Abstract

This paper aims to deal with a four-quadrant gratings alignment method benefiting from phase demodulation for proximity lithography, which combines the advantages of interferometry with image processing. Both the mask alignment mark and the wafer alignment mark consist of four sets of gratings, which bring the convenience and simplification of realization for coarse alignment and fine alignment. Four sets of moiré fringes created by superposing the mask alignment mark and the wafer alignment mark are highly sensitive to the misalignment between them. And the misalignment can be easily determined through demodulating the phase of moiré fringe without any external reference. Especially, the period and phase distribution of moiré fringes are unaffected by the gap between the mask and the wafer, not excepting the wavelength of alignment illumination. Disturbance from the illumination can also be negligible, which enhances the technological adaptability. The experimental results bear out the feasibility and rationality of our designed approach.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-Integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express20(21), 23643–23652 (2012).
    [CrossRef] [PubMed]
  2. C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics4(1), 24–26 (2010).
    [CrossRef]
  3. M. S. Robert-H., “Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry,” Phil. Trans. Roy. Soc. A370(1973), 3951–3952 (2012).
  4. A. J. Whang and N. C. Gallagher, “Synthetic approach to designing optical alignment systems,” Appl. Opt.27(16), 3534–3541 (1988).
    [CrossRef] [PubMed]
  5. T. Miyatake, M. Hirose, T. Shoki, R. Ohkubo, and K. Yamazaki, “Nanometer scattered-light alignment system using SiC X-ray masks with low optical transparency,” J. Vac. Sci. Technol. B16(6), 3471–3475 (1998).
    [CrossRef]
  6. D. C. Flanders, H. I. Smith, and S. Austin, “A new interferometric alignment technique,” Appl. Phys. Lett.31(7), 426–428 (1977).
    [CrossRef]
  7. B. Fay, J. Trotel, and A. Frichet, “Optical alignment system for submicron X-ray lithography,” J. Vac. Sci. Technol.16(6), 1954–1958 (1979).
    [CrossRef]
  8. T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B6(1), 409–412 (1988).
    [CrossRef]
  9. A. Une and M. Suzuki, “An optical-heterodyne alignment technique for quarter-micron X-ray lithography,” J. Vac. Sci. Technol. B7(6), 1971–1976 (1989).
    [CrossRef]
  10. L. Raleigh, “On the manufacture and theory of diffraction gratings,” Philos. Mag.4(310–311), 81–93 (1874).
  11. K. S. Yen and M. M. Ratnam, “Simultaneous measurement of 3-D displacement components from circular moiré fringes: An experimental approach,” Opt. Lasers Eng.50(6), 887–899 (2012).
    [CrossRef]
  12. L. Huang and X. Y. Su, “Method for acquiring the characteristic parameter of the dual-spiral moiré fringes,” Opt. Lett.33(8), 872–874 (2008).
    [CrossRef] [PubMed]
  13. K. S. Yen and M. M. Ratnam, “In-plane displacement sensing from circular gratings moiré fringes using graphic analysis approach,” Sensor Rev.31(4), 358–367 (2011).
    [CrossRef]
  14. X. L. Li, Y. L. Kang, W. Qiu, Q. H. Qin, and X. Xiao, “A study on the digital moiré technique with circular and radial gratings,” Opt. Lasers Eng.45(7), 783–788 (2007).
    [CrossRef]
  15. Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf.4(1), 1107–1113 (2011).
  16. J. S. Song, Y. H. Lee, J. H. Jo, S. Chang, and K. C. Yuk, “Moiré patterns of two different elongated circular gratings for the fine visual measurement of linear displacements,” Opt. Commun.154(1–3), 100–108 (1998).
    [CrossRef]
  17. G. H. Yuan, Q. Wang, and X. Yuan, “Dynamic generation of plasmonic Moiré fringes using phase-engineered optical vortex beam,” Opt. Lett.37(13), 2715–2717 (2012).
    [CrossRef] [PubMed]
  18. M. C. King and D. H. Berry, “Photolithographic mask alignment using moiré techniques,” Appl. Opt.11(11), 2455–2459 (1972).
    [CrossRef] [PubMed]
  19. Y. Uchida, S. Hattori, and T. Nomura, “An automatic mask alignment technique using moiré interference,” J. Vac. Sci. Technol. B5(1), 244–247 (1987).
    [CrossRef]
  20. S. Zhou, Y. Yang, L. Zhao, and S. Hu, “Tilt-modulated spatial phase imaging method for wafer-mask leveling in proximity lithography,” Opt. Lett.35(18), 3132–3134 (2010).
    [CrossRef] [PubMed]
  21. S. Zhou, Y. Fu, X. Tang, S. Hu, W. Chen, and Y. Yang, “Fourier-based analysis of moiré fringe patterns of superposed gratings in alignment of nanolithography,” Opt. Express16(11), 7869–7880 (2008).
    [CrossRef] [PubMed]
  22. N. Li, W. Wu, and S. Y. Chou, “Sub-20-nm alignment in Nanoimprint lithography using moiré fringe,” Nano Lett.6(11), 2626–2629 (2006).
    [CrossRef] [PubMed]
  23. A. Moel, E. E. Moon, R. D. Frankel, and H. I. Smith, “Novel on-axis interferometric alignment method with sub-10 nm precision,” J. Vac. Sci. Technol. B11(6), 2191–2194 (1993).
    [CrossRef]
  24. E. E. Moon, M. K. Mondol, P. N. Everett, and H. I. Smith, “Dynamic alignment control for fluid-immersion lithographies using interferometric-spatial-phase imaging,” J. Vac. Sci. Technol. B23(6), 2607–2610 (2005).
    [CrossRef]
  25. J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol.44(2), 446–451 (2012).
    [CrossRef]
  26. J. Y. Shao, H. Z. Liu, Y. C. Ding, L. Wang, and B. H. Lu, “Alignment measurement method for imprint lithography using moiré fringe pattern,” Opt. Eng.47(11), 113604 (2008).
    [CrossRef]
  27. J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Laser. Eng.371–381 (2013).
  28. J. P. Zhu, S. Hu, J. S. Yu, and Y. Tang, “Alignment method based on matched dual-grating moiré fringe for proximity lithography,” Opt. Eng.51(11), 113603 (2012).
    [CrossRef]

