Abstract

Frequency shift keyed (FSK) modulation formats are well-suited to deep space links and other high loss links. FSK’s advantage comes from its use of bandwidth expansion. I.e., FSK counteracts power losses in the link by using an optical bandwidth that is greater than the data rate, just as pulse position modulation (PPM) does. Unlike PPM, increasing FSK’s bandwidth expansion does not require increased bandwidth in electronic components. We present an FSK modulator whose component count rises logarithmically with the bandwidth expansion. We tested it with four-fold bandwidth expansion at 5 and 20 Gbit/s. When paired with a pre-amplified receiver, the required received power was about 4 and 5 dB from the theoretical best for such receivers. We also tested the FSK transmitter with a photon counting receiver.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Biswas, D. Boroson, and B. Edwards, “Mars laser communication demonstration: what it would have been,” Proc. SPIE6105, 610502 (2006).
  2. J. Pierce, “Optical channels: practical limits with photon counting,” IEEE Trans. Commun.26(12), 1819–1821 (1978).
    [CrossRef]
  3. D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Comm. Res.4(4-5), 225–362 (2007).
    [CrossRef]
  4. R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
    [CrossRef]
  5. S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990).
    [CrossRef]
  6. R. Noe, H. Rodler, A. Ebberg, G. Gaukel, and F. Auracher, “Optical FSK transmission with pattern independent 119 photoelectrons/bit receiver sensitivity with endless polarization control,” Electron. Lett.25(12), 757–758 (1989).
    [CrossRef]
  7. A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using ASK, FSK and DPSK modulation,” IEEE Photon. Technol. Lett.2(12), 908–910 (1990).
    [CrossRef]
  8. R. S. Vodhanel, J. L. Gimlett, N. K. Cheung, and S. Tsuji, “FSK heterodyne transmission experiments at 560 Mbit/s and 1 Gbit/s,” J. Lightwave Technol.5(4), 461–468 (1987).
    [CrossRef]
  9. A. R. Chraplyvy, R. W. Tkach, A. H. Gnauck, and R. M. Derosier, “8Gbit/s FSK modulation of DFB lasers with optical demodulation,” Electron. Lett.25(5), 319–321 (1989).
    [CrossRef]
  10. J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
    [CrossRef]
  11. J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
    [CrossRef]
  12. J.-W. Jeong, I. W. Jung, H. J. Jung, D. M. Baney, and O. Solgaard, “Multifunctional tunable optical filter using MEMS spatial light modulator,” J. Microelectromech. Syst.19(3), 610–618 (2010).
    [CrossRef]
  13. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express18(11), 10941–10946 (2010).
    [CrossRef] [PubMed]
  14. M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum. Electron.17(11), 2225–2227 (1981).
    [CrossRef]
  15. T. Kawanishi, T. Sakamoto, T. Miyazaki, M. Izutsu, T. Fujita, S. Mori, K. Higuma, and J. Ichikawa, “High-speed optical DQPSK and FSK modulation using integrated Mach-Zehnder interferometers,” Opt. Express14(10), 4469–4478 (2006).
    [CrossRef] [PubMed]
  16. B. Robinson and D. Boroson, “Achievable capacity using photon-counting array-based receivers with on-off-keyed and frequency-shift-keyed modulation formats,” Proc. SPIE8246, 824604 (2012).
    [CrossRef]
  17. D. Boroson, “A survey of technology-driven capacity limits for free-space laser communications,” Proc. SPIE6709, 670918, 670918-19 (2007).
    [CrossRef]
  18. E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996).
    [CrossRef]
  19. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36(25), 2089–2090 (2000).
    [CrossRef]
  20. M. Kuznetsov and D. O. Caplan, “Time-frequency analysis of optical communication signals and the effects of second and third order dispersion,” in CLEO, Technical Digest (Optical Society of America, 2000).
  21. D. O. Caplan, J. J. Carney, and S. Constantine, “Parallel direct modulation laser transmitters for high-speed high-sensitivity laser communications,” in CLEO, Technical Digest (Optical Society of America, 2011).
  22. D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep.4(4-5), 225–362 (2007).
    [CrossRef]
  23. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
    [CrossRef]
  24. E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond.17(2), 279–284 (2007).
    [CrossRef]
  25. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley-Interscience, 2005).
  26. S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
    [CrossRef]

2012 (1)

