Abstract

We present a new observation of photorefractive (PR) effects in bent-core nematic (BCN) liquid crystal (LC) materials, where two kinds of optical-induced gratings are demonstrated and compared in pure and surface-doped BCN systems. The experimental results showed that these two kinds of gratings exhibit distinctive different polarization-dependent and angular-dependent behaviors, respectively. Furthermore, we supplied the pure and surface-doped rodlike LC systems for comparison, which revealed that V shape molecular structure of BCN can produce charge carrier more efficiently than rodlike molecular structure does. Thus BCN materials can offer an exciting potential for optical information processing.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-Field-Induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett.47(19), 1411–1414 (1981).
    [CrossRef]
  2. H. Hsiung, L. P. Shi, and Y. R. Shen, “Transient laser-induced molecular reorientation and laser heating in a nematic liquid crystal,” Phys. Rev. A30(3), 1453–1460 (1984).
    [CrossRef]
  3. F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter11(41), R439–R487 (1999).
    [CrossRef]
  4. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep.471(5-6), 221–267 (2009).
    [CrossRef]
  5. I. Jánossy, “Molecular interpretation of the absorption-induced optical reorientation of nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(4), 2957–2963 (1994).
    [CrossRef] [PubMed]
  6. J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett.25(6), 414–416 (2000).
    [CrossRef] [PubMed]
  7. Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, “Optical-Field-Induced reorientation of nematic liquid crystal doped with FeTPPCl based on resonant model,” Appl. Phys., A Mater. Sci. Process.86, 207–211 (2007).
  8. I. C. Khoo, M. Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE87(11), 1897–1911 (1999).
  9. G. Zhang, G. Montemezzani, and P. Gunter, “Orientational photorefractive effect in nematic liquid crystal with externally applied fields,” J. Appl. Phys.88(4), 1709–1717 (2000).
    [CrossRef]
  10. W. Lee and S. L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett.79(27), 4488–4490 (2001).
    [CrossRef]
  11. Y. Xiang, Y. K. Liu, T. Li, S. L. Yang, and Z. J. Jiang, “Laser induced gratings enhanced by surface-charge mediated electric field in doped nematic liquid crystals,” J. Appl. Phys.104(6), 063107 (2008).
    [CrossRef]
  12. S. Bartkiewicz and A. Miniewicz, “Mechanism of optical recording in doped liquid crystals,” Adv. Mater. Opt. Electron.6(56), 219–224 (1996).
    [CrossRef]
  13. F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer-liquid-crystal structures,” Appl. Phys. Lett.74(20), 2924–2926 (1999).
    [CrossRef]
  14. S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun.187(1-3), 257–261 (2001).
    [CrossRef]
  15. E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” Sov. Phys. JETP78, 875–882 (1994).
  16. N. V. Tabiryan and C. Umeton, “Surface-activated photorefractivity and electro-optic phenomena in liquid crystals,” J. Opt. Soc. Am. B15(7), 1912–1917 (1998).
    [CrossRef]
  17. P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 061708 (2004).
    [CrossRef] [PubMed]
  18. I. C. Khoo, K. Chen, and Y. Z. Williams, “Orientational photorefractive effect in undoped and CdSe nanorods-doped nematic liquid crystal:bulk and interface contributions,” IEEE J. Sel. Top. Quant.12(3), 443–450 (2006).
    [CrossRef]
  19. H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett.71(9), 1162–1164 (1997).
    [CrossRef]
  20. P. Pagliusi and G. Cipparrone, “Charge transport due to photoelectric interface activation in pure nematic liquid-crystal cells,” J. Appl. Phys.92(9), 4863–4869 (2002).
    [CrossRef]
  21. A. Dyadyusha, M. Kaczmarek, and G. Gilchrist, “Surface screening layers and dynamics of energy transfer in photosensitive polymer-liquid crystal structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)446(1), 261–272 (2006).
    [CrossRef]
  22. J. Etxebarria and M. B. Ros, “Bent-core liquid crystals in the route to functional materials,” J. Mater. Chem.18(25), 2919–2926 (2008).
    [CrossRef]
  23. H. Takezoe and Y. Takanishi, “Bent-core liquid crystals: their mysterious and attractive world,” Jpn. J. Appl. Phys.45(2A), 597–625 (2006).
    [CrossRef]
  24. M. Mathews, R. S. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals,” J. Mater. Chem.21(7), 2098–2103 (2011).
    [CrossRef]
  25. W. Helfrich, “Conduction-Induced a1ignment of nematic liquid crystals: basic model and stability considerations,” J. Chem. Phys.51(9), 4092–4105 (1969).
    [CrossRef]
  26. E. Kochowska, S. Németh, G. Pelzl, and A. Buka, “Electroconvection with and without the Carr-Helfrich effect in a series of nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 011711 (2004).
    [CrossRef] [PubMed]
  27. C. V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem.17(3), 284–298 (2007).
    [CrossRef]
  28. M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004).
    [CrossRef]
  29. P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett.80(2), 168–170 (2002).
    [CrossRef]
  30. P. Pagliusi and G. Cipparrone, “Dynamic grating features for the surface-induced photorefractive effect in undoped nematics,” J. Opt. Soc. Am. B21(5), 996–1004 (2004).
    [CrossRef]
  31. X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett.78(16), 2285–2287 (2001).
    [CrossRef]
  32. Q. Hu and Y. Bando, “Growth and optical properties of single-crystal tubular ZnO whiskers,” Appl. Phys. Lett.82(9), 1401–1403 (2003).
    [CrossRef]
  33. M. Abdullah, T. Morimoto, and K. Okuyama, “Generating blue and red luminescence from ZnO/Poly(ethylene glycol) nanocomposites prepared using an In-Situ method,” Adv. Funct. Mater.13(10), 800–804 (2003).
    [CrossRef]
  34. F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, “Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition,” Appl. Phys. Lett.86(22), 221910 (2005).
    [CrossRef]
  35. U. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
    [CrossRef]
  36. Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
    [CrossRef]