2013 (1)

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Laser. Eng.371–381 (2013).

2012 (6)

J. P. Zhu, S. Hu, J. S. Yu, and Y. Tang, “Alignment method based on matched dual-grating moiré fringe for proximity lithography,” Opt. Eng.51(11), 113603 (2012).
[CrossRef]

J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol.44(2), 446–451 (2012).
[CrossRef]

G. H. Yuan, Q. Wang, and X. Yuan, “Dynamic generation of plasmonic Moiré fringes using phase-engineered optical vortex beam,” Opt. Lett.37(13), 2715–2717 (2012).
[CrossRef] [PubMed]

M. C. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-Integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express20(21), 23643–23652 (2012).
[CrossRef] [PubMed]

M. S. Robert-H., “Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry,” Phil. Trans. Roy. Soc. A370(1973), 3951–3952 (2012).

K. S. Yen and M. M. Ratnam, “Simultaneous measurement of 3-D displacement components from circular moiré fringes: An experimental approach,” Opt. Lasers Eng.50(6), 887–899 (2012).
[CrossRef]

2011 (2)

K. S. Yen and M. M. Ratnam, “In-plane displacement sensing from circular gratings moiré fringes using graphic analysis approach,” Sensor Rev.31(4), 358–367 (2011).
[CrossRef]

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf.4(1), 1107–1113 (2011).

2010 (2)

2008 (3)

2007 (1)

X. L. Li, Y. L. Kang, W. Qiu, Q. H. Qin, and X. Xiao, “A study on the digital moiré technique with circular and radial gratings,” Opt. Lasers Eng.45(7), 783–788 (2007).
[CrossRef]

2006 (1)

N. Li, W. Wu, and S. Y. Chou, “Sub-20-nm alignment in Nanoimprint lithography using moiré fringe,” Nano Lett.6(11), 2626–2629 (2006).
[CrossRef] [PubMed]

2005 (1)

E. E. Moon, M. K. Mondol, P. N. Everett, and H. I. Smith, “Dynamic alignment control for fluid-immersion lithographies using interferometric-spatial-phase imaging,” J. Vac. Sci. Technol. B23(6), 2607–2610 (2005).
[CrossRef]

1998 (2)

J. S. Song, Y. H. Lee, J. H. Jo, S. Chang, and K. C. Yuk, “Moiré patterns of two different elongated circular gratings for the fine visual measurement of linear displacements,” Opt. Commun.154(1–3), 100–108 (1998).
[CrossRef]

T. Miyatake, M. Hirose, T. Shoki, R. Ohkubo, and K. Yamazaki, “Nanometer scattered-light alignment system using SiC X-ray masks with low optical transparency,” J. Vac. Sci. Technol. B16(6), 3471–3475 (1998).
[CrossRef]