B. Robinson and D. Boroson, “Achievable capacity using photon-counting array-based receivers with on-off-keyed and frequency-shift-keyed modulation formats,” Proc. SPIE8246, 824604 (2012).
[CrossRef]

2010 (2)

J.-W. Jeong, I. W. Jung, H. J. Jung, D. M. Baney, and O. Solgaard, “Multifunctional tunable optical filter using MEMS spatial light modulator,” J. Microelectromech. Syst.19(3), 610–618 (2010).
[CrossRef]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express18(11), 10941–10946 (2010).
[CrossRef] [PubMed]

2007 (5)

D. Boroson, “A survey of technology-driven capacity limits for free-space laser communications,” Proc. SPIE6709, 670918, 670918-19 (2007).
[CrossRef]

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Comm. Res.4(4-5), 225–362 (2007).
[CrossRef]

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep.4(4-5), 225–362 (2007).
[CrossRef]

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond.17(2), 279–284 (2007).
[CrossRef]

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

2006 (1)

2003 (2)

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
[CrossRef]

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
[CrossRef]

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

2000 (1)

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36(25), 2089–2090 (2000).
[CrossRef]

1996 (1)

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996).
[CrossRef]

1990 (3)

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990).
[CrossRef]

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using ASK, FSK and DPSK modulation,” IEEE Photon. Technol. Lett.2(12), 908–910 (1990).
[CrossRef]

1989 (2)

A. R. Chraplyvy, R. W. Tkach, A. H. Gnauck, and R. M. Derosier, “8Gbit/s FSK modulation of DFB lasers with optical demodulation,” Electron. Lett.25(5), 319–321 (1989).
[CrossRef]

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, and F. Auracher, “Optical FSK transmission with pattern independent 119 photoelectrons/bit receiver sensitivity with endless polarization control,” Electron. Lett.25(12), 757–758 (1989).
[CrossRef]

1987 (1)

R. S. Vodhanel, J. L. Gimlett, N. K. Cheung, and S. Tsuji, “FSK heterodyne transmission experiments at 560 Mbit/s and 1 Gbit/s,” J. Lightwave Technol.5(4), 461–468 (1987).
[CrossRef]

1981 (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum. Electron.17(11), 2225–2227 (1981).
[CrossRef]

1978 (1)

J. Pierce, “Optical channels: practical limits with photon counting,” IEEE Trans. Commun.26(12), 1819–1821 (1978).
[CrossRef]

Abe, M.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36(25), 2089–2090 (2000).
[CrossRef]

Alexander, S. B.

S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990).
[CrossRef]

Anant, V.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond.17(2), 279–284 (2007).
[CrossRef]

Asghari, M.

Aull, B. F.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Auracher, F.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, and F. Auracher, “Optical FSK transmission with pattern independent 119 photoelectrons/bit receiver sensitivity with endless polarization control,” Electron. Lett.25(12), 757–758 (1989).
[CrossRef]

Aversa, J. C.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Baney, D. M.

J.-W. Jeong, I. W. Jung, H. J. Jung, D. M. Baney, and O. Solgaard, “Multifunctional tunable optical filter using MEMS spatial light modulator,” J. Microelectromech. Syst.19(3), 610–618 (2010).
[CrossRef]

Barry, R.

S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990).
[CrossRef]

Berggren, K. K.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond.17(2), 279–284 (2007).
[CrossRef]

Biswas, A.

A. Biswas, D. Boroson, and B. Edwards, “Mars laser communication demonstration: what it would have been,” Proc. SPIE6105, 610502 (2006).

Boroson, D.

B. Robinson and D. Boroson, “Achievable capacity using photon-counting array-based receivers with on-off-keyed and frequency-shift-keyed modulation formats,” Proc. SPIE8246, 824604 (2012).
[CrossRef]

D. Boroson, “A survey of technology-driven capacity limits for free-space laser communications,” Proc. SPIE6709, 670918, 670918-19 (2007).
[CrossRef]

A. Biswas, D. Boroson, and B. Edwards, “Mars laser communication demonstration: what it would have been,” Proc. SPIE6105, 610502 (2006).

Bradley, E. M.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996).
[CrossRef]

Caplan, D. O.

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep.4(4-5), 225–362 (2007).
[CrossRef]

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Comm. Res.4(4-5), 225–362 (2007).
[CrossRef]

Castagnozzi, D. M.

