Abstract

A simple all-solid tellurite microstructured optical fiber which has only one layer of high-index rods in the cladding is proposed and fabricated in the paper. The core and the cladding with the low index are made from the TeO2–ZnO–Na2O–La2O3 glass, and the high-index rods are made from the TeO2–Li2O–WO3–MoO3–Nb2O5 glass. The guiding regime in this fiber can be explained by ARROW model. The fiber can support the near- and mid-infrared light transmitting in the core within the transmission bands while the all-solid silica microstructured optical fiber cannot. When the pump light is outside the transmission bands, the light will transmit in six TLWMN rods.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
    [CrossRef] [PubMed]
  2. Y. Ould-Agha, A. Bétourné, O. Vanvincq, G. Bouwmans, and Y. Quiquempois, “Broadband bandgap guidance and mode filtering in radially hybrid photonic crystal fiber,” Opt. Express20(6), 6746–6760 (2012).
    [CrossRef] [PubMed]
  3. M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett.34(13), 1946–1948 (2009).
    [CrossRef] [PubMed]
  4. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29(20), 2369–2371 (2004).
    [CrossRef] [PubMed]
  5. M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express20(14), 15061–15070 (2012).
    [CrossRef] [PubMed]
  6. N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011).
    [CrossRef] [PubMed]
  7. K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol.16(6), 409–418 (2010).
    [CrossRef]
  8. B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” Photon. Tech. Lett.20(8), 581–583 (2008).
    [CrossRef]
  9. A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express14(20), 9238–9243 (2006).
    [CrossRef] [PubMed]
  10. Y. F. Geng, X. J. Li, X. L. Tan, Y. L. Deng, and Y. Q. Yu, “Mode-beating-enabled stopband narrowing in all-solid photonic bandgap fiber and sensing applications,” Opt. Express19(9), 8167–8172 (2011).
    [CrossRef] [PubMed]
  11. C. Lecaplain, L. Rasoloniana, O. N. Egorova, J. Michaud, S. L. Semjonov, E. Dianov, and A. Hideur, “Mode-locked all-solid photonic bandgap fiber laser,” Appl. Phys. B107(2), 317–322 (2012).
    [CrossRef]
  12. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
    [CrossRef]
  13. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002).
    [CrossRef] [PubMed]
  14. A. K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express10(23), 1320–1333 (2002).
    [CrossRef] [PubMed]
  15. T. P. White, R. C. McPhedran, C. Martijnde Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett.27(22), 1977–1979 (2002).
    [CrossRef] [PubMed]
  16. E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Telluritephotonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids352(32-35), 3423–3428 (2006).
    [CrossRef]
  17. N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
    [CrossRef]
  18. J. Lousteau, G. Scarpignato, G. Athanasiou, E. Mura, N. Boetti, M. Olivero, T. Benson, P. Sewell, S. Abrate, and D. Milanese, “Photonic bandgap confinement in an all-solid tellurite glass photonic crystal fiber,” To be published on Opt. Lett. (2012).
  19. N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids357(6), 1558–1563 (2011).
    [CrossRef]
  20. M. S. Liao, X. Yan, W. Q. Gao, Z. C. Duan, G. S. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
    [CrossRef] [PubMed]
  21. A. X. Lin, A. Ryasnyanskiy, and J. Toulouse, “Tunable third-harmonic generation in a solid-core tellurite glass fiber,” Opt. Lett.36(17), 3437–3439 (2011).
    [CrossRef] [PubMed]
  22. D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(6), 061106 (2010).
    [CrossRef]
  23. Z. C. Duan, M. S. Liao, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Tellurite Composite Microstructured Optical Fibers with Tailored Chromatic Dispersion for Nonlinear Applications,” Appl. Phys. Express4(7), 072502 (2011).
    [CrossRef]
  24. J. Lousteau, G. Scarpignato, G. Athanasiou, E. Mura, N. Boetti, M. Olivero, T. Benson, and D. Milanese, “Photonic bandgap confinement in an all-solid tellurite glass photonic crystal fiber,” Advanced Photonics Congress SM3E.3 (2012).
  25. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express11(8), 843–852 (2003).
    [CrossRef] [PubMed]

2012 (3)

2011 (6)

2010 (3)

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(6), 061106 (2010).
[CrossRef]

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol.16(6), 409–418 (2010).
[CrossRef]

2009 (1)

2008 (1)

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” Photon. Tech. Lett.20(8), 581–583 (2008).
[CrossRef]

2006 (2)

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Telluritephotonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids352(32-35), 3423–3428 (2006).
[CrossRef]

A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express14(20), 9238–9243 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

2002 (3)

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

1986 (1)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Abeeluck, A. K.