1993 (1)

A. Moel, E. E. Moon, R. D. Frankel, and H. I. Smith, “Novel on-axis interferometric alignment method with sub-10 nm precision,” J. Vac. Sci. Technol. B11(6), 2191–2194 (1993).
[CrossRef]

1989 (1)

A. Une and M. Suzuki, “An optical-heterodyne alignment technique for quarter-micron X-ray lithography,” J. Vac. Sci. Technol. B7(6), 1971–1976 (1989).
[CrossRef]

1988 (2)

T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B6(1), 409–412 (1988).
[CrossRef]

A. J. Whang and N. C. Gallagher, “Synthetic approach to designing optical alignment systems,” Appl. Opt.27(16), 3534–3541 (1988).
[CrossRef] [PubMed]

1987 (1)

Y. Uchida, S. Hattori, and T. Nomura, “An automatic mask alignment technique using moiré interference,” J. Vac. Sci. Technol. B5(1), 244–247 (1987).
[CrossRef]

1979 (1)

B. Fay, J. Trotel, and A. Frichet, “Optical alignment system for submicron X-ray lithography,” J. Vac. Sci. Technol.16(6), 1954–1958 (1979).
[CrossRef]

1977 (1)

D. C. Flanders, H. I. Smith, and S. Austin, “A new interferometric alignment technique,” Appl. Phys. Lett.31(7), 426–428 (1977).
[CrossRef]

1972 (1)

1874 (1)

L. Raleigh, “On the manufacture and theory of diffraction gratings,” Philos. Mag.4(310–311), 81–93 (1874).

Atoda, N.

T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B6(1), 409–412 (1988).
[CrossRef]

Austin, S.

D. C. Flanders, H. I. Smith, and S. Austin, “A new interferometric alignment technique,” Appl. Phys. Lett.31(7), 426–428 (1977).
[CrossRef]

Berry, D. H.

Burrow, G. M.

Chang, S.

J. S. Song, Y. H. Lee, J. H. Jo, S. Chang, and K. C. Yuk, “Moiré patterns of two different elongated circular gratings for the fine visual measurement of linear displacements,” Opt. Commun.154(1–3), 100–108 (1998).
[CrossRef]

Chen, W.

Chou, S. Y.

N. Li, W. Wu, and S. Y. Chou, “Sub-20-nm alignment in Nanoimprint lithography using moiré fringe,” Nano Lett.6(11), 2626–2629 (2006).
[CrossRef] [PubMed]

Ding, Y. C.

J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol.44(2), 446–451 (2012).
[CrossRef]

J. Y. Shao, H. Z. Liu, Y. C. Ding, L. Wang, and B. H. Lu, “Alignment measurement method for imprint lithography using moiré fringe pattern,” Opt. Eng.47(11), 113604 (2008).
[CrossRef]

Everett, P. N.

E. E. Moon, M. K. Mondol, P. N. Everett, and H. I. Smith, “Dynamic alignment control for fluid-immersion lithographies using interferometric-spatial-phase imaging,” J. Vac. Sci. Technol. B23(6), 2607–2610 (2005).
[CrossRef]

Fay, B.

B. Fay, J. Trotel, and A. Frichet, “Optical alignment system for submicron X-ray lithography,” J. Vac. Sci. Technol.16(6), 1954–1958 (1979).
[CrossRef]

Flanders, D. C.

D. C. Flanders, H. I. Smith, and S. Austin, “A new interferometric alignment technique,” Appl. Phys. Lett.31(7), 426–428 (1977).
[CrossRef]

Frankel, R. D.

A. Moel, E. E. Moon, R. D. Frankel, and H. I. Smith, “Novel on-axis interferometric alignment method with sub-10 nm precision,” J. Vac. Sci. Technol. B11(6), 2191–2194 (1993).
[CrossRef]

Frichet, A.

B. Fay, J. Trotel, and A. Frichet, “Optical alignment system for submicron X-ray lithography,” J. Vac. Sci. Technol.16(6), 1954–1958 (1979).
[CrossRef]

Fu, Y.

Fujigaki, M.

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf.4(1), 1107–1113 (2011).

Gallagher, N. C.

Gaylord, T. K.

Hanada, R.

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf.4(1), 1107–1113 (2011).

Harned, N.

C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics4(1), 24–26 (2010).
[CrossRef]

Hattori, S.

