Abstract

Integral three-dimensional (3D) television based on integral imaging requires huge amounts of information. Previously, we constructed an Integral 3D television using Super Hi-Vision (SHV) technology, with 7680 pixels horizontally and 4320 pixels vertically. We report on improved image quality through the development of video system with an equivalent of 8000 scan lines for use with Integral 3D television. We conducted experiments to evaluate the resolution of 3D images using an experimental setup and were able to show that by using the pixel-offset method we have eliminated aliasing produced by full-resolution SHV video equipment. We confirmed that the application of the pixel-offset method to integral 3D television is effective in increasing the resolution of reconstructed images.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Lippmann, “Épreuves, réversibles donnant la sensation du relief,” J. Phys.4, 821–825 (1908).
  2. Y. Igarashi, H. Murata, and M. Ueda, “3-D display system using a computer generated integral photograph,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
    [CrossRef]
  3. N. Davies, M. McCormick, and L. Yang, “Three-dimensional imaging systems: a new development,” Appl. Opt.27(21), 4520–4528 (1988).
    [CrossRef] [PubMed]
  4. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt.36(7), 1598–1603 (1997).
    [CrossRef] [PubMed]
  5. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett.26(3), 157–159 (2001).
    [CrossRef] [PubMed]
  6. B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identification of biological microorganism using integral imaging,” Opt. Express14(25), 12096–12108 (2006).
    [CrossRef] [PubMed]
  7. T. Yamashita, M. Kanazawa, K. Oyamada, K. Hamasaki, Y. Shishikui, K. Shogen, K. Arai, M. Sugawara, and K. Mitani, “Progress report on the development of Super-Hi Vision,” SMPTE Motion Imaging J. Sept., 77–83 (2010).
  8. J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. of Disp. Tech.6(10), 422–430 (2010).
    [CrossRef]
  9. H. E. Ives, “Optical properties of a Lippman lenticulated sheet,” J. Opt. Soc. Am.21(3), 171–176 (1931).
    [CrossRef]
  10. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt.37(11), 2034–2045 (1998).
    [CrossRef] [PubMed]
  11. M. Kawakita, H. Sasaki, J. Arai, M. Okui, F. Okano, Y. Haino, M. Yoshimura, and M. Sato, “Projection-type integral 3-D display with distortion compensation,” J. SID18, 668–677 (2010).
  12. Y. Fujita, M. Sugawara, K. Mitani, and T. Saitoh, “A compact, high-performance HDTV camera with four–CCD chips,” IEEE Trans. Broadcast41(2), 76–82 (1995).
    [CrossRef]
  13. M. Sugawara, M. Kanazawa, K. Mitani, H. Shimamoto, T. Yamashita, and F. Okano, “Ultrahigh-Definition Video System with 4000 Scanning Lines,” SMPTE Motion Imaging Oct./Nov., 339–346 (2003
  14. M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, M. Sato, and K. Doi, “An ultrahigh-definition display using the pixel-offset method,” J. SID12, 93–103 (2004).
  15. ISO-12233 standard, “Photography — Electronic still-picture cameras — Resolution measurements,” (2000).
  16. A. Yasuda, K. Nito, E. Matsui, H. Takanashi, N. Kataoka, and Y. Shirochi, “FLC wobbling for high-resolution projector,” J. SID5, 299–305 (1997).
  17. T. Nagoya, T. Kozakai, T. Suzuki, M. Furuya, and K. Iwasa, “The D-ILA Device for The World’s Highest Definition (8K4K) Projection Systems,” Proc. IDW 203–306 (2008).
  18. H. Hoshino, F. Okano, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A15(8), 2059–2065 (1998).
    [CrossRef]
  19. J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A20(6), 996–1004 (2003).
    [CrossRef] [PubMed]
  20. F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol.197(3), 551–566 (1968).
    [PubMed]

2010 (2)

M. Kawakita, H. Sasaki, J. Arai, M. Okui, F. Okano, Y. Haino, M. Yoshimura, and M. Sato, “Projection-type integral 3-D display with distortion compensation,” J. SID18, 668–677 (2010).

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. of Disp. Tech.6(10), 422–430 (2010).
[CrossRef]

2006 (1)

2004 (1)

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, M. Sato, and K. Doi, “An ultrahigh-definition display using the pixel-offset method,” J. SID12, 93–103 (2004).

2003 (1)

2001 (1)

1998 (2)

1997 (2)

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt.36(7), 1598–1603 (1997).
[CrossRef] [PubMed]

A. Yasuda, K. Nito, E. Matsui, H. Takanashi, N. Kataoka, and Y. Shirochi, “FLC wobbling for high-resolution projector,” J. SID5, 299–305 (1997).