Bang, O.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(6), 061106 (2010).
[CrossRef]

Barbosa, L. C.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Telluritephotonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids352(32-35), 3423–3428 (2006).
[CrossRef]

Bétourné, A.

Bird, D. M.

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Bouwmans, G.

Brito Cruz, C. H.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Telluritephotonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids352(32-35), 3423–3428 (2006).
[CrossRef]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Buccoliero, D.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(6), 061106 (2010).
[CrossRef]

Chai, L.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” Photon. Tech. Lett.20(8), 581–583 (2008).
[CrossRef]

Chen, W.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” Photon. Tech. Lett.20(8), 581–583 (2008).
[CrossRef]

Chillcce, E. F.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Telluritephotonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids352(32-35), 3423–3428 (2006).
[CrossRef]

Cordeiro, C. M. B.

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Telluritephotonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids352(32-35), 3423–3428 (2006).
[CrossRef]

Da, N.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids357(6), 1558–1563 (2011).
[CrossRef]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett.34(13), 1946–1948 (2009).
[CrossRef] [PubMed]

Deng, Y. L.

Dianov, E.

C. Lecaplain, L. Rasoloniana, O. N. Egorova, J. Michaud, S. L. Semjonov, E. Dianov, and A. Hideur, “Mode-locked all-solid photonic bandgap fiber laser,” Appl. Phys. B107(2), 317–322 (2012).
[CrossRef]

Duan, Z. C.

Z. C. Duan, M. S. Liao, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Tellurite Composite Microstructured Optical Fibers with Tailored Chromatic Dispersion for Nonlinear Applications,” Appl. Phys. Express4(7), 072502 (2011).
[CrossRef]

M. S. Liao, X. Yan, W. Q. Gao, Z. C. Duan, G. S. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Ebendorff-Heidepriem, H.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(6), 061106 (2010).
[CrossRef]

Eggleton, B. J.

Egorova, O. N.

C. Lecaplain, L. Rasoloniana, O. N. Egorova, J. Michaud, S. L. Semjonov, E. Dianov, and A. Hideur, “Mode-locked all-solid photonic bandgap fiber laser,” Appl. Phys. B107(2), 317–322 (2012).
[CrossRef]

Enany, A. A.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids357(6), 1558–1563 (2011).
[CrossRef]

Fang, X. H.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” Photon. Tech. Lett.20(8), 581–583 (2008).
[CrossRef]

Fujimaki, M.

Gao, W. Q.

Geng, Y. F.

George, A. K.

Granzow, N.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids357(6), 1558–1563 (2011).
[CrossRef]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett.34(13), 1946–1948 (2009).
[CrossRef] [PubMed]

Hasegawa, T.

Headley, C.

Hedley, T. D.

Hideur, A.

C. Lecaplain, L. Rasoloniana, O. N. Egorova, J. Michaud, S. L. Semjonov, E. Dianov, and A. Hideur, “Mode-locked all-solid photonic bandgap fiber laser,” Appl. Phys. B107(2), 317–322 (2012).
[CrossRef]

Hu, M. L.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” Photon. Tech. Lett.20(8), 581–583 (2008).
[CrossRef]

Isomäki, A.

Kashiwagi, M.

Kito, C.

Z. C. Duan, M. S. Liao, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Tellurite Composite Microstructured Optical Fibers with Tailored Chromatic Dispersion for Nonlinear Applications,” Appl. Phys. Express4(7), 072502 (2011).
[CrossRef]

Knight, J. C.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29(20), 2369–2371 (2004).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Koshiba, M.

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol.16(6), 409–418 (2010).
[CrossRef]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express11(8), 843–852 (2003).
[CrossRef] [PubMed]

Lecaplain, C.

C. Lecaplain, L. Rasoloniana, O. N. Egorova, J. Michaud, S. L. Semjonov, E. Dianov, and A. Hideur, “Mode-locked all-solid photonic bandgap fiber laser,” Appl. Phys. B107(2), 317–322 (2012).
[CrossRef]

Li, J. Y.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” Photon. Tech. Lett.20(8), 581–583 (2008).
[CrossRef]

Li, X. J.

Li, Y. F.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” Photon. Tech. Lett.20(8), 581–583 (2008).
[CrossRef]

Liao, M. S.

Z. C. Duan, M. S. Liao, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Tellurite Composite Microstructured Optical Fibers with Tailored Chromatic Dispersion for Nonlinear Applications,” Appl. Phys. Express4(7), 072502 (2011).
[CrossRef]

M. S. Liao, X. Yan, W. Q. Gao, Z. C. Duan, G. S. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

Lin, A. X.

Litchinitser, N. M.

Liu, B. W.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” Photon. Tech. Lett.20(8), 581–583 (2008).
[CrossRef]

Luan, F.

Martijnde Sterke, C.

Matsuo, S.

McPhedran, R. C.

Michaud, J.