Y. Uchida, S. Hattori, and T. Nomura, “An automatic mask alignment technique using moiré interference,” J. Vac. Sci. Technol. B5(1), 244–247 (1987).
[CrossRef]

He, Y.

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Laser. Eng.371–381 (2013).

Hirose, M.

T. Miyatake, M. Hirose, T. Shoki, R. Ohkubo, and K. Yamazaki, “Nanometer scattered-light alignment system using SiC X-ray masks with low optical transparency,” J. Vac. Sci. Technol. B16(6), 3471–3475 (1998).
[CrossRef]

Hoh, K.

T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B6(1), 409–412 (1988).
[CrossRef]

Hu, S.

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Laser. Eng.371–381 (2013).

J. P. Zhu, S. Hu, J. S. Yu, and Y. Tang, “Alignment method based on matched dual-grating moiré fringe for proximity lithography,” Opt. Eng.51(11), 113603 (2012).
[CrossRef]

S. Zhou, Y. Yang, L. Zhao, and S. Hu, “Tilt-modulated spatial phase imaging method for wafer-mask leveling in proximity lithography,” Opt. Lett.35(18), 3132–3134 (2010).
[CrossRef] [PubMed]

S. Zhou, Y. Fu, X. Tang, S. Hu, W. Chen, and Y. Yang, “Fourier-based analysis of moiré fringe patterns of superposed gratings in alignment of nanolithography,” Opt. Express16(11), 7869–7880 (2008).
[CrossRef] [PubMed]

Huang, L.

Itoh, J.

T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B6(1), 409–412 (1988).
[CrossRef]

Jo, J. H.

J. S. Song, Y. H. Lee, J. H. Jo, S. Chang, and K. C. Yuk, “Moiré patterns of two different elongated circular gratings for the fine visual measurement of linear displacements,” Opt. Commun.154(1–3), 100–108 (1998).
[CrossRef]

Kanayama, T.

T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B6(1), 409–412 (1988).
[CrossRef]

Kang, Y. L.

X. L. Li, Y. L. Kang, W. Qiu, Q. H. Qin, and X. Xiao, “A study on the digital moiré technique with circular and radial gratings,” Opt. Lasers Eng.45(7), 783–788 (2007).
[CrossRef]

King, M. C.

Lee, Y. H.

J. S. Song, Y. H. Lee, J. H. Jo, S. Chang, and K. C. Yuk, “Moiré patterns of two different elongated circular gratings for the fine visual measurement of linear displacements,” Opt. Commun.154(1–3), 100–108 (1998).
[CrossRef]

Leibovici, M. C.

Li, L. L.

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Laser. Eng.371–381 (2013).

Li, N.

N. Li, W. Wu, and S. Y. Chou, “Sub-20-nm alignment in Nanoimprint lithography using moiré fringe,” Nano Lett.6(11), 2626–2629 (2006).
[CrossRef] [PubMed]

Li, X.

J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol.44(2), 446–451 (2012).
[CrossRef]

Li, X. L.

X. L. Li, Y. L. Kang, W. Qiu, Q. H. Qin, and X. Xiao, “A study on the digital moiré technique with circular and radial gratings,” Opt. Lasers Eng.45(7), 783–788 (2007).
[CrossRef]

Liu, H. Z.

J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol.44(2), 446–451 (2012).
[CrossRef]

J. Y. Shao, H. Z. Liu, Y. C. Ding, L. Wang, and B. H. Lu, “Alignment measurement method for imprint lithography using moiré fringe pattern,” Opt. Eng.47(11), 113604 (2008).
[CrossRef]

Lu, B. H.

J. Y. Shao, H. Z. Liu, Y. C. Ding, L. Wang, and B. H. Lu, “Alignment measurement method for imprint lithography using moiré fringe pattern,” Opt. Eng.47(11), 113604 (2008).
[CrossRef]

Masaya, A.

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf.4(1), 1107–1113 (2011).

Miyatake, T.

T. Miyatake, M. Hirose, T. Shoki, R. Ohkubo, and K. Yamazaki, “Nanometer scattered-light alignment system using SiC X-ray masks with low optical transparency,” J. Vac. Sci. Technol. B16(6), 3471–3475 (1998).
[CrossRef]

Moel, A.

A. Moel, E. E. Moon, R. D. Frankel, and H. I. Smith, “Novel on-axis interferometric alignment method with sub-10 nm precision,” J. Vac. Sci. Technol. B11(6), 2191–2194 (1993).
[CrossRef]

Mondol, M. K.