2012

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

2011

M. Mathews, R. S. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals,” J. Mater. Chem.21(7), 2098–2103 (2011).
[CrossRef]

2009

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep.471(5-6), 221–267 (2009).
[CrossRef]

2008

Y. Xiang, Y. K. Liu, T. Li, S. L. Yang, and Z. J. Jiang, “Laser induced gratings enhanced by surface-charge mediated electric field in doped nematic liquid crystals,” J. Appl. Phys.104(6), 063107 (2008).
[CrossRef]

J. Etxebarria and M. B. Ros, “Bent-core liquid crystals in the route to functional materials,” J. Mater. Chem.18(25), 2919–2926 (2008).
[CrossRef]

2007

Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, “Optical-Field-Induced reorientation of nematic liquid crystal doped with FeTPPCl based on resonant model,” Appl. Phys., A Mater. Sci. Process.86, 207–211 (2007).

C. V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem.17(3), 284–298 (2007).
[CrossRef]

2006

H. Takezoe and Y. Takanishi, “Bent-core liquid crystals: their mysterious and attractive world,” Jpn. J. Appl. Phys.45(2A), 597–625 (2006).
[CrossRef]

A. Dyadyusha, M. Kaczmarek, and G. Gilchrist, “Surface screening layers and dynamics of energy transfer in photosensitive polymer-liquid crystal structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)446(1), 261–272 (2006).
[CrossRef]

I. C. Khoo, K. Chen, and Y. Z. Williams, “Orientational photorefractive effect in undoped and CdSe nanorods-doped nematic liquid crystal:bulk and interface contributions,” IEEE J. Sel. Top. Quant.12(3), 443–450 (2006).
[CrossRef]

2005

F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, “Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition,” Appl. Phys. Lett.86(22), 221910 (2005).
[CrossRef]

U. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

2004

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004).
[CrossRef]

E. Kochowska, S. Németh, G. Pelzl, and A. Buka, “Electroconvection with and without the Carr-Helfrich effect in a series of nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 011711 (2004).
[CrossRef] [PubMed]

P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 061708 (2004).
[CrossRef] [PubMed]

P. Pagliusi and G. Cipparrone, “Dynamic grating features for the surface-induced photorefractive effect in undoped nematics,” J. Opt. Soc. Am. B21(5), 996–1004 (2004).
[CrossRef]

2003

Q. Hu and Y. Bando, “Growth and optical properties of single-crystal tubular ZnO whiskers,” Appl. Phys. Lett.82(9), 1401–1403 (2003).
[CrossRef]

M. Abdullah, T. Morimoto, and K. Okuyama, “Generating blue and red luminescence from ZnO/Poly(ethylene glycol) nanocomposites prepared using an In-Situ method,” Adv. Funct. Mater.13(10), 800–804 (2003).
[CrossRef]

2002

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett.80(2), 168–170 (2002).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Charge transport due to photoelectric interface activation in pure nematic liquid-crystal cells,” J. Appl. Phys.92(9), 4863–4869 (2002).
[CrossRef]