S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990).
[CrossRef]

Chan, V. W. S.

S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990).
[CrossRef]

Chapman, D. C.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Cheung, N. K.

R. S. Vodhanel, J. L. Gimlett, N. K. Cheung, and S. Tsuji, “FSK heterodyne transmission experiments at 560 Mbit/s and 1 Gbit/s,” J. Lightwave Technol.5(4), 461–468 (1987).
[CrossRef]

Chi, N.

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
[CrossRef]

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
[CrossRef]

Chraplyvy, A. R.

A. R. Chraplyvy, R. W. Tkach, A. H. Gnauck, and R. M. Derosier, “8Gbit/s FSK modulation of DFB lasers with optical demodulation,” Electron. Lett.25(5), 319–321 (1989).
[CrossRef]

Chulkova, G.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Dauler, E. A.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond.17(2), 279–284 (2007).
[CrossRef]

Derosier, R. M.

A. R. Chraplyvy, R. W. Tkach, A. H. Gnauck, and R. M. Derosier, “8Gbit/s FSK modulation of DFB lasers with optical demodulation,” Electron. Lett.25(5), 319–321 (1989).
[CrossRef]

Dong, P.

Donnelly, J. P.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Duerr, E. K.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Ebberg, A.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, and F. Auracher, “Optical FSK transmission with pattern independent 119 photoelectrons/bit receiver sensitivity with endless polarization control,” Electron. Lett.25(12), 757–758 (1989).
[CrossRef]

Edwards, B.

A. Biswas, D. Boroson, and B. Edwards, “Mars laser communication demonstration: what it would have been,” Proc. SPIE6105, 610502 (2006).

Elrefaie, A. F.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

Feng, D.

Feng, N.-N.

Frechette, J. P.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Fujita, T.

Funk, J. E.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Gaukel, G.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, and F. Auracher, “Optical FSK transmission with pattern independent 119 photoelectrons/bit receiver sensitivity with endless polarization control,” Electron. Lett.25(12), 757–758 (1989).
[CrossRef]

Gimlett, J. L.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

R. S. Vodhanel, J. L. Gimlett, N. K. Cheung, and S. Tsuji, “FSK heterodyne transmission experiments at 560 Mbit/s and 1 Gbit/s,” J. Lightwave Technol.5(4), 461–468 (1987).
[CrossRef]

Glettler, J. B.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Gnauck, A. H.

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using ASK, FSK and DPSK modulation,” IEEE Photon. Technol. Lett.2(12), 908–910 (1990).
[CrossRef]

A. R. Chraplyvy, R. W. Tkach, A. H. Gnauck, and R. M. Derosier, “8Gbit/s FSK modulation of DFB lasers with optical demodulation,” Electron. Lett.25(5), 319–321 (1989).
[CrossRef]

Gol’tsman, G.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond.17(2), 279–284 (2007).
[CrossRef]

Gol’tsman, G. N.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Higuma, K.

Hodsdon, D. M.

S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990).
[CrossRef]

Holm-Nielsen, P. V.

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
[CrossRef]

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
[CrossRef]

Hopman, P. I.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Ichikawa, J.

Inoue, Y.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36(25), 2089–2090 (2000).
[CrossRef]

Iqbal, M. Z.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

Izutsu, M.

Jensen, K. E.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Jeong, J.-W.

J.-W. Jeong, I. W. Jung, H. J. Jung, D. M. Baney, and O. Solgaard, “Multifunctional tunable optical filter using MEMS spatial light modulator,” J. Microelectromech. Syst.19(3), 610–618 (2010).
[CrossRef]

Jeppesen, P.

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
[CrossRef]

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
[CrossRef]

Jeromin, L. L.

S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990).
[CrossRef]

Jung, H. J.

J.-W. Jeong, I. W. Jung, H. J. Jung, D. M. Baney, and O. Solgaard, “Multifunctional tunable optical filter using MEMS spatial light modulator,” J. Microelectromech. Syst.19(3), 610–618 (2010).
[CrossRef]

Jung, I. W.

J.-W. Jeong, I. W. Jung, H. J. Jung, D. M. Baney, and O. Solgaard, “Multifunctional tunable optical filter using MEMS spatial light modulator,” J. Microelectromech. Syst.19(3), 610–618 (2010).
[CrossRef]

Kahn, J. M.