E. E. Moon, M. K. Mondol, P. N. Everett, and H. I. Smith, “Dynamic alignment control for fluid-immersion lithographies using interferometric-spatial-phase imaging,” J. Vac. Sci. Technol. B23(6), 2607–2610 (2005).
[CrossRef]

Moon, E. E.

E. E. Moon, M. K. Mondol, P. N. Everett, and H. I. Smith, “Dynamic alignment control for fluid-immersion lithographies using interferometric-spatial-phase imaging,” J. Vac. Sci. Technol. B23(6), 2607–2610 (2005).
[CrossRef]

A. Moel, E. E. Moon, R. D. Frankel, and H. I. Smith, “Novel on-axis interferometric alignment method with sub-10 nm precision,” J. Vac. Sci. Technol. B11(6), 2191–2194 (1993).
[CrossRef]

Morimoto, Y.

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf.4(1), 1107–1113 (2011).

Nomura, T.

Y. Uchida, S. Hattori, and T. Nomura, “An automatic mask alignment technique using moiré interference,” J. Vac. Sci. Technol. B5(1), 244–247 (1987).
[CrossRef]

Ohkubo, R.

T. Miyatake, M. Hirose, T. Shoki, R. Ohkubo, and K. Yamazaki, “Nanometer scattered-light alignment system using SiC X-ray masks with low optical transparency,” J. Vac. Sci. Technol. B16(6), 3471–3475 (1998).
[CrossRef]

Qin, Q. H.

X. L. Li, Y. L. Kang, W. Qiu, Q. H. Qin, and X. Xiao, “A study on the digital moiré technique with circular and radial gratings,” Opt. Lasers Eng.45(7), 783–788 (2007).
[CrossRef]

Qiu, W.

X. L. Li, Y. L. Kang, W. Qiu, Q. H. Qin, and X. Xiao, “A study on the digital moiré technique with circular and radial gratings,” Opt. Lasers Eng.45(7), 783–788 (2007).
[CrossRef]

Raleigh, L.

L. Raleigh, “On the manufacture and theory of diffraction gratings,” Philos. Mag.4(310–311), 81–93 (1874).

Ratnam, M. M.

K. S. Yen and M. M. Ratnam, “Simultaneous measurement of 3-D displacement components from circular moiré fringes: An experimental approach,” Opt. Lasers Eng.50(6), 887–899 (2012).
[CrossRef]

K. S. Yen and M. M. Ratnam, “In-plane displacement sensing from circular gratings moiré fringes using graphic analysis approach,” Sensor Rev.31(4), 358–367 (2011).
[CrossRef]

Robert-H., M. S.

M. S. Robert-H., “Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry,” Phil. Trans. Roy. Soc. A370(1973), 3951–3952 (2012).

Seto, H.

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf.4(1), 1107–1113 (2011).

Shao, J. Y.

J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol.44(2), 446–451 (2012).
[CrossRef]

J. Y. Shao, H. Z. Liu, Y. C. Ding, L. Wang, and B. H. Lu, “Alignment measurement method for imprint lithography using moiré fringe pattern,” Opt. Eng.47(11), 113604 (2008).
[CrossRef]

Shimo, K.

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf.4(1), 1107–1113 (2011).

Shoki, T.

T. Miyatake, M. Hirose, T. Shoki, R. Ohkubo, and K. Yamazaki, “Nanometer scattered-light alignment system using SiC X-ray masks with low optical transparency,” J. Vac. Sci. Technol. B16(6), 3471–3475 (1998).
[CrossRef]

Smith, H. I.

E. E. Moon, M. K. Mondol, P. N. Everett, and H. I. Smith, “Dynamic alignment control for fluid-immersion lithographies using interferometric-spatial-phase imaging,” J. Vac. Sci. Technol. B23(6), 2607–2610 (2005).
[CrossRef]

A. Moel, E. E. Moon, R. D. Frankel, and H. I. Smith, “Novel on-axis interferometric alignment method with sub-10 nm precision,” J. Vac. Sci. Technol. B11(6), 2191–2194 (1993).
[CrossRef]

D. C. Flanders, H. I. Smith, and S. Austin, “A new interferometric alignment technique,” Appl. Phys. Lett.31(7), 426–428 (1977).
[CrossRef]

Song, J. S.

J. S. Song, Y. H. Lee, J. H. Jo, S. Chang, and K. C. Yuk, “Moiré patterns of two different elongated circular gratings for the fine visual measurement of linear displacements,” Opt. Commun.154(1–3), 100–108 (1998).
[CrossRef]

Su, X. Y.