2001

W. Lee and S. L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett.79(27), 4488–4490 (2001).
[CrossRef]

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun.187(1-3), 257–261 (2001).
[CrossRef]

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett.78(16), 2285–2287 (2001).
[CrossRef]

2000

G. Zhang, G. Montemezzani, and P. Gunter, “Orientational photorefractive effect in nematic liquid crystal with externally applied fields,” J. Appl. Phys.88(4), 1709–1717 (2000).
[CrossRef]

J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett.25(6), 414–416 (2000).
[CrossRef] [PubMed]

1999

I. C. Khoo, M. Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE87(11), 1897–1911 (1999).

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer-liquid-crystal structures,” Appl. Phys. Lett.74(20), 2924–2926 (1999).
[CrossRef]

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter11(41), R439–R487 (1999).
[CrossRef]

1998

1997

H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett.71(9), 1162–1164 (1997).
[CrossRef]

1996

S. Bartkiewicz and A. Miniewicz, “Mechanism of optical recording in doped liquid crystals,” Adv. Mater. Opt. Electron.6(56), 219–224 (1996).
[CrossRef]

1994

E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” Sov. Phys. JETP78, 875–882 (1994).

I. Jánossy, “Molecular interpretation of the absorption-induced optical reorientation of nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(4), 2957–2963 (1994).
[CrossRef] [PubMed]

1984

H. Hsiung, L. P. Shi, and Y. R. Shen, “Transient laser-induced molecular reorientation and laser heating in a nematic liquid crystal,” Phys. Rev. A30(3), 1453–1460 (1984).
[CrossRef]

1981

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-Field-Induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett.47(19), 1411–1414 (1981).
[CrossRef]

1969

W. Helfrich, “Conduction-Induced a1ignment of nematic liquid crystals: basic model and stability considerations,” J. Chem. Phys.51(9), 4092–4105 (1969).
[CrossRef]

Abdullah, M.

M. Abdullah, T. Morimoto, and K. Okuyama, “Generating blue and red luminescence from ZnO/Poly(ethylene glycol) nanocomposites prepared using an In-Situ method,” Adv. Funct. Mater.13(10), 800–804 (2003).
[CrossRef]

Alivov, Ya. I.

U. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Arakelian, S. M.

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-Field-Induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett.47(19), 1411–1414 (1981).
[CrossRef]

Avrutin, V.

U. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Bando, Y.

Q. Hu and Y. Bando, “Growth and optical properties of single-crystal tubular ZnO whiskers,” Appl. Phys. Lett.82(9), 1401–1403 (2003).
[CrossRef]

Bartkiewicz, S.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun.187(1-3), 257–261 (2001).
[CrossRef]

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer-liquid-crystal structures,” Appl. Phys. Lett.74(20), 2924–2926 (1999).
[CrossRef]

S. Bartkiewicz and A. Miniewicz, “Mechanism of optical recording in doped liquid crystals,” Adv. Mater. Opt. Electron.6(56), 219–224 (1996).
[CrossRef]

Buka, A.

E. Kochowska, S. Németh, G. Pelzl, and A. Buka, “Electroconvection with and without the Carr-Helfrich effect in a series of nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 011711 (2004).
[CrossRef] [PubMed]

Chen, K.

I. C. Khoo, K. Chen, and Y. Z. Williams, “Orientational photorefractive effect in undoped and CdSe nanorods-doped nematic liquid crystal:bulk and interface contributions,” IEEE J. Sel. Top. Quant.12(3), 443–450 (2006).
[CrossRef]

Chen, P. H.

I. C. Khoo, M. Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE87(11), 1897–1911 (1999).

Chen, Y.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Cho, S. J.

U. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Cipparrone, G.

P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 061708 (2004).
[CrossRef] [PubMed]

P. Pagliusi and G. Cipparrone, “Dynamic grating features for the surface-induced photorefractive effect in undoped nematics,” J. Opt. Soc. Am. B21(5), 996–1004 (2004).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Charge transport due to photoelectric interface activation in pure nematic liquid-crystal cells,” J. Appl. Phys.92(9), 4863–4869 (2002).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett.80(2), 168–170 (2002).
[CrossRef]

Ding, Z.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Dogan, S.

U. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Durbin, S. D.

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-Field-Induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett.47(19), 1411–1414 (1981).
[CrossRef]

Dyadyusha, A.