1995 (1)

Y. Fujita, M. Sugawara, K. Mitani, and T. Saitoh, “A compact, high-performance HDTV camera with four–CCD chips,” IEEE Trans. Broadcast41(2), 76–82 (1995).
[CrossRef]

1988 (1)

1978 (1)

Y. Igarashi, H. Murata, and M. Ueda, “3-D display system using a computer generated integral photograph,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

1968 (1)

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol.197(3), 551–566 (1968).
[PubMed]

1931 (1)

1908 (1)

M. G. Lippmann, “Épreuves, réversibles donnant la sensation du relief,” J. Phys.4, 821–825 (1908).

Arai, J.

M. Kawakita, H. Sasaki, J. Arai, M. Okui, F. Okano, Y. Haino, M. Yoshimura, and M. Sato, “Projection-type integral 3-D display with distortion compensation,” J. SID18, 668–677 (2010).

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. of Disp. Tech.6(10), 422–430 (2010).
[CrossRef]

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A20(6), 996–1004 (2003).
[CrossRef] [PubMed]

J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt.37(11), 2034–2045 (1998).
[CrossRef] [PubMed]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt.36(7), 1598–1603 (1997).
[CrossRef] [PubMed]

Arimoto, H.

Campbell, F. W.

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol.197(3), 551–566 (1968).
[PubMed]

Davies, N.

Doi, K.

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, M. Sato, and K. Doi, “An ultrahigh-definition display using the pixel-offset method,” J. SID12, 93–103 (2004).

Fujita, Y.

Y. Fujita, M. Sugawara, K. Mitani, and T. Saitoh, “A compact, high-performance HDTV camera with four–CCD chips,” IEEE Trans. Broadcast41(2), 76–82 (1995).
[CrossRef]

Furuya, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. of Disp. Tech.6(10), 422–430 (2010).
[CrossRef]

Haino, Y.

M. Kawakita, H. Sasaki, J. Arai, M. Okui, F. Okano, Y. Haino, M. Yoshimura, and M. Sato, “Projection-type integral 3-D display with distortion compensation,” J. SID18, 668–677 (2010).

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. of Disp. Tech.6(10), 422–430 (2010).
[CrossRef]

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, M. Sato, and K. Doi, “An ultrahigh-definition display using the pixel-offset method,” J. SID12, 93–103 (2004).

Hamada, K.

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, M. Sato, and K. Doi, “An ultrahigh-definition display using the pixel-offset method,” J. SID12, 93–103 (2004).

Hoshino, H.

Igarashi, Y.

Y. Igarashi, H. Murata, and M. Ueda, “3-D display system using a computer generated integral photograph,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

Ives, H. E.

Javidi, B.

Kanazawa, M.

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, M. Sato, and K. Doi, “An ultrahigh-definition display using the pixel-offset method,” J. SID12, 93–103 (2004).

Kataoka, N.

A. Yasuda, K. Nito, E. Matsui, H. Takanashi, N. Kataoka, and Y. Shirochi, “FLC wobbling for high-resolution projector,” J. SID5, 299–305 (1997).

Kawakita, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. of Disp. Tech.6(10), 422–430 (2010).
[CrossRef]

M. Kawakita, H. Sasaki, J. Arai, M. Okui, F. Okano, Y. Haino, M. Yoshimura, and M. Sato, “Projection-type integral 3-D display with distortion compensation,” J. SID18, 668–677 (2010).

Kondoh, I.

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, M. Sato, and K. Doi, “An ultrahigh-definition display using the pixel-offset method,” J. SID12, 93–103 (2004).

Lippmann, M. G.

M. G. Lippmann, “Épreuves, réversibles donnant la sensation du relief,” J. Phys.4, 821–825 (1908).

Matsui, E.

A. Yasuda, K. Nito, E. Matsui, H. Takanashi, N. Kataoka, and Y. Shirochi, “FLC wobbling for high-resolution projector,” J. SID5, 299–305 (1997).

McCormick, M.

Mitani, K.

Y. Fujita, M. Sugawara, K. Mitani, and T. Saitoh, “A compact, high-performance HDTV camera with four–CCD chips,” IEEE Trans. Broadcast41(2), 76–82 (1995).
[CrossRef]

Moon, I.

Murata, H.

Y. Igarashi, H. Murata, and M. Ueda, “3-D display system using a computer generated integral photograph,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

Nito, K.

