Abstract

We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory to qualitatively interpret the behavior observed in our simulation. Our results pave a promising way to realize ultra-compact devices operating in the terahertz region.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).
    [CrossRef] [PubMed]
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature438, 197–200 (2005).
    [CrossRef] [PubMed]
  3. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
    [CrossRef] [PubMed]
  4. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6, 749–758 (2012).
    [CrossRef]
  5. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6, 3677–3694 (2012).
    [CrossRef] [PubMed]
  6. F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
    [CrossRef] [PubMed]
  7. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474, 64–67 (2011).
    [CrossRef] [PubMed]
  8. K. F. Mak, M. Y. Sfeir, Y. Wu, C. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett.101, 196405 (2008).
    [CrossRef] [PubMed]
  9. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4, 532–535 (2008).
    [CrossRef]
  10. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science206, 206–209 (2008).
    [CrossRef]
  11. M. Jablan, H. Buljan, and Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
    [CrossRef]
  12. S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).
    [CrossRef] [PubMed]
  13. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012).
    [CrossRef] [PubMed]
  14. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011).
    [CrossRef] [PubMed]
  15. F. Yang, J. R. Sambles, and G. W. Bradberry, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nature Nanotechnol.7, 330–334 (2012).
    [CrossRef]
  16. T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B86, 165416 (2012).
    [CrossRef]
  17. A. Y. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (R) (2011).
    [CrossRef]
  18. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and F. J. Garcia de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
    [CrossRef]
  19. E. H. Hwand and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007).
    [CrossRef]
  20. L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B56, 281–284 (2007).
    [CrossRef]
  21. S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).
  22. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
    [CrossRef] [PubMed]
  23. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
    [CrossRef] [PubMed]
  24. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett.29, 1069–1071 (2004).
    [CrossRef] [PubMed]
  25. S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nealy-zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett.97, 071116 (2010).
    [CrossRef]
  26. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett.77, 3787–3790 (1996).
    [CrossRef] [PubMed]
  27. J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals: Modling the Flow of Light, 1st. ed. (Princeton Univ., 1995).
  28. S. S. Xiao and M. Qiu, “Study of transmission properties for waveguide bends by use of a circular photonic crystal,” Phys. Lett. A340, 474–479 (2005).
    [CrossRef]
  29. G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102 (2005).
    [CrossRef]
  30. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express16, 16314–16325 (2008).
    [CrossRef] [PubMed]
  31. J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
    [PubMed]
  32. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
    [PubMed]

2012 (9)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6, 749–758 (2012).
[CrossRef]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6, 3677–3694 (2012).
[CrossRef] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).
[CrossRef] [PubMed]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012).
[CrossRef] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and F. J. Garcia de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nature Nanotechnol.7, 330–334 (2012).
[CrossRef]

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B86, 165416 (2012).
[CrossRef]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

2011 (4)

A. Y. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (R) (2011).
[CrossRef]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011).
[CrossRef] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474, 64–67 (2011).
[CrossRef] [PubMed]

2010 (1)

S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nealy-zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett.97, 071116 (2010).
[CrossRef]

2009 (2)

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
[CrossRef] [PubMed]

M. Jablan, H. Buljan, and Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

2008 (4)

K. F. Mak, M. Y. Sfeir, Y. Wu, C. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4, 532–535 (2008).
[CrossRef]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science206, 206–209 (2008).
[CrossRef]

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express16, 16314–16325 (2008).
[CrossRef] [PubMed]

2007 (2)

E. H. Hwand and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007).
[CrossRef]

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B56, 281–284 (2007).
[CrossRef]

2006 (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

2005 (3)

S. S. Xiao and M. Qiu, “Study of transmission properties for waveguide bends by use of a circular photonic crystal,” Phys. Lett. A340, 474–479 (2005).
[CrossRef]

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102 (2005).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature438, 197–200 (2005).
[CrossRef] [PubMed]

2004 (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett.29, 1069–1071 (2004).
[CrossRef] [PubMed]

2003 (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett.77, 3787–3790 (1996).
[CrossRef] [PubMed]

Alonso-Gonzalez, P.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Andreev, G. O.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Avouris, P.