A. Dyadyusha, M. Kaczmarek, and G. Gilchrist, “Surface screening layers and dynamics of energy transfer in photosensitive polymer-liquid crystal structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)446(1), 261–272 (2006).
[CrossRef]

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004).
[CrossRef]

Etxebarria, J.

J. Etxebarria and M. B. Ros, “Bent-core liquid crystals in the route to functional materials,” J. Mater. Chem.18(25), 2919–2926 (2008).
[CrossRef]

Findeisen, S.

C. V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem.17(3), 284–298 (2007).
[CrossRef]

Francescangeli, O.

I. C. Khoo, M. Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE87(11), 1897–1911 (1999).

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter11(41), R439–R487 (1999).
[CrossRef]

Fu, C. L.

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett.78(16), 2285–2287 (2001).
[CrossRef]

Gilchrist, G.

A. Dyadyusha, M. Kaczmarek, and G. Gilchrist, “Surface screening layers and dynamics of energy transfer in photosensitive polymer-liquid crystal structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)446(1), 261–272 (2006).
[CrossRef]

Guenther, B. D.

I. C. Khoo, M. Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE87(11), 1897–1911 (1999).

Gunter, P.

G. Zhang, G. Montemezzani, and P. Gunter, “Orientational photorefractive effect in nematic liquid crystal with externally applied fields,” J. Appl. Phys.88(4), 1709–1717 (2000).
[CrossRef]

Guo, Y.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Helfrich, W.

W. Helfrich, “Conduction-Induced a1ignment of nematic liquid crystals: basic model and stability considerations,” J. Chem. Phys.51(9), 4092–4105 (1969).
[CrossRef]

Hsiung, H.

H. Hsiung, L. P. Shi, and Y. R. Shen, “Transient laser-induced molecular reorientation and laser heating in a nematic liquid crystal,” Phys. Rev. A30(3), 1453–1460 (1984).
[CrossRef]

Hu, Q.

Q. Hu and Y. Bando, “Growth and optical properties of single-crystal tubular ZnO whiskers,” Appl. Phys. Lett.82(9), 1401–1403 (2003).
[CrossRef]

Jánossy, I.

I. Jánossy, “Molecular interpretation of the absorption-induced optical reorientation of nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(4), 2957–2963 (1994).
[CrossRef] [PubMed]

Jiang, Z. J.

Y. Xiang, Y. K. Liu, T. Li, S. L. Yang, and Z. J. Jiang, “Laser induced gratings enhanced by surface-charge mediated electric field in doped nematic liquid crystals,” J. Appl. Phys.104(6), 063107 (2008).
[CrossRef]

Jie, L.

Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, “Optical-Field-Induced reorientation of nematic liquid crystal doped with FeTPPCl based on resonant model,” Appl. Phys., A Mater. Sci. Process.86, 207–211 (2007).

Kaczmarek, M.

A. Dyadyusha, M. Kaczmarek, and G. Gilchrist, “Surface screening layers and dynamics of energy transfer in photosensitive polymer-liquid crystal structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)446(1), 261–272 (2006).
[CrossRef]

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004).
[CrossRef]

Kajzar, F.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun.187(1-3), 257–261 (2001).
[CrossRef]

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer-liquid-crystal structures,” Appl. Phys. Lett.74(20), 2924–2926 (1999).
[CrossRef]

Kawatsuki, N.

H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett.71(9), 1162–1164 (1997).
[CrossRef]

Khoo, I. C.

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep.471(5-6), 221–267 (2009).
[CrossRef]

I. C. Khoo, K. Chen, and Y. Z. Williams, “Orientational photorefractive effect in undoped and CdSe nanorods-doped nematic liquid crystal:bulk and interface contributions,” IEEE J. Sel. Top. Quant.12(3), 443–450 (2006).
[CrossRef]

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004).
[CrossRef]

I. C. Khoo, M. Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE87(11), 1897–1911 (1999).

Kim, I. S.

F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, “Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition,” Appl. Phys. Lett.86(22), 221910 (2005).
[CrossRef]

Kochowska, E.

E. Kochowska, S. Németh, G. Pelzl, and A. Buka, “Electroconvection with and without the Carr-Helfrich effect in a series of nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 011711 (2004).
[CrossRef] [PubMed]

Lee, G. H.

F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, “Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition,” Appl. Phys. Lett.86(22), 221910 (2005).
[CrossRef]

Lee, W.

W. Lee and S. L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett.79(27), 4488–4490 (2001).
[CrossRef]

Lee, W. J.

F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, “Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition,” Appl. Phys. Lett.86(22), 221910 (2005).
[CrossRef]

Li, M.

Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, “Optical-Field-Induced reorientation of nematic liquid crystal doped with FeTPPCl based on resonant model,” Appl. Phys., A Mater. Sci. Process.86, 207–211 (2007).

Li, Q.

M. Mathews, R. S. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals,” J. Mater. Chem.21(7), 2098–2103 (2011).
[CrossRef]

Li, T.

Y. Xiang, Y. K. Liu, T. Li, S. L. Yang, and Z. J. Jiang, “Laser induced gratings enhanced by surface-charge mediated electric field in doped nematic liquid crystals,” J. Appl. Phys.104(6), 063107 (2008).
[CrossRef]

Liu, C.

U. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Liu, G. X.

F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, “Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition,” Appl. Phys. Lett.86(22), 221910 (2005).
[CrossRef]

Liu, Y.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Liu, Y. K.

Y. Xiang, Y. K. Liu, T. Li, S. L. Yang, and Z. J. Jiang, “Laser induced gratings enhanced by surface-charge mediated electric field in doped nematic liquid crystals,” J. Appl. Phys.104(6), 063107 (2008).
[CrossRef]

Lucchetti, L.

I. C. Khoo, M. Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE87(11), 1897–1911 (1999).

Matczyszyn, K.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun.187(1-3), 257–261 (2001).
[CrossRef]

Mathews, M.

M. Mathews, R. S. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals,” J. Mater. Chem.21(7), 2098–2103 (2011).
[CrossRef]

C. V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem.17(3), 284–298 (2007).
[CrossRef]

Miniewicz, A.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun.187(1-3), 257–261 (2001).
[CrossRef]

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer-liquid-crystal structures,” Appl. Phys. Lett.74(20), 2924–2926 (1999).
[CrossRef]

S. Bartkiewicz and A. Miniewicz, “Mechanism of optical recording in doped liquid crystals,” Adv. Mater. Opt. Electron.6(56), 219–224 (1996).
[CrossRef]

Montemezzani, G.

G. Zhang, G. Montemezzani, and P. Gunter, “Orientational photorefractive effect in nematic liquid crystal with externally applied fields,” J. Appl. Phys.88(4), 1709–1717 (2000).
[CrossRef]

Morimoto, T.

M. Abdullah, T. Morimoto, and K. Okuyama, “Generating blue and red luminescence from ZnO/Poly(ethylene glycol) nanocomposites prepared using an In-Situ method,” Adv. Funct. Mater.13(10), 800–804 (2003).
[CrossRef]

Morkoç, H.

U. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Nagamani, S. A.

C. V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem.17(3), 284–298 (2007).
[CrossRef]

Németh, S.

E. Kochowska, S. Németh, G. Pelzl, and A. Buka, “Electroconvection with and without the Carr-Helfrich effect in a series of nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 011711 (2004).
[CrossRef] [PubMed]

Okuyama, K.

M. Abdullah, T. Morimoto, and K. Okuyama, “Generating blue and red luminescence from ZnO/Poly(ethylene glycol) nanocomposites prepared using an In-Situ method,” Adv. Funct. Mater.13(10), 800–804 (2003).
[CrossRef]

Ong, H. C.

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett.78(16), 2285–2287 (2001).
[CrossRef]

Ono, H.

H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett.71(9), 1162–1164 (1997).
[CrossRef]

Ostroverkhov, V.

Özgür, U.

U. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Pagliusi, P.

P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 061708 (2004).
[CrossRef] [PubMed]

P. Pagliusi and G. Cipparrone, “Dynamic grating features for the surface-induced photorefractive effect in undoped nematics,” J. Opt. Soc. Am. B21(5), 996–1004 (2004).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Charge transport due to photoelectric interface activation in pure nematic liquid-crystal cells,” J. Appl. Phys.92(9), 4863–4869 (2002).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett.80(2), 168–170 (2002).
[CrossRef]

Pelzl, G.

E. Kochowska, S. Németh, G. Pelzl, and A. Buka, “Electroconvection with and without the Carr-Helfrich effect in a series of nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 011711 (2004).
[CrossRef] [PubMed]

Prasad, S. K.

C. V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem.17(3), 284–298 (2007).
[CrossRef]

Rao, D. S. S.

C. V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem.17(3), 284–298 (2007).
[CrossRef]

Reshchikov, M. A.

U. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Reshetnyak, V.

Reznikov, Yu.

Ros, M. B.

J. Etxebarria and M. B. Ros, “Bent-core liquid crystals in the route to functional materials,” J. Mater. Chem.18(25), 2919–2926 (2008).
[CrossRef]

Rudenko, E. V.