C. Lecaplain, L. Rasoloniana, O. N. Egorova, J. Michaud, S. L. Semjonov, E. Dianov, and A. Hideur, “Mode-locked all-solid photonic bandgap fiber laser,” Appl. Phys. B107(2), 317–322 (2012).
[CrossRef]

Monro, T. M.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(6), 061106 (2010).
[CrossRef]

Murao, T.

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol.16(6), 409–418 (2010).
[CrossRef]

Ohishi, Y.

Z. C. Duan, M. S. Liao, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Tellurite Composite Microstructured Optical Fibers with Tailored Chromatic Dispersion for Nonlinear Applications,” Appl. Phys. Express4(7), 072502 (2011).
[CrossRef]

M. S. Liao, X. Yan, W. Q. Gao, Z. C. Duan, G. S. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

Okhotnikov, O. G.

Ould-Agha, Y.

Pearce, G. J.

Peng, M.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

Qin, G. S.

Quiquempois, Y.

Rasoloniana, L.

C. Lecaplain, L. Rasoloniana, O. N. Egorova, J. Michaud, S. L. Semjonov, E. Dianov, and A. Hideur, “Mode-locked all-solid photonic bandgap fiber laser,” Appl. Phys. B107(2), 317–322 (2012).
[CrossRef]

Rosa, L.

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol.16(6), 409–418 (2010).
[CrossRef]

Russell, P. S. J.

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett.29(20), 2369–2371 (2004).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Russell, P. St. J.

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids357(6), 1558–1563 (2011).
[CrossRef]

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett.34(13), 1946–1948 (2009).
[CrossRef] [PubMed]

Ryasnyanskiy, A.

Saitoh, K.

Sasaoka, E.

Schmidt, M. A.

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids357(6), 1558–1563 (2011).
[CrossRef]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett.34(13), 1946–1948 (2009).
[CrossRef] [PubMed]

Semjonov, S. L.

C. Lecaplain, L. Rasoloniana, O. N. Egorova, J. Michaud, S. L. Semjonov, E. Dianov, and A. Hideur, “Mode-locked all-solid photonic bandgap fiber laser,” Appl. Phys. B107(2), 317–322 (2012).
[CrossRef]

Steffensen, H.

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(6), 061106 (2010).
[CrossRef]

Suzuki, T.

M. S. Liao, X. Yan, W. Q. Gao, Z. C. Duan, G. S. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

Z. C. Duan, M. S. Liao, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Tellurite Composite Microstructured Optical Fibers with Tailored Chromatic Dispersion for Nonlinear Applications,” Appl. Phys. Express4(7), 072502 (2011).
[CrossRef]

Takenaga, K.

Tan, X. L.

Tanigawa, S.

Toulouse, J.

Tverjanovich, A. S.

Uebel, P.

Vanvincq, O.

Wang, C. Y.

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” Photon. Tech. Lett.20(8), 581–583 (2008).
[CrossRef]

White, T. P.

Wondraczek, L.

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011).
[CrossRef] [PubMed]

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids357(6), 1558–1563 (2011).
[CrossRef]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

M. A. Schmidt, N. Granzow, N. Da, M. Peng, L. Wondraczek, and P. St. J. Russell, “All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers,” Opt. Lett.34(13), 1946–1948 (2009).
[CrossRef] [PubMed]

Yan, X.

M. S. Liao, X. Yan, W. Q. Gao, Z. C. Duan, G. S. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

Z. C. Duan, M. S. Liao, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Tellurite Composite Microstructured Optical Fibers with Tailored Chromatic Dispersion for Nonlinear Applications,” Appl. Phys. Express4(7), 072502 (2011).
[CrossRef]

Yu, Y. Q.

Appl. Phys. B (1)

C. Lecaplain, L. Rasoloniana, O. N. Egorova, J. Michaud, S. L. Semjonov, E. Dianov, and A. Hideur, “Mode-locked all-solid photonic bandgap fiber laser,” Appl. Phys. B107(2), 317–322 (2012).
[CrossRef]

Appl. Phys. Express (1)

Z. C. Duan, M. S. Liao, X. Yan, C. Kito, T. Suzuki, and Y. Ohishi, “Tellurite Composite Microstructured Optical Fibers with Tailored Chromatic Dispersion for Nonlinear Applications,” Appl. Phys. Express4(7), 072502 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett.49(1), 13–15 (1986).
[CrossRef]

D. Buccoliero, H. Steffensen, O. Bang, H. Ebendorff-Heidepriem, and T. M. Monro, “Thulium pumped high power supercontinuum in loss-determined optimum lengths of tellurite photonic crystal fiber,” Appl. Phys. Lett.97(6), 061106 (2010).
[CrossRef]