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
[CrossRef] [PubMed]

Badioli, M.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6, 3677–3694 (2012).
[CrossRef] [PubMed]

Bao, W.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Basov, D. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4, 532–535 (2008).
[CrossRef]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nature Nanotechnol.7, 330–334 (2012).
[CrossRef]

Buljan, H.

M. Jablan, H. Buljan, and Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Camara, N.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Castro Neto, A. H.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Centeno, A.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Chen, J.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett.77, 3787–3790 (1996).
[CrossRef] [PubMed]

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and F. J. Garcia de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science206, 206–209 (2008).
[CrossRef]

Das Sarma, S.

E. H. Hwand and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

Dominguez, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature438, 197–200 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

Elorza, A. Z.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Engheta, N.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

Falkovsky, L. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B56, 281–284 (2007).
[CrossRef]

Fan, S.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett.77, 3787–3790 (1996).
[CrossRef] [PubMed]

Fan, S. H.

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102 (2005).
[CrossRef]

Fei, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature438, 197–200 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Fogler, M. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Fukui, M.

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012).
[CrossRef] [PubMed]

Garcia de Abajo, F. J.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).
[CrossRef] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and F. J. Garcia de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Garcia-Vidal, F.

A. Y. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (R) (2011).
[CrossRef]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature438, 197–200 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474, 64–67 (2011).
[CrossRef] [PubMed]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011).
[CrossRef] [PubMed]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science206, 206–209 (2008).
[CrossRef]

Godignon, P.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Gramotnev, D. K.

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6, 749–758 (2012).
[CrossRef]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature438, 197–200 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Guinea, F.

A. Y. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (R) (2011).
[CrossRef]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011).
[CrossRef] [PubMed]

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4, 532–535 (2008).
[CrossRef]

Haraguchi, M.

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Heinz, T. F.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

Henriksen, E. A.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4, 532–535 (2008).
[CrossRef]

Hillenbrand, R.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011).
[CrossRef] [PubMed]

Hu, X. H.

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B86, 165416 (2012).
[CrossRef]

Huth, F.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Hwand, E. H.

E. H. Hwand and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007).
[CrossRef]

Jablan, M.

M. Jablan, H. Buljan, and Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Jeppesen, C.

S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nealy-zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett.97, 071116 (2010).
[CrossRef]

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature438, 197–200 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Jiang, Z.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4, 532–535 (2008).
[CrossRef]

Joannopoulos, J. D.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett.77, 3787–3790 (1996).
[CrossRef] [PubMed]

J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals: Modling the Flow of Light, 1st. ed. (Princeton Univ., 1995).

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011).
[CrossRef] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474, 64–67 (2011).
[CrossRef] [PubMed]

K., F.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature438, 197–200 (2005).
[CrossRef] [PubMed]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Kim, P.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4, 532–535 (2008).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Koppens, F.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and F. J. Garcia de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).
[CrossRef] [PubMed]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Kristensen, A.

S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nealy-zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett.97, 071116 (2010).
[CrossRef]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett.77, 3787–3790 (1996).
[CrossRef] [PubMed]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

Lau, C. N.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Li, Z. Q.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4, 532–535 (2008).
[CrossRef]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011).
[CrossRef] [PubMed]

Lin, Y.

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
[CrossRef] [PubMed]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474, 64–67 (2011).
[CrossRef] [PubMed]

Liu, X. H.

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B86, 165416 (2012).
[CrossRef]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6, 3677–3694 (2012).
[CrossRef] [PubMed]

Lui, C.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).

Mak, K. F.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

Malureanu, R.