Suzuki, M.

A. Une and M. Suzuki, “An optical-heterodyne alignment technique for quarter-micron X-ray lithography,” J. Vac. Sci. Technol. B7(6), 1971–1976 (1989).
[CrossRef]

Tang, X.

Tang, Y.

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Laser. Eng.371–381 (2013).

J. P. Zhu, S. Hu, J. S. Yu, and Y. Tang, “Alignment method based on matched dual-grating moiré fringe for proximity lithography,” Opt. Eng.51(11), 113603 (2012).
[CrossRef]

Tian, H. M.

J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol.44(2), 446–451 (2012).
[CrossRef]

Trotel, J.

B. Fay, J. Trotel, and A. Frichet, “Optical alignment system for submicron X-ray lithography,” J. Vac. Sci. Technol.16(6), 1954–1958 (1979).
[CrossRef]

Uchida, Y.

Y. Uchida, S. Hattori, and T. Nomura, “An automatic mask alignment technique using moiré interference,” J. Vac. Sci. Technol. B5(1), 244–247 (1987).
[CrossRef]

Une, A.

A. Une and M. Suzuki, “An optical-heterodyne alignment technique for quarter-micron X-ray lithography,” J. Vac. Sci. Technol. B7(6), 1971–1976 (1989).
[CrossRef]

Wagner, C.

C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics4(1), 24–26 (2010).
[CrossRef]

Wang, L.

J. Y. Shao, H. Z. Liu, Y. C. Ding, L. Wang, and B. H. Lu, “Alignment measurement method for imprint lithography using moiré fringe pattern,” Opt. Eng.47(11), 113604 (2008).
[CrossRef]

Wang, Q.

Whang, A. J.

Wu, W.

N. Li, W. Wu, and S. Y. Chou, “Sub-20-nm alignment in Nanoimprint lithography using moiré fringe,” Nano Lett.6(11), 2626–2629 (2006).
[CrossRef] [PubMed]

Xiao, X.

X. L. Li, Y. L. Kang, W. Qiu, Q. H. Qin, and X. Xiao, “A study on the digital moiré technique with circular and radial gratings,” Opt. Lasers Eng.45(7), 783–788 (2007).
[CrossRef]

Xu, F.

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Laser. Eng.371–381 (2013).

Yamazaki, K.

T. Miyatake, M. Hirose, T. Shoki, R. Ohkubo, and K. Yamazaki, “Nanometer scattered-light alignment system using SiC X-ray masks with low optical transparency,” J. Vac. Sci. Technol. B16(6), 3471–3475 (1998).
[CrossRef]

Yang, Y.

Yen, K. S.

K. S. Yen and M. M. Ratnam, “Simultaneous measurement of 3-D displacement components from circular moiré fringes: An experimental approach,” Opt. Lasers Eng.50(6), 887–899 (2012).
[CrossRef]

K. S. Yen and M. M. Ratnam, “In-plane displacement sensing from circular gratings moiré fringes using graphic analysis approach,” Sensor Rev.31(4), 358–367 (2011).
[CrossRef]

Yu, J. S.

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Laser. Eng.371–381 (2013).

J. P. Zhu, S. Hu, J. S. Yu, and Y. Tang, “Alignment method based on matched dual-grating moiré fringe for proximity lithography,” Opt. Eng.51(11), 113603 (2012).
[CrossRef]

Yuan, G. H.

Yuan, X.

Yuk, K. C.

J. S. Song, Y. H. Lee, J. H. Jo, S. Chang, and K. C. Yuk, “Moiré patterns of two different elongated circular gratings for the fine visual measurement of linear displacements,” Opt. Commun.154(1–3), 100–108 (1998).
[CrossRef]

Zhao, L.

Zhou, S.

Zhou, S. L.

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Laser. Eng.371–381 (2013).

Zhu, J. P.

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Laser. Eng.371–381 (2013).