E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” Sov. Phys. JETP78, 875–882 (1994).

Shan, F. K.

F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, “Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition,” Appl. Phys. Lett.86(22), 221910 (2005).
[CrossRef]

She, G.-Q.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Shen, Y. R.

H. Hsiung, L. P. Shi, and Y. R. Shen, “Transient laser-induced molecular reorientation and laser heating in a nematic liquid crystal,” Phys. Rev. A30(3), 1453–1460 (1984).
[CrossRef]

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-Field-Induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett.47(19), 1411–1414 (1981).
[CrossRef]

Shi, L. P.

H. Hsiung, L. P. Shi, and Y. R. Shen, “Transient laser-induced molecular reorientation and laser heating in a nematic liquid crystal,” Phys. Rev. A30(3), 1453–1460 (1984).
[CrossRef]

Shih, M. Y.

I. C. Khoo, M. Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE87(11), 1897–1911 (1999).

Shin, B. C.

F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, “Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition,” Appl. Phys. Lett.86(22), 221910 (2005).
[CrossRef]

Simoni, F.

I. C. Khoo, M. Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE87(11), 1897–1911 (1999).

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter11(41), R439–R487 (1999).
[CrossRef]

Singer, K. D.

Siu, G. G.

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett.78(16), 2285–2287 (2001).
[CrossRef]

Slussarenko, S.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004).
[CrossRef]

Slussarenko, S. S.

I. C. Khoo, M. Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE87(11), 1897–1911 (1999).

Song, Y.-H.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Song, Y.-W.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Sukhov, A. V.

E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” Sov. Phys. JETP78, 875–882 (1994).

Tabiryan, N. V.

Takanishi, Y.

H. Takezoe and Y. Takanishi, “Bent-core liquid crystals: their mysterious and attractive world,” Jpn. J. Appl. Phys.45(2A), 597–625 (2006).
[CrossRef]

Takezoe, H.

H. Takezoe and Y. Takanishi, “Bent-core liquid crystals: their mysterious and attractive world,” Jpn. J. Appl. Phys.45(2A), 597–625 (2006).
[CrossRef]

Tao, L.

Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, “Optical-Field-Induced reorientation of nematic liquid crystal doped with FeTPPCl based on resonant model,” Appl. Phys., A Mater. Sci. Process.86, 207–211 (2007).

Teke, A.

U. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

Umeton, C.

Wang, E.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Wang, J.-H.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Weissflog, W.

C. V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem.17(3), 284–298 (2007).
[CrossRef]

Williams, Y. Z.

I. C. Khoo, K. Chen, and Y. Z. Williams, “Orientational photorefractive effect in undoped and CdSe nanorods-doped nematic liquid crystal:bulk and interface contributions,” IEEE J. Sel. Top. Quant.12(3), 443–450 (2006).
[CrossRef]

Wood, M. V.

I. C. Khoo, M. Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE87(11), 1897–1911 (1999).

Wu, X. L.

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett.78(16), 2285–2287 (2001).
[CrossRef]

Xia, T.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Xiang, Y.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Y. Xiang, Y. K. Liu, T. Li, S. L. Yang, and Z. J. Jiang, “Laser induced gratings enhanced by surface-charge mediated electric field in doped nematic liquid crystals,” J. Appl. Phys.104(6), 063107 (2008).
[CrossRef]

Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, “Optical-Field-Induced reorientation of nematic liquid crystal doped with FeTPPCl based on resonant model,” Appl. Phys., A Mater. Sci. Process.86, 207–211 (2007).

Xu, M.-Y.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Yang, D.

M. Mathews, R. S. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals,” J. Mater. Chem.21(7), 2098–2103 (2011).
[CrossRef]

Yang, M.-Z.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Yang, S. L.

Y. Xiang, Y. K. Liu, T. Li, S. L. Yang, and Z. J. Jiang, “Laser induced gratings enhanced by surface-charge mediated electric field in doped nematic liquid crystals,” J. Appl. Phys.104(6), 063107 (2008).
[CrossRef]

Yang, S.-L.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Yeh, S. L.

W. Lee and S. L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett.79(27), 4488–4490 (2001).
[CrossRef]

Yelamaggad, C. V.

C. V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem.17(3), 284–298 (2007).
[CrossRef]

Zhang, G.

G. Zhang, G. Montemezzani, and P. Gunter, “Orientational photorefractive effect in nematic liquid crystal with externally applied fields,” J. Appl. Phys.88(4), 1709–1717 (2000).
[CrossRef]

Zhang, J.