S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nealy-zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett.97, 071116 (2010).
[CrossRef]

Manjavacas, A.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and F. J. Garcia de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011).
[CrossRef] [PubMed]

Martin, M. C.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4, 532–535 (2008).
[CrossRef]

Martin-Moreno, L.

A. Y. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (R) (2011).
[CrossRef]

Matsuzaki, Y.

McLeod, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals: Modling the Flow of Light, 1st. ed. (Princeton Univ., 1995).

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett.77, 3787–3790 (1996).
[CrossRef] [PubMed]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Misewich, J. A.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature438, 197–200 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Mortensen, N. A.

S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nealy-zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett.97, 071116 (2010).
[CrossRef]

Mueller, T.

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
[CrossRef] [PubMed]

Nakagaki, M.

Nikitin, A. Y.

A. Y. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (R) (2011).
[CrossRef]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6, 749–758 (2012).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature438, 197–200 (2005).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Okamoto, T.

Osmond, J.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Peng, L.

S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nealy-zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett.97, 071116 (2010).
[CrossRef]

Pesquera, A.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Pile, D. F. P.

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6, 749–758 (2012).
[CrossRef]

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012).
[CrossRef] [PubMed]

Qiu, M.

S. S. Xiao and M. Qiu, “Study of transmission properties for waveguide bends by use of a circular photonic crystal,” Phys. Lett. A340, 474–479 (2005).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Rodin, A. S.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nature Nanotechnol.7, 330–334 (2012).
[CrossRef]

Sfeir, M. Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science206, 206–209 (2008).
[CrossRef]

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012).
[CrossRef] [PubMed]

Soljacic,

M. Jablan, H. Buljan, and Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Spasenovic, M.

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Stormer, H. L.

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4, 532–535 (2008).
[CrossRef]

Thiemens, G.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).
[CrossRef] [PubMed]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and F. J. Garcia de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science206, 206–209 (2008).
[CrossRef]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474, 64–67 (2011).
[CrossRef] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

Valdes-Garcia, A.

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
[CrossRef] [PubMed]

Varlamov, A. A.

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B56, 281–284 (2007).
[CrossRef]

Veronis, G.

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102 (2005).
[CrossRef]

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett.77, 3787–3790 (1996).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

Wagner, M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011).
[CrossRef] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474, 64–67 (2011).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science206, 206–209 (2008).
[CrossRef]

Winn, J.

J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals: Modling the Flow of Light, 1st. ed. (Princeton Univ., 1995).

Wu, Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

Xia, F.

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
[CrossRef] [PubMed]

Xiao, S.

S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nealy-zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett.97, 071116 (2010).
[CrossRef]

Xiao, S. S.

S. S. Xiao and M. Qiu, “Study of transmission properties for waveguide bends by use of a circular photonic crystal,” Phys. Lett. A340, 474–479 (2005).
[CrossRef]

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012).
[CrossRef] [PubMed]

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nature Nanotechnol.7, 330–334 (2012).
[CrossRef]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474, 64–67 (2011).
[CrossRef] [PubMed]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474, 64–67 (2011).
[CrossRef] [PubMed]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science206, 206–209 (2008).
[CrossRef]

Zhan, T. R.

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B86, 165416 (2012).
[CrossRef]

Zhang, J.

S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nealy-zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett.97, 071116 (2010).
[CrossRef]

Zhang, L. M.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474, 64–67 (2011).
[CrossRef] [PubMed]

Zhang, Y.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science206, 206–209 (2008).
[CrossRef]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

Zhao, F. Y.

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B86, 165416 (2012).
[CrossRef]

Zhao, Z.

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Zi, J.