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using ASK, FSK and DPSK modulation,” IEEE Photon. Technol. Lett.2(12), 908–910 (1990).
[CrossRef]

Kaufmann, J. E.

S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990).
[CrossRef]

Kawanishi, T.

Kerman, A. J.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond.17(2), 279–284 (2007).
[CrossRef]

Koch, T. L.

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using ASK, FSK and DPSK modulation,” IEEE Photon. Technol. Lett.2(12), 908–910 (1990).
[CrossRef]

Korotky, S. K.

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using ASK, FSK and DPSK modulation,” IEEE Photon. Technol. Lett.2(12), 908–910 (1990).
[CrossRef]

Krishnamoorthy, A. V.

Li, G.

Liang, H.

Liao, S.

Liau, Z. L.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Lipatov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Mahan, J. M.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Mahoney, L. J.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Materna, D. M.

S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990).
[CrossRef]

McIntosh, K. A.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Miles, E. W.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996).
[CrossRef]

Miyazaki, T.

Molvar, K. M.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Mori, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36(25), 2089–2090 (2000).
[CrossRef]

Mori, S.

Morioka, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36(25), 2089–2090 (2000).
[CrossRef]

Noe, R.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, and F. Auracher, “Optical FSK transmission with pattern independent 119 photoelectrons/bit receiver sensitivity with endless polarization control,” Electron. Lett.25(12), 757–758 (1989).
[CrossRef]

Ohara, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36(25), 2089–2090 (2000).
[CrossRef]

Okunev, O.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Parr, R. J.

S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990).
[CrossRef]

Peucheret, C.

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
[CrossRef]

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
[CrossRef]

Pierce, J.

J. Pierce, “Optical channels: practical limits with photon counting,” IEEE Trans. Commun.26(12), 1819–1821 (1978).
[CrossRef]

Reichmann, K. C.

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using ASK, FSK and DPSK modulation,” IEEE Photon. Technol. Lett.2(12), 908–910 (1990).
[CrossRef]

Robinson, B.

B. Robinson and D. Boroson, “Achievable capacity using photon-counting array-based receivers with on-off-keyed and frequency-shift-keyed modulation formats,” Proc. SPIE8246, 824604 (2012).
[CrossRef]

Robinson, B. S.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond.17(2), 279–284 (2007).
[CrossRef]

Rodler, H.

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, and F. Auracher, “Optical FSK transmission with pattern independent 119 photoelectrons/bit receiver sensitivity with endless polarization control,” Electron. Lett.25(12), 757–758 (1989).
[CrossRef]

Rosfjord, E. K. M.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond.17(2), 279–284 (2007).
[CrossRef]

Sakamoto, T.

Sato, K.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36(25), 2089–2090 (2000).
[CrossRef]

Sato, K.-I.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36(25), 2089–2090 (2000).
[CrossRef]

Semenov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Shafiiha, R.

Shaver, D. C.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Shibata, T.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36(25), 2089–2090 (2000).
[CrossRef]

Shikama, S.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum. Electron.17(11), 2225–2227 (1981).
[CrossRef]

Smirnov, K.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Smith, G. M.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Sobolewski, R.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Solgaard, O.

J.-W. Jeong, I. W. Jung, H. J. Jung, D. M. Baney, and O. Solgaard, “Multifunctional tunable optical filter using MEMS spatial light modulator,” J. Microelectromech. Syst.19(3), 610–618 (2010).
[CrossRef]

Stevens, M. L.

S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990).
[CrossRef]

Stone, R. L.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996).
[CrossRef]

Sueta, T.

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum. Electron.17(11), 2225–2227 (1981).
[CrossRef]

Takara, H.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36(25), 2089–2090 (2000).
[CrossRef]

Tkach, R. W.

A. R. Chraplyvy, R. W. Tkach, A. H. Gnauck, and R. M. Derosier, “8Gbit/s FSK modulation of DFB lasers with optical demodulation,” Electron. Lett.25(5), 319–321 (1989).
[CrossRef]

Tsuji, S.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

R. S. Vodhanel, J. L. Gimlett, N. K. Cheung, and S. Tsuji, “FSK heterodyne transmission experiments at 560 Mbit/s and 1 Gbit/s,” J. Lightwave Technol.5(4), 461–468 (1987).
[CrossRef]

Verghese, S.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Veselka, J. J.