A. Yasuda, K. Nito, E. Matsui, H. Takanashi, N. Kataoka, and Y. Shirochi, “FLC wobbling for high-resolution projector,” J. SID5, 299–305 (1997).

Okano, F.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. of Disp. Tech.6(10), 422–430 (2010).
[CrossRef]

M. Kawakita, H. Sasaki, J. Arai, M. Okui, F. Okano, Y. Haino, M. Yoshimura, and M. Sato, “Projection-type integral 3-D display with distortion compensation,” J. SID18, 668–677 (2010).

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, M. Sato, and K. Doi, “An ultrahigh-definition display using the pixel-offset method,” J. SID12, 93–103 (2004).

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A20(6), 996–1004 (2003).
[CrossRef] [PubMed]

H. Hoshino, F. Okano, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A15(8), 2059–2065 (1998).
[CrossRef]

J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt.37(11), 2034–2045 (1998).
[CrossRef] [PubMed]

F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt.36(7), 1598–1603 (1997).
[CrossRef] [PubMed]

Okui, M.

M. Kawakita, H. Sasaki, J. Arai, M. Okui, F. Okano, Y. Haino, M. Yoshimura, and M. Sato, “Projection-type integral 3-D display with distortion compensation,” J. SID18, 668–677 (2010).

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. of Disp. Tech.6(10), 422–430 (2010).
[CrossRef]

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. A20(6), 996–1004 (2003).
[CrossRef] [PubMed]

Robson, J. G.

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol.197(3), 551–566 (1968).
[PubMed]

Saitoh, T.

Y. Fujita, M. Sugawara, K. Mitani, and T. Saitoh, “A compact, high-performance HDTV camera with four–CCD chips,” IEEE Trans. Broadcast41(2), 76–82 (1995).
[CrossRef]

Sasaki, H.

M. Kawakita, H. Sasaki, J. Arai, M. Okui, F. Okano, Y. Haino, M. Yoshimura, and M. Sato, “Projection-type integral 3-D display with distortion compensation,” J. SID18, 668–677 (2010).

Sato, M.

M. Kawakita, H. Sasaki, J. Arai, M. Okui, F. Okano, Y. Haino, M. Yoshimura, and M. Sato, “Projection-type integral 3-D display with distortion compensation,” J. SID18, 668–677 (2010).

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. of Disp. Tech.6(10), 422–430 (2010).
[CrossRef]

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, M. Sato, and K. Doi, “An ultrahigh-definition display using the pixel-offset method,” J. SID12, 93–103 (2004).

Shirochi, Y.

A. Yasuda, K. Nito, E. Matsui, H. Takanashi, N. Kataoka, and Y. Shirochi, “FLC wobbling for high-resolution projector,” J. SID5, 299–305 (1997).

Sugawara, M.

Y. Fujita, M. Sugawara, K. Mitani, and T. Saitoh, “A compact, high-performance HDTV camera with four–CCD chips,” IEEE Trans. Broadcast41(2), 76–82 (1995).
[CrossRef]

Takanashi, H.

A. Yasuda, K. Nito, E. Matsui, H. Takanashi, N. Kataoka, and Y. Shirochi, “FLC wobbling for high-resolution projector,” J. SID5, 299–305 (1997).

Ueda, M.

Y. Igarashi, H. Murata, and M. Ueda, “3-D display system using a computer generated integral photograph,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

Yang, L.

Yasuda, A.

A. Yasuda, K. Nito, E. Matsui, H. Takanashi, N. Kataoka, and Y. Shirochi, “FLC wobbling for high-resolution projector,” J. SID5, 299–305 (1997).

Yeom, S.

Yoshimura, M.

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. of Disp. Tech.6(10), 422–430 (2010).
[CrossRef]

M. Kawakita, H. Sasaki, J. Arai, M. Okui, F. Okano, Y. Haino, M. Yoshimura, and M. Sato, “Projection-type integral 3-D display with distortion compensation,” J. SID18, 668–677 (2010).

Yuyama, I.

Appl. Opt. (3)

IEEE Trans. Broadcast (1)

Y. Fujita, M. Sugawara, K. Mitani, and T. Saitoh, “A compact, high-performance HDTV camera with four–CCD chips,” IEEE Trans. Broadcast41(2), 76–82 (1995).
[CrossRef]

J. of Disp. Tech. (1)

J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, “Integral three-dimensional television using a 33-megapixel imaging system,” J. of Disp. Tech.6(10), 422–430 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Phys. (1)

M. G. Lippmann, “Épreuves, réversibles donnant la sensation du relief,” J. Phys.4, 821–825 (1908).

J. Physiol. (1)

F. W. Campbell and J. G. Robson, “Application of Fourier analysis to the visibility of gratings,” J. Physiol.197(3), 551–566 (1968).
[PubMed]

J. SID (3)

M. Kawakita, H. Sasaki, J. Arai, M. Okui, F. Okano, Y. Haino, M. Yoshimura, and M. Sato, “Projection-type integral 3-D display with distortion compensation,” J. SID18, 668–677 (2010).