J. P. Zhu, S. Hu, J. S. Yu, and Y. Tang, “Alignment method based on matched dual-grating moiré fringe for proximity lithography,” Opt. Eng.51(11), 113603 (2012).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. C. Flanders, H. I. Smith, and S. Austin, “A new interferometric alignment technique,” Appl. Phys. Lett.31(7), 426–428 (1977).
[CrossRef]

J. Vac. Sci. Technol. (1)

B. Fay, J. Trotel, and A. Frichet, “Optical alignment system for submicron X-ray lithography,” J. Vac. Sci. Technol.16(6), 1954–1958 (1979).
[CrossRef]

J. Vac. Sci. Technol. B (6)

T. Kanayama, J. Itoh, N. Atoda, and K. Hoh, “An alignment system for synchrotron radiation X-ray lithography,” J. Vac. Sci. Technol. B6(1), 409–412 (1988).
[CrossRef]

A. Une and M. Suzuki, “An optical-heterodyne alignment technique for quarter-micron X-ray lithography,” J. Vac. Sci. Technol. B7(6), 1971–1976 (1989).
[CrossRef]

T. Miyatake, M. Hirose, T. Shoki, R. Ohkubo, and K. Yamazaki, “Nanometer scattered-light alignment system using SiC X-ray masks with low optical transparency,” J. Vac. Sci. Technol. B16(6), 3471–3475 (1998).
[CrossRef]

Y. Uchida, S. Hattori, and T. Nomura, “An automatic mask alignment technique using moiré interference,” J. Vac. Sci. Technol. B5(1), 244–247 (1987).
[CrossRef]

A. Moel, E. E. Moon, R. D. Frankel, and H. I. Smith, “Novel on-axis interferometric alignment method with sub-10 nm precision,” J. Vac. Sci. Technol. B11(6), 2191–2194 (1993).
[CrossRef]

E. E. Moon, M. K. Mondol, P. N. Everett, and H. I. Smith, “Dynamic alignment control for fluid-immersion lithographies using interferometric-spatial-phase imaging,” J. Vac. Sci. Technol. B23(6), 2607–2610 (2005).
[CrossRef]

Nano Lett. (1)

N. Li, W. Wu, and S. Y. Chou, “Sub-20-nm alignment in Nanoimprint lithography using moiré fringe,” Nano Lett.6(11), 2626–2629 (2006).
[CrossRef] [PubMed]

Nat. Photonics (1)

C. Wagner and N. Harned, “EUV lithography: Lithography gets extreme,” Nat. Photonics4(1), 24–26 (2010).
[CrossRef]

Opt. Commun. (1)

J. S. Song, Y. H. Lee, J. H. Jo, S. Chang, and K. C. Yuk, “Moiré patterns of two different elongated circular gratings for the fine visual measurement of linear displacements,” Opt. Commun.154(1–3), 100–108 (1998).
[CrossRef]

Opt. Eng. (2)

J. P. Zhu, S. Hu, J. S. Yu, and Y. Tang, “Alignment method based on matched dual-grating moiré fringe for proximity lithography,” Opt. Eng.51(11), 113603 (2012).
[CrossRef]

J. Y. Shao, H. Z. Liu, Y. C. Ding, L. Wang, and B. H. Lu, “Alignment measurement method for imprint lithography using moiré fringe pattern,” Opt. Eng.47(11), 113604 (2008).
[CrossRef]

Opt. Express (2)

Opt. Laser Technol. (1)

J. Y. Shao, Y. C. Ding, H. M. Tian, X. Li, and H. Z. Liu, “Digital moiré fringe measurement method for alignment in imprint lithography,” Opt. Laser Technol.44(2), 446–451 (2012).
[CrossRef]

Opt. Laser. Eng. (1)

J. P. Zhu, S. Hu, J. S. Yu, Y. Tang, F. Xu, Y. He, S. L. Zhou, and L. L. Li, “Influence of tilt moiré fringe on alignment accuracy in proximity lithography,” Opt. Laser. Eng.371–381 (2013).

Opt. Lasers Eng. (2)

K. S. Yen and M. M. Ratnam, “Simultaneous measurement of 3-D displacement components from circular moiré fringes: An experimental approach,” Opt. Lasers Eng.50(6), 887–899 (2012).
[CrossRef]

X. L. Li, Y. L. Kang, W. Qiu, Q. H. Qin, and X. Xiao, “A study on the digital moiré technique with circular and radial gratings,” Opt. Lasers Eng.45(7), 783–788 (2007).
[CrossRef]

Opt. Lett. (3)

Phil. Trans. Roy. Soc. A (1)

M. S. Robert-H., “Ultra-precision engineering in lithographic exposure equipment for the semiconductor industry,” Phil. Trans. Roy. Soc. A370(1973), 3951–3952 (2012).