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using ASK, FSK and DPSK modulation,” IEEE Photon. Technol. Lett.2(12), 908–910 (1990).
[CrossRef]

Vineis, C. J.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

Vodhanel, R. S.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

R. S. Vodhanel, J. L. Gimlett, N. K. Cheung, and S. Tsuji, “FSK heterodyne transmission experiments at 560 Mbit/s and 1 Gbit/s,” J. Lightwave Technol.5(4), 461–468 (1987).
[CrossRef]

Voronov, B.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond.17(2), 279–284 (2007).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Wagner, R. E.

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

White, D. W.

S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990).
[CrossRef]

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Wooten, E. L.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996).
[CrossRef]

Yamada, E.

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36(25), 2089–2090 (2000).
[CrossRef]

Yang, J. K. W.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond.17(2), 279–284 (2007).
[CrossRef]

Zhang, J.

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
[CrossRef]

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
[CrossRef]

Zheng, X.

Appl. Phys. Lett. (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001).
[CrossRef]

Electron. Lett. (4)

S. B. Alexander, R. Barry, D. M. Castagnozzi, V. W. S. Chan, D. M. Hodsdon, L. L. Jeromin, J. E. Kaufmann, D. M. Materna, R. J. Parr, M. L. Stevens, and D. W. White, “4-ary FSK coherent optical communication system,” Electron. Lett.26(17), 1346–1348 (1990).
[CrossRef]

R. Noe, H. Rodler, A. Ebberg, G. Gaukel, and F. Auracher, “Optical FSK transmission with pattern independent 119 photoelectrons/bit receiver sensitivity with endless polarization control,” Electron. Lett.25(12), 757–758 (1989).
[CrossRef]

A. R. Chraplyvy, R. W. Tkach, A. H. Gnauck, and R. M. Derosier, “8Gbit/s FSK modulation of DFB lasers with optical demodulation,” Electron. Lett.25(5), 319–321 (1989).
[CrossRef]

H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, “More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing,” Electron. Lett.36(25), 2089–2090 (2000).
[CrossRef]

IEEE J. Quantum. Electron. (1)

M. Izutsu, S. Shikama, and T. Sueta, “Integrated optical SSB modulator/frequency shifter,” IEEE J. Quantum. Electron.17(11), 2225–2227 (1981).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, Z. L. Liau, J. M. Mahan, L. J. Mahoney, and K. M. Molvar, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron.13, 870–886 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
[CrossRef]

J. Zhang, N. Chi, P. V. Holm-Nielsen, C. Peucheret, and P. Jeppesen, “An optical FSK transmitter based on an integrated DFB laser-EA modulator and its application in optical labeling,” IEEE Photon. Technol. Lett.15(7), 984–986 (2003).
[CrossRef]

A. H. Gnauck, K. C. Reichmann, J. M. Kahn, S. K. Korotky, J. J. Veselka, and T. L. Koch, “4-Gb/s heterodyne transmission experiments using ASK, FSK and DPSK modulation,” IEEE Photon. Technol. Lett.2(12), 908–910 (1990).
[CrossRef]

IEEE Trans. Appl. Supercond. (1)

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, E. K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans. Appl. Supercond.17(2), 279–284 (2007).
[CrossRef]

IEEE Trans. Commun. (1)

J. Pierce, “Optical channels: practical limits with photon counting,” IEEE Trans. Commun.26(12), 1819–1821 (1978).
[CrossRef]

J. Lightwave Technol. (3)

R. S. Vodhanel, A. F. Elrefaie, M. Z. Iqbal, R. E. Wagner, J. L. Gimlett, and S. Tsuji, “Performance of directly modulated DFB lasers in 10-Gb/s ASK, FSK, and DPSK lightwave systems,” J. Lightwave Technol.8(9), 1379–1386 (1990).
[CrossRef]

R. S. Vodhanel, J. L. Gimlett, N. K. Cheung, and S. Tsuji, “FSK heterodyne transmission experiments at 560 Mbit/s and 1 Gbit/s,” J. Lightwave Technol.5(4), 461–468 (1987).
[CrossRef]

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996).
[CrossRef]

J. Microelectromech. Syst. (1)

J.-W. Jeong, I. W. Jung, H. J. Jung, D. M. Baney, and O. Solgaard, “Multifunctional tunable optical filter using MEMS spatial light modulator,” J. Microelectromech. Syst.19(3), 610–618 (2010).
[CrossRef]

