Song, X. Y. An, J. Y. Zhou, Y. X. Liu, W. Wang, X. D. Li, W. Lan, and E. Q. Xie, “Investigation of enhanced ultraviolet emission from different Ti-capped ZnO structures via surface passivation and surface plasmon coupling,” Appl. Phys. Lett.97(12), 122103 (2010).
[CrossRef]

A. Dev, J. P. Richters, J. Sartor, H. Kalt, J. Gutowski, and T. Voss, “Enhancement of the near-band-edge photoluminescence of ZnO nanowires: Important role of hydrogen incorporation versus plasmon resonances,” Appl. Phys. Lett.98(13), 131111 (2011).
[CrossRef]

D. Li, Y. H. Leung, A. B. Djurišić, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods,” Appl. Phys. Lett.85(9), 1601–1603 (2004).
[CrossRef]

EPL

X. D. Zhou, X. H. Xiao, J. X. Xu, G. X. Cai, F. Ren, and C. Z. Jiang, “Mechanism of the enhancement and quenching of ZnO photoluminescence by ZnO-Ag coupling,” EPL93(5), 57009 (2011).
[CrossRef]

J. Appl. Phys.

Z. Xu, H. P. He, L. W. Sun, Y. Z. Jin, B. H. Zhao, and Z. Z. Ye, “Localized exciton emission from ZnO nanocrystalline films,” J. Appl. Phys.107(5), 053524 (2010).
[CrossRef]

C. H. Tsai, W. C. Wang, F. L. Jenq, C. C. Liu, C. I. Hung, and M. P. Houng, “Surface modification of ZnO film by hydrogen peroxide solution,” J. Appl. Phys.104(5), 053521 (2008).
[CrossRef]

M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, “Temperature quenching of photoluminescence intensities in undoped and doped GaN,” J. Appl. Phys.86(7), 3721–3728 (1999).
[CrossRef]

J. Cryst. Growth

K. Ip, G. T. Thaler, H. Yang, S. Youn Han, Y. Li, D. P. Norton, S. J. Pearton, S. Jang, and F. Ren, “Contacts to ZnO,” J. Cryst. Growth287(1), 149–156 (2006).
[CrossRef]

J. Phys. Chem. B

Y. Tak and K. J. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method,” J. Phys. Chem. B109(41), 19263–19269 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. C

Y. J. Fang, Y. W. Wang, Y. T. Wan, Z. L. Wang, and J. Sha, “Detailed Study on Photoluminescence Property and Growth Mechanism of ZnO Nanowire Arrays Grown by Thermal Evaporation,” J. Phys. Chem. C114(29), 12469–12476 (2010).
[CrossRef]

Nano Lett.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. D. Yang, “General route to vertical ZnO nanowire arrays using textured ZnO seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

Nanoscale

M. Mahanti, T. Ghosh, and D. Basak, “Enhanced near band edge luminescence of Ti/ZnO nanorod heterostructures due to the surface diffusion of Ti,” Nanoscale3(10), 4427–4433 (2011).
[CrossRef] [PubMed]

Phys. Rev. Lett.

S. Lany and A. Zunger, “Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides,” Phys. Rev. Lett.98(4), 045501 (2007).
[CrossRef] [PubMed]

P. Ágoston, K. Albe, R. M. Nieminen, and M. J. Puska, “Intrinsic n-Type Behavior in Transparent Conducting Oxides: A Comparative Hybrid-Functional Study of In2O3, SnO2, and ZnO,” Phys. Rev. Lett.103(24), 245501 (2009).
[CrossRef] [PubMed]

Y. S. Kim and C. H. Park, “Rich Variety of Defects in ZnO via an Attractive Interaction between O Vacancies and Zn Interstitials: Origin of n-Type Doping,” Phys. Rev. Lett.102(8), 086403 (2009).
[CrossRef] [PubMed]

Phys. Status Solidi

B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, “Bound exciton and donor–acceptor pair recombinations in ZnO,” Phys. Status Solidi241(2), 231–260 (2004) (b).
[CrossRef]

Phys. Status Solidi (RRL)

J. P. Richters, A. Dev, S. Muller, R. Niepelt, C. Borschel, C. Ronning, and T. Voss, “Influence of metallic coatings on the photoluminescence properties of ZnO nanowires,” Phys. Status Solidi (RRL)3(5), 166–168 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Typical top and side view SEM images of ZnO film ((a) and (b)) and ZnO nanowires ((c) and (d)) grown by hydrothermal method. The scale bar is 500 nm. (e) XRD curves of hydrothermal grown (i) ZnO nanowires and (ii) ZnO film.

Fig. 2
Fig. 2

(a) Typical TEM image of the hydrothermal grown ZnO nanowires. (b) The HRTEM image of the ZnO nanowire shown in (a). (c and d) TEM images of ZnO nanowires coated with Al for (c) 60 s and (d) 90 s (the deposited Al on the nanowires is indicated by the white arrows).

Fig. 3
Fig. 3

The room-temperature PL spectra of (a) ZnO film and (b) ZnO nanowires grown by hydrothermal method (denoted as H-ZnO film and H-ZnO nanowires, respectively) coated with Al for different sputtering times. The low-temperature PL spectra of the bare and Al-coated (c) ZnO film and (d) ZnO nanowires measured at T = 13 K.

Fig. 4
Fig. 4

The temperature-dependent PL spectra of (a) bare and (b) Al-coated H-ZnO films measured from 13 K to 300 K. (c) The PL peak energies for the bare (black squares) and Al-coated (red circles) ZnO films at different temperatures. (d) Normalized PL intensity of H-ZnO films without (black circles) and with Al coating (red squares) as a function of reciprocal temperature. Solid lines are the best fit results using Eq. (1).

Fig. 5
Fig. 5

The room-temperature PL spectra of (a) the as-grown and the annealed H-ZnO nanowires; (b) as-grown and the H2O2-treated ZnO nanowires synthesized by thermal evaporation method (denoted as T-ZnO nanowires).

Fig. 6
Fig. 6

(a) The room-temperature and (b) low-temperature PL spectra of H2O2-treated T-ZnO nanowires without and with Al coating.

Metrics