A. Yasuda, K. Nito, E. Matsui, H. Takanashi, N. Kataoka, and Y. Shirochi, “FLC wobbling for high-resolution projector,” J. SID5, 299–305 (1997).

M. Kanazawa, K. Hamada, I. Kondoh, F. Okano, Y. Haino, M. Sato, and K. Doi, “An ultrahigh-definition display using the pixel-offset method,” J. SID12, 93–103 (2004).

Jpn. J. Appl. Phys. (1)

Y. Igarashi, H. Murata, and M. Ueda, “3-D display system using a computer generated integral photograph,” Jpn. J. Appl. Phys.17(9), 1683–1684 (1978).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (4)

T. Yamashita, M. Kanazawa, K. Oyamada, K. Hamasaki, Y. Shishikui, K. Shogen, K. Arai, M. Sugawara, and K. Mitani, “Progress report on the development of Super-Hi Vision,” SMPTE Motion Imaging J. Sept., 77–83 (2010).

T. Nagoya, T. Kozakai, T. Suzuki, M. Furuya, and K. Iwasa, “The D-ILA Device for The World’s Highest Definition (8K4K) Projection Systems,” Proc. IDW 203–306 (2008).

ISO-12233 standard, “Photography — Electronic still-picture cameras — Resolution measurements,” (2000).

M. Sugawara, M. Kanazawa, K. Mitani, H. Shimamoto, T. Yamashita, and F. Okano, “Ultrahigh-Definition Video System with 4000 Scanning Lines,” SMPTE Motion Imaging Oct./Nov., 339–346 (2003

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Configuration of experimental setup.

Fig. 2
Fig. 2

Camera with a resolution equivalent to 8000 scan lines. (a) Configuration. (b) Appearance.

Fig. 3
Fig. 3

Sampling structure of green signals.

Fig. 4
Fig. 4

Chart used in the tests to evaluate the camera’s resolution characteristics.

Fig. 5
Fig. 5

Close-up of the chart as captured by the camera. (a) Without pixel-offset method. (b) With pixel-offset method.

Fig. 6
Fig. 6

Results of camera MTF measurements. (a) Horizontal direction. (b) Vertical direction.

Fig. 7
Fig. 7

Projector with a resolution equivalent to 8000 scan lines. (a) Configuration. (b) Appearance.

Fig. 8
Fig. 8

Chart used in the tests to evaluate the projector’s resolution characteristics.

Fig. 9
Fig. 9

Close-up of the chart as captured by the projector. (a) Without pixel-offset method. (b) With pixel-offset method.

Fig. 10
Fig. 10

Theoretical values of the resolution characteristics of reconstructed images.

Fig. 11
Fig. 11

Procedure for measurement of the overall MTF of the experimental setup.

Fig. 12
Fig. 12

MTF of the experimental setup. (The reconstructed image of the slanted edge was reproduced at a distance of −150 mm from the lens array.)

Fig. 13
Fig. 13

Relationship between spatial frequency and response in the reconstructed images. (a) Response: 0.7. (b) Response: 0.05.

Fig. 14
Fig. 14

Reconstructed image and elemental images generated from the experimental setup. (a) Reconstructed image. (b) Close-up of elemental images from the G1 signal. (c) Close-up of elemental images from the G2 signal. (d) Close-up of elemental images obtained by combining the G1 and G2 signals. (e) Close-up of the reconstructed image of the G1 signal. (f) Close-up of the reconstructed image of the G2 signal. (g) Close-up of the reconstructed image obtained by combining the G1 and G2 signals.

Fig. 15
Fig. 15

Changes in the appearance of the image from different viewpoints. (a) View from directly in front. (b) Close-up viewed from upper position. (c) Close-up viewed from left position. (d) Close-up viewed from right position. (e) Close-up viewed from lower position.

Tables (3)

Tables Icon

Table 1 Specifications of lens array for image capturing equipment

Tables Icon

Table 2 Specifications of lens array for image display equipment

Tables Icon

Table 3 Specifications of camera device

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β= ( Lz ) | g | / 2p| z |
β n =L/ 2 p L
γ= min [ β n ,β ]

Metrics