Zhou, J. Y.

Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, “Optical-Field-Induced reorientation of nematic liquid crystal doped with FeTPPCl based on resonant model,” Appl. Phys., A Mater. Sci. Process.86, 207–211 (2007).

Zola, R. S.

M. Mathews, R. S. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals,” J. Mater. Chem.21(7), 2098–2103 (2011).
[CrossRef]

Adv. Funct. Mater.

M. Abdullah, T. Morimoto, and K. Okuyama, “Generating blue and red luminescence from ZnO/Poly(ethylene glycol) nanocomposites prepared using an In-Situ method,” Adv. Funct. Mater.13(10), 800–804 (2003).
[CrossRef]

Adv. Mater. Opt. Electron.

S. Bartkiewicz and A. Miniewicz, “Mechanism of optical recording in doped liquid crystals,” Adv. Mater. Opt. Electron.6(56), 219–224 (1996).
[CrossRef]

Appl. Phys. Lett.

F. Kajzar, S. Bartkiewicz, and A. Miniewicz, “Optical amplification with high gain in hybrid-polymer-liquid-crystal structures,” Appl. Phys. Lett.74(20), 2924–2926 (1999).
[CrossRef]

W. Lee and S. L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett.79(27), 4488–4490 (2001).
[CrossRef]

H. Ono and N. Kawatsuki, “Orientational holographic grating observed in liquid crystals sandwiched with photoconductive polymer films,” Appl. Phys. Lett.71(9), 1162–1164 (1997).
[CrossRef]

F. K. Shan, G. X. Liu, W. J. Lee, G. H. Lee, I. S. Kim, and B. C. Shin, “Aging effect and origin of deep-level emission in ZnO thin film deposited by pulsed laser deposition,” Appl. Phys. Lett.86(22), 221910 (2005).
[CrossRef]

X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett.78(16), 2285–2287 (2001).
[CrossRef]

Q. Hu and Y. Bando, “Growth and optical properties of single-crystal tubular ZnO whiskers,” Appl. Phys. Lett.82(9), 1401–1403 (2003).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like effect in pure liquid crystals,” Appl. Phys. Lett.80(2), 168–170 (2002).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

Y. Xiang, Y. Liu, Y. Chen, Y. Guo, M.-Y. Xu, Z. Ding, T. Xia, J.-H. Wang, Y.-W. Song, M.-Z. Yang, E. Wang, Y.-H. Song, S.-L. Yang, and G.-Q. She, “Investigation of the geometrical effect on photoelectric properties of nano-ZnO with doped liquid crystal technique,” Appl. Phys., A Mater. Sci. Process.108(3), 745–750 (2012).
[CrossRef]

Y. Xiang, M. Li, L. Tao, L. Jie, and J. Y. Zhou, “Optical-Field-Induced reorientation of nematic liquid crystal doped with FeTPPCl based on resonant model,” Appl. Phys., A Mater. Sci. Process.86, 207–211 (2007).

IEEE J. Sel. Top. Quant.

I. C. Khoo, K. Chen, and Y. Z. Williams, “Orientational photorefractive effect in undoped and CdSe nanorods-doped nematic liquid crystal:bulk and interface contributions,” IEEE J. Sel. Top. Quant.12(3), 443–450 (2006).
[CrossRef]

J. Appl. Phys.

P. Pagliusi and G. Cipparrone, “Charge transport due to photoelectric interface activation in pure nematic liquid-crystal cells,” J. Appl. Phys.92(9), 4863–4869 (2002).
[CrossRef]

G. Zhang, G. Montemezzani, and P. Gunter, “Orientational photorefractive effect in nematic liquid crystal with externally applied fields,” J. Appl. Phys.88(4), 1709–1717 (2000).
[CrossRef]

Y. Xiang, Y. K. Liu, T. Li, S. L. Yang, and Z. J. Jiang, “Laser induced gratings enhanced by surface-charge mediated electric field in doped nematic liquid crystals,” J. Appl. Phys.104(6), 063107 (2008).
[CrossRef]

U. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys.98(4), 041301 (2005).
[CrossRef]

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys.96(5), 2616–2623 (2004).
[CrossRef]

J. Chem. Phys.

W. Helfrich, “Conduction-Induced a1ignment of nematic liquid crystals: basic model and stability considerations,” J. Chem. Phys.51(9), 4092–4105 (1969).
[CrossRef]