Philos. Mag. (1)

L. Raleigh, “On the manufacture and theory of diffraction gratings,” Philos. Mag.4(310–311), 81–93 (1874).

SAE Int J. Masetr Manuf. (1)

Y. Morimoto, M. Fujigaki, A. Masaya, K. Shimo, R. Hanada, and H. Seto, “Shape and strain measurement of rotating tire by sampling moiré fringes method,” SAE Int J. Masetr Manuf.4(1), 1107–1113 (2011).

Sensor Rev. (1)

K. S. Yen and M. M. Ratnam, “In-plane displacement sensing from circular gratings moiré fringes using graphic analysis approach,” Sensor Rev.31(4), 358–367 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Alignment marks and moiré fringes: (a) the mask alignment mark; (b) the wafer alignment mark; (c) moiré fringes pattern with misalignment by Δx(≠0). A shift of Δx in x-direction will lead to a moiré shift between the two rows of moiré fringes, the moiré fringe patterns in the first and third of quadrants move leftward, while the others move rightward; (d) moiré fringes pattern with perfect alignment in x-direction. In (a)-(b), the shaped “+” is used for coarse alignment. In (c)-(d), the original gratings were removed.

Fig. 2
Fig. 2

The designed alignment mark: (a) the whole alignment mark; (b) one of the alignment marks in (a); (c) a composition image of four local SEM images with magnification of 1.5E3 ;(d) local SEM image of single alignment mark with magnification of 6E3 ;(e) another local SEM image of single alignment mark with magnification of 6E3.

Fig. 3
Fig. 3

(a) the experimental setup. The mask alignment mark and the wafer alignment mark are shown in the upper right corner; (b) the captured moiré fringe pattern for fine alignment in x-direction. The analyzed area (the first row) is included in red box. The second row of moiré fringes can be considered as a complementary analyzed area.

Fig. 4
Fig. 4

The analytical results: effects of the gaps changed from 10μm to 20μm on the phase and period of moiré fringes with grating periods 8μm and 10μm are shown from (a) to (b). Parts of moiré fringes, corresponding intensities, contrasts and periods are respectively given from the left to right column.

Fig. 5
Fig. 5

The coarse alignment process: (a) the misaligned pattern both in x- and y-directions; (b) the misaligned pattern only in x–direction; (c) the misaligned pattern only in y-direction; (d) the aligned pattern both in x- and y-directions.

Fig. 6
Fig. 6

The schematic of moiré fringe movement direction during fine alignment. Moiré fringe sets A and B can be used to calculate the relative linear displacement between the mask and the wafer. Solid-red and dotted-red arrows respectively represent two movement situations of moiré fringe when the wafer alignment mark moves respectively leftward and rightward.

Fig. 7
Fig. 7

Measured error vs. input linear displacement: (a) the input step is 0.1μm with grating period 4μm and 4.4μm; (b) the input step is 0.2μm with grating period 4μm and 4.4μm; (c) the input step is 0.1μm with grating period 6μm and 8μm; (d) the input step is 0.2μm with grating period 6μm and 8μm;(e) the input step is 0.1μm with grating period 8μm and10μm; (f) the input step is 0.2μm with grating period 8μm and10μm. Both (a) and (b) are the measured results for x-direction, while (c)-(f) for y-direction.

Fig. 8
Fig. 8

The analyzed moiré fringes: (a) moiré fringe pattern with grating periods 4μm and 4.4μm; (b) moiré fringe pattern with grating periods 8μm and 10μm; (c) intensity distribution as a function of location along the red-dot line shown in (a); (d) intensity distribution as a function of location along the red-dot line shown in (b).

Fig. 9
Fig. 9

The phase extraction error analysis using 2-D FFT. The image size is 512 × 512 pixels, P1 = 4pixles, P2 = αP1. (a) and (b) respectively represent the absolute error and relative error in the case of the number of moiré fringe being not an integer; (c) and (d) represent the absolute error and relative error in the case of the number of moiré fringe being an integer.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P Moire = P 1 P 2 P 2 P 1 = P 1 P 2 ΔP
M= ΔX Δx = ΔY Δy =2 P a ΔP
I upp =A(x,y)+B(x,y)cos{2π[(x+Δx)/ P 1 x/ P 2 ]}
I low =A(x,y)+B(x,y)cos{2π[x/ P 1 (xΔx)/ P 2 ]}
Δδ= δ upp δ low =2π(1/ P 1 +1/ P 2 )Δx
Δx= Δδ 2π P 1 P 2 P 1 + P 2
I Moire =1+2cos(2π α1 α P 1 y)
δ theory =2π α1 α P 1 y

Metrics