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B86, 165416 (2012).
[CrossRef]

ACS Nano (3)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano6, 3677–3694 (2012).
[CrossRef] [PubMed]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano6, 7806–7813 (2012).
[CrossRef] [PubMed]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. Koppens, and F. J. Garcia de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano6, 431–440 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

S. Xiao, J. Zhang, L. Peng, C. Jeppesen, R. Malureanu, A. Kristensen, and N. A. Mortensen, “Nealy-zero transmission through periodically modulated ultrathin metal films,” Appl. Phys. Lett.97, 071116 (2010).
[CrossRef]

G. Veronis and S. H. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87, 131102 (2005).
[CrossRef]

Eur. Phys. J. B (1)

L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B56, 281–284 (2007).
[CrossRef]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater.2, 229–232 (2003).
[CrossRef] [PubMed]

Nat. Nanotechnol. (2)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol.6, 630–634 (2011).
[CrossRef] [PubMed]

F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nat. Nanotechnol.4, 839–843 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6, 749–758 (2012).
[CrossRef]

Nat. Phys. (1)

Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys.4, 532–535 (2008).
[CrossRef]

Nature (5)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature438, 197–200 (2005).
[CrossRef] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature474, 64–67 (2011).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature440, 508–511 (2006).
[CrossRef] [PubMed]

J. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. Garcia de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature487, 77–81 (2012).
[PubMed]

Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Thiemens, M. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. K., and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature487, 82–85 (2012).
[PubMed]

Nature Nanotechnol. (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Tunable infrared plasmonic devices using graphene/insulator stacks,” Nature Nanotechnol.7, 330–334 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (1)

S. S. Xiao and M. Qiu, “Study of transmission properties for waveguide bends by use of a circular photonic crystal,” Phys. Lett. A340, 474–479 (2005).
[CrossRef]

Phys. Rev. B (4)

E. H. Hwand and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B75, 205418 (2007).
[CrossRef]

T. R. Zhan, F. Y. Zhao, X. H. Hu, X. H. Liu, and J. Zi, “Band structure of plasmons and optical absorption enhancement in graphene on subwavelength dielectric gratings at infrared frequencies,” Phys. Rev. B86, 165416 (2012).
[CrossRef]

A. Y. Nikitin, F. Guinea, F. Garcia-Vidal, and L. Martin-Moreno, “Edge and waveguide terahertz surface plasmon modes in graphene microribbons,” Phys. Rev. B84, 161407 (R) (2011).
[CrossRef]

M. Jablan, H. Buljan, and Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

S. Thongrattanasiri, F. H. L. Koppens, and F. J. Garcia de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108, 047401 (2012).
[CrossRef] [PubMed]

K. F. Mak, M. Y. Sfeir, Y. Wu, C. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett.101, 196405 (2008).
[CrossRef] [PubMed]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett.77, 3787–3790 (1996).
[CrossRef] [PubMed]

Science (3)

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science332, 1291–1294 (2011).
[CrossRef] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science306, 666–669 (2004).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science206, 206–209 (2008).
[CrossRef]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. Winn, Photonic Crystals: Modling the Flow of Light, 1st. ed. (Princeton Univ., 1995).

S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Effective refractive indices of GPP modes as a function of wavelength for free-standing graphene ribbons of 20 nm (the solid line) and 30 nm (the dashed line) widths. Inset illustrates a cross-section graphene nanoribbon waveguide with the width d, where the axis indicates light propagation along the z direction. (b) Propagation lengths as a function of wavelength for the freestanding graphene ribbons. Inset shows field distributions of the GPP mode at λ = 15 μm for the case of d = 30 nm.

Fig. 2
Fig. 2

Transmission spectra of graphene nanoribbon waveguide bends for d = 20, 30 nm. Inset illustrates its top-view corresponding structure and the top-view magnetic amplitude at y = 0 when λ0 = 15 μm and d = 30 nm.

Fig. 3
Fig. 3

Transmission spectra of graphene nanoribbon T-shape splitters (shown in the inset with the top view) for d = 20, 30 nm. In this case we choose din = dout = d.

Fig. 4
Fig. 4

Reflection coefficient of a graphene nanoribbon T-shape splitter as a function of din/dout at λ = 12 μm. Inset shows its top-view corresponding structure and illustrates zero-reflection when din/dout = 2.25 at λ = 12 μm.

Metrics