J. Mater. Chem.

C. V. Yelamaggad, M. Mathews, S. A. Nagamani, D. S. S. Rao, S. K. Prasad, S. Findeisen, and W. Weissflog, “A novel family of salicylaldimine-based five-ring symmetric and non-symmetric banana-shaped mesogens derived from laterally substituted resorcinol: synthesis and characterization,” J. Mater. Chem.17(3), 284–298 (2007).
[CrossRef]

M. Mathews, R. S. Zola, D. Yang, and Q. Li, “Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals,” J. Mater. Chem.21(7), 2098–2103 (2011).
[CrossRef]

J. Etxebarria and M. B. Ros, “Bent-core liquid crystals in the route to functional materials,” J. Mater. Chem.18(25), 2919–2926 (2008).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Condens. Matter

F. Simoni and O. Francescangeli, “Effects of light on molecular orientation of liquid crystals,” J. Phys. Condens. Matter11(41), R439–R487 (1999).
[CrossRef]

Jpn. J. Appl. Phys.

H. Takezoe and Y. Takanishi, “Bent-core liquid crystals: their mysterious and attractive world,” Jpn. J. Appl. Phys.45(2A), 597–625 (2006).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

A. Dyadyusha, M. Kaczmarek, and G. Gilchrist, “Surface screening layers and dynamics of energy transfer in photosensitive polymer-liquid crystal structures,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)446(1), 261–272 (2006).
[CrossRef]

Opt. Commun.

S. Bartkiewicz, K. Matczyszyn, A. Miniewicz, and F. Kajzar, “High gain of light in photoconducting polymer-nematic liquid crystal hybrid structures,” Opt. Commun.187(1-3), 257–261 (2001).
[CrossRef]

Opt. Lett.

Phys. Rep.

I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep.471(5-6), 221–267 (2009).
[CrossRef]

Phys. Rev. A

H. Hsiung, L. P. Shi, and Y. R. Shen, “Transient laser-induced molecular reorientation and laser heating in a nematic liquid crystal,” Phys. Rev. A30(3), 1453–1460 (1984).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

E. Kochowska, S. Németh, G. Pelzl, and A. Buka, “Electroconvection with and without the Carr-Helfrich effect in a series of nematic liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(1), 011711 (2004).
[CrossRef] [PubMed]

P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.69(6), 061708 (2004).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

I. Jánossy, “Molecular interpretation of the absorption-induced optical reorientation of nematic liquid crystals,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics49(4), 2957–2963 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett.

S. D. Durbin, S. M. Arakelian, and Y. R. Shen, “Optical-Field-Induced birefringence and Freedericksz transition in a nematic liquid crystal,” Phys. Rev. Lett.47(19), 1411–1414 (1981).
[CrossRef]

Proc. IEEE

I. C. Khoo, M. Y. Shih, M. V. Wood, B. D. Guenther, P. H. Chen, F. Simoni, S. S. Slussarenko, O. Francescangeli, and L. Lucchetti, “Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation,” Proc. IEEE87(11), 1897–1911 (1999).

Sov. Phys. JETP

E. V. Rudenko and A. V. Sukhov, “Optically induced spatial charge separation in a nematic and the resultant orientational nonlinearity,” Sov. Phys. JETP78, 875–882 (1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) and (b) are molecular structures and phase transition sequences of BCN and rodlike materials, respectively; (c) and (d) are schematic diagrams of planar cell and surface-doped planar cell, respectively.

Fig. 2
Fig. 2

Scheme of holographic optic setup to observe PR effects.

Fig. 3
Fig. 3

Polarization–dependences of static diffraction under dc voltages.

Fig. 4
Fig. 4

After the writing beams are switched on (off), diffraction buildup (decay) processes with respect to different polarizations E.

Fig. 5
Fig. 5

Photomicrograph of BCN texture under various dc voltage, where temperature is 107°C, A and P refer to the analyzer and polarizer, respectively. (a)Vdc = 0, unperturbed stage; (b) Vdc = 25, onset of electroconvection stage; (c) Vdc = 30, strong electroconvection stage; (d) Vdc = 40, dynamic scattering stage.

Fig. 6
Fig. 6

Angular–dependences of static diffraction under dc voltages.

Fig. 7
Fig. 7

After the writing beams are switched on (off), diffraction buildup (decay) processes with respect to different incident angle α.

Fig. 8
Fig. 8

The buildup and decay processes of diffraction at different temperature.

Fig. 9
Fig. 9

Polarization–dependence of photocurrents vary with different dc voltage in sample_A, where the currents are measured under uniform illumination of one writing beam.

Metrics