J. Non-Cryst. Solids (3)

E. F. Chillcce, C. M. B. Cordeiro, L. C. Barbosa, and C. H. Brito Cruz, “Telluritephotonic crystal fiber made by a stack-and-draw technique,” J. Non-Cryst. Solids352(32-35), 3423–3428 (2006).
[CrossRef]

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010).
[CrossRef]

N. Da, A. A. Enany, N. Granzow, M. A. Schmidt, P. St. J. Russell, and L. Wondraczek, “Interfacial reactions between tellurite melts and silica during the production of microstructured optical devices,” J. Non-Cryst. Solids357(6), 1558–1563 (2011).
[CrossRef]

Opt. Express (7)

A. K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express10(23), 1320–1333 (2002).
[CrossRef] [PubMed]

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express11(8), 843–852 (2003).
[CrossRef] [PubMed]

A. Isomäki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express14(20), 9238–9243 (2006).
[CrossRef] [PubMed]

Y. Ould-Agha, A. Bétourné, O. Vanvincq, G. Bouwmans, and Y. Quiquempois, “Broadband bandgap guidance and mode filtering in radially hybrid photonic crystal fiber,” Opt. Express20(6), 6746–6760 (2012).
[CrossRef] [PubMed]

M. Kashiwagi, K. Saitoh, K. Takenaga, S. Tanigawa, S. Matsuo, and M. Fujimaki, “Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers,” Opt. Express20(14), 15061–15070 (2012).
[CrossRef] [PubMed]

Y. F. Geng, X. J. Li, X. L. Tan, Y. L. Deng, and Y. Q. Yu, “Mode-beating-enabled stopband narrowing in all-solid photonic bandgap fiber and sensing applications,” Opt. Express19(9), 8167–8172 (2011).
[CrossRef] [PubMed]

M. S. Liao, X. Yan, W. Q. Gao, Z. C. Duan, G. S. Qin, T. Suzuki, and Y. Ohishi, “Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion,” Opt. Express19(16), 15389–15396 (2011).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

K. Saitoh, T. Murao, L. Rosa, and M. Koshiba, “Effective area limit of large-mode-area solid-core photonic bandgap fibers for fiber laser applications,” Opt. Fiber Technol.16(6), 409–418 (2010).
[CrossRef]

Opt. Lett. (6)

Photon. Tech. Lett. (1)

B. W. Liu, M. L. Hu, X. H. Fang, Y. F. Li, L. Chai, J. Y. Li, W. Chen, and C. Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” Photon. Tech. Lett.20(8), 581–583 (2008).
[CrossRef]

Science (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science282(5393), 1476–1478 (1998).
[CrossRef] [PubMed]

Other (2)

J. Lousteau, G. Scarpignato, G. Athanasiou, E. Mura, N. Boetti, M. Olivero, T. Benson, P. Sewell, S. Abrate, and D. Milanese, “Photonic bandgap confinement in an all-solid tellurite glass photonic crystal fiber,” To be published on Opt. Lett. (2012).

J. Lousteau, G. Scarpignato, G. Athanasiou, E. Mura, N. Boetti, M. Olivero, T. Benson, and D. Milanese, “Photonic bandgap confinement in an all-solid tellurite glass photonic crystal fiber,” Advanced Photonics Congress SM3E.3 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram for the fabrication of the simple all-solid tellurite MOF: a. TZNL glass tube, b. the hexagonal TZNL glass rod, c. TZNL tube with the elongated hexagonal TZNL glass rod inside, d. the elongated TLWMN glass rods, e. TZNL glass tube to be stacked with the elongated rods, f. cane, g. TZNL glass tube.

Fig. 2
Fig. 2

The images of cross sections of the hexagonal TZNL glass capillary (a), and the TLWMN glass capillary (b).

Fig. 3
Fig. 3

Scanning optical microscope images of the cross section of the simple all-solid tellurite MOF. (a). The optical microscope image of the reflected light. (b) The optical microscope image of the transmitted light.

Fig. 4
Fig. 4

(a), The real part (R(neff)) of effective refractive index of the simple all-solid tellurite MOF. (b), The chromatic dispersion of the simple all-solid tellurite MOF. (c), The imaginary parts (η (neff)) of effective refractive index of the all-solid tellurite MOF with one, two and three layers.

Fig. 5
Fig. 5

The optical field intensity of the simple all-solid tellurite MOF at different wavelengths. (a) λ = 1.55 μm, (b) λ = 1.70 μm.

Fig. 6
Fig. 6

The transmission spectrum of the simple all-solid tellurite MOF from 800 nm to 1800 nm.

Fig. 7
Fig. 7

The measured mode profiles of the simple all-solid tellurite MOF at λ = 1.55 μm (a), and λ = 1.70 μm (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 (λ)=1+ i=1 l A i λ 2 λ 2 L i 2

Metrics