J. Opt. Fiber Comm. Res. (1)

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Comm. Res.4(4-5), 225–362 (2007).
[CrossRef]

J. Opt. Fiber Commun. Rep. (1)

D. O. Caplan, “Laser communication transmitter and receiver design,” J. Opt. Fiber Commun. Rep.4(4-5), 225–362 (2007).
[CrossRef]

Opt. Express (2)

Proc. SPIE (2)

B. Robinson and D. Boroson, “Achievable capacity using photon-counting array-based receivers with on-off-keyed and frequency-shift-keyed modulation formats,” Proc. SPIE8246, 824604 (2012).
[CrossRef]

D. Boroson, “A survey of technology-driven capacity limits for free-space laser communications,” Proc. SPIE6709, 670918, 670918-19 (2007).
[CrossRef]

Other (4)

M. Kuznetsov and D. O. Caplan, “Time-frequency analysis of optical communication signals and the effects of second and third order dispersion,” in CLEO, Technical Digest (Optical Society of America, 2000).

D. O. Caplan, J. J. Carney, and S. Constantine, “Parallel direct modulation laser transmitters for high-speed high-sensitivity laser communications,” in CLEO, Technical Digest (Optical Society of America, 2011).

A. Biswas, D. Boroson, and B. Edwards, “Mars laser communication demonstration: what it would have been,” Proc. SPIE6105, 610502 (2006).

T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley-Interscience, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Illustration of two modulation formats: On/Off keyed (OOK) and 8-ary pulse position modulation (8-PPM). In PPM, the timing of the pulse encodes information. In the example shown, each pulse can occupy one of 8 time slots for a total of three bits of information.

Fig. 2
Fig. 2

Illustration of frequency shift keying (FSK). A pulse is always present, and the carrier wavelength of each pulse codes information. In this 8-ary FSK case, the carrier frequency corresponding to the color blue codes the bits “110”, red codes “010”, and green codes “100”.

Fig. 3
Fig. 3

Energy efficiency per bit of a OOK communications system with a ½ mark ratio. The communications link is background free, and the receiver is an ideal photon counter.

Fig. 4
Fig. 4

Energy efficiency per bit of PPM and FSK communications system of various orders, M. The vertical asymptotes occur at M/ log 2 ( M ) , and they represent the minimum bandwidth expansion allowed for each M. As in Fig. 3, the communications link is background free, and the receiver is an ideal photon counter.

Fig. 5
Fig. 5

Interferometric filter based on an imbalanced lithium niobate Mach-Zehnder interferometer.

Fig. 6
Fig. 6

FSK modulator using a cascade of interferometric filters.

Fig. 7
Fig. 7

FSK modulator with multiple electrodes.

Fig. 8
Fig. 8

Spectrogram of the FSK signal produced by the transmitter. There are 4 carrier frequencies pulsing at 2.5 GHz.

Fig. 9
Fig. 9

Schematic of experiment testing performance of FSK transmitter and receiver pair. The experiment used 4-ary FSK at 2.5 and 10 Gsymbol/sec. The receiver detected light with optically pre-amplified photodiodes (PD). An arrayed waveguide grating (AWG) separated the light into separate wavelength channels. We measured the optical power at the input to the erbium-doped fiber amplifier.

Fig. 10
Fig. 10

Bit error performance of the 4-ary FSK communications system as a function of the optical power collected at the receiver. The symbol rate is 2.5 GHz. Each symbol yields 2 bits of data, and each bit is shown on separate curves. The red curves show the performance of theoretically optimal pre-amplified (solid red) and photon counting receivers (dashed red).

Fig. 11
Fig. 11

Bit error performance of the 4-ary FSK system at a symbol rate of 10 GHz.

Fig. 12
Fig. 12

Schematic of experiment testing performance of FSK transmitter and receiver pair. This experiment used 2-ary FSK at 100 Msymbol/sec. The receiver detected light with superconducting photon counters. An arrayed waveguide grating (AWG) separated the light into separate wavelength channels. We measured the optical power at the input to the AWG. An oscilloscope stored the measurements made by the photon counters.

Tables (1)

Tables Icon

Table 1 Probabilities that the receiver detected the transmitted wavelength, or a different wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I( X;Y )= k p k log 2 ( p k ) + k p k i p i|k log 2 ( p i|k )

Metrics