Abstract

This paper presents a new method for fabricating periodic arrays of metallic nano-particles on flexible substrates. This method is based on metallic film contact transfer method and high-power pulsed laser annealing. Experiments have been carried out to produce arrayed metallic nano-particles oriented in a hexagonal pattern. The nano-particle size is 70 nm in diameter and the center-to-center pitch of the hexagonal array is 400 nm. Large-area patterning and fabrication of these arrayed nano-particles can be easily achieved up to an area size of few cm2. Besides, composite or compounded metallic nano-particle arrays can also be produced using different metal materials. The localized surface plasmon resonance (LSPR) effects induced by the fabricated arrays of nano-particles are experimentally observed and quantitatively measured. Numerical simulation on these LPSR effects is performed and the simulation results are in good agreement with experimental data.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004).
    [Crossref]
  2. T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1805–1825 (2010).
    [Crossref] [PubMed]
  3. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [Crossref]
  4. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  5. Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B 106(37), 9463–9483 (2002).
    [Crossref]
  6. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
    [Crossref] [PubMed]
  7. N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” J. Phys. Chem. B 107(24), 5723–5727 (2003).
    [Crossref]
  8. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
    [Crossref] [PubMed]
  9. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
    [Crossref] [PubMed]
  10. K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
    [Crossref]
  11. A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
    [Crossref]
  12. J. H. Sung, B. S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and O. B. Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng. 86(4-6), 1120–1123 (2009).
    [Crossref]
  13. B. Butun, J. Cesario, S. Enoch, R. Quidant, and E. Ozbay, “InGaN green light emitting diodes with deposited nanoparticles,” Photon. Nanostructures 5(2-3), 86–90 (2007).
    [Crossref]
  14. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
    [Crossref] [PubMed]
  15. K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, K. Nishizuka, Y. Kawakami, and A. Scherer, “Surface plasmon enhanced InGaN light emitter,” Proc. SPIE 5733, 94–103 (2005).
    [Crossref]
  16. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
    [Crossref]
  17. Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S.-H. Chang, Y. C. Lan, T. F. Guo, T. C. Tsai, and C. T. Lee, “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” J. Vac. Sci. Technol. B 25(6), 1899–1902 (2007).
    [Crossref]
  18. S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
    [Crossref]
  19. D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
    [Crossref]
  20. A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
    [Crossref] [PubMed]
  21. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  22. T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, “Laser production of supersonic metal cluster beams,” J. Chem. Phys. 74(11), 6511–6512 (1981).
    [Crossref]
  23. T. Seto, Y. Kawakami, N. Suzuki, M. Hirasawa, and N. Aya, “Laser synthesis of uniform silicon single nanodots,” Nano Lett. 1(6), 315–318 (2001).
    [Crossref]
  24. F. Mafun, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104(35), 8333–8337 (2000).
    [Crossref]
  25. F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104(39), 9111–9117 (2000).
    [Crossref]
  26. F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105(22), 5114–5120 (2001).
    [Crossref]
  27. S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
    [Crossref]
  28. B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
    [Crossref]
  29. B. Liu, Z. Hu, Y. Chen, K. Sun, X. Pan, and Y. Che, “Ultrafast pulsed laser ablation for synthesis of nanocrystals,” Proc. SPIE 6460, 66450R, 66450R-9 (2007).
    [Crossref]
  30. R. A. Ganeev, U. Chakravarty, P. A. Naik, H. Srivastava, C. Mukherjee, M. K. Tiwari, R. V. Nandedkar, and P. D. Gupta, “Pulsed laser deposition of metal films and nanoparticles in vacuum using subnanosecond laser pulses,” Appl. Opt. 46(8), 1205–1210 (2007).
    [Crossref] [PubMed]
  31. S. Roginsky and A. Schalnikoff, “Eine neue methode der herstellung kolloider lösungen,” Colloid Polym. Sci. 43, 67–70 (1927).
  32. H. Bonnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joupen, and B. Korall, “Formation of colloidal transition metals in organic phases and their application in catalysis,” Angew. Chem. Int. Ed. Engl. 30(10), 1312–1314 (1991).
    [Crossref]
  33. J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
    [Crossref]
  34. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
    [Crossref]
  35. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105(12), 2343–2350 (2001).
    [Crossref]
  36. J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4249–4269 (2010).
    [Crossref] [PubMed]
  37. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
    [Crossref] [PubMed]
  38. G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
    [Crossref] [PubMed]
  39. M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for the 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61, 441–448 (2002).
    [Crossref]
  40. C. H. Chen and Y. C. Lee, “Fabrication of metallic micro/nano-particles by surface patterning and pulsed laser annealing,” Thin Solid Films 518(17), 4786–4790 (2010).
    [Crossref]

2011 (1)

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

2010 (6)

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4249–4269 (2010).
[Crossref] [PubMed]

C. H. Chen and Y. C. Lee, “Fabrication of metallic micro/nano-particles by surface patterning and pulsed laser annealing,” Thin Solid Films 518(17), 4786–4790 (2010).
[Crossref]

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (4)

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[Crossref]

J. H. Sung, B. S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and O. B. Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng. 86(4-6), 1120–1123 (2009).
[Crossref]

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
[Crossref] [PubMed]

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

2008 (4)

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[Crossref]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[Crossref]

2007 (5)

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

B. Liu, Z. Hu, Y. Chen, K. Sun, X. Pan, and Y. Che, “Ultrafast pulsed laser ablation for synthesis of nanocrystals,” Proc. SPIE 6460, 66450R, 66450R-9 (2007).
[Crossref]

R. A. Ganeev, U. Chakravarty, P. A. Naik, H. Srivastava, C. Mukherjee, M. K. Tiwari, R. V. Nandedkar, and P. D. Gupta, “Pulsed laser deposition of metal films and nanoparticles in vacuum using subnanosecond laser pulses,” Appl. Opt. 46(8), 1205–1210 (2007).
[Crossref] [PubMed]

Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S.-H. Chang, Y. C. Lan, T. F. Guo, T. C. Tsai, and C. T. Lee, “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” J. Vac. Sci. Technol. B 25(6), 1899–1902 (2007).
[Crossref]

B. Butun, J. Cesario, S. Enoch, R. Quidant, and E. Ozbay, “InGaN green light emitting diodes with deposited nanoparticles,” Photon. Nanostructures 5(2-3), 86–90 (2007).
[Crossref]

2005 (4)

K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, K. Nishizuka, Y. Kawakami, and A. Scherer, “Surface plasmon enhanced InGaN light emitter,” Proc. SPIE 5733, 94–103 (2005).
[Crossref]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
[Crossref]

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[Crossref] [PubMed]

2004 (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004).
[Crossref]

2003 (1)

N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” J. Phys. Chem. B 107(24), 5723–5727 (2003).
[Crossref]

2002 (2)

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B 106(37), 9463–9483 (2002).
[Crossref]

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for the 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61, 441–448 (2002).
[Crossref]

2001 (3)

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105(22), 5114–5120 (2001).
[Crossref]

T. Seto, Y. Kawakami, N. Suzuki, M. Hirasawa, and N. Aya, “Laser synthesis of uniform silicon single nanodots,” Nano Lett. 1(6), 315–318 (2001).
[Crossref]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105(12), 2343–2350 (2001).
[Crossref]

2000 (2)

F. Mafun, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104(35), 8333–8337 (2000).
[Crossref]

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104(39), 9111–9117 (2000).
[Crossref]

1999 (1)

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

1997 (1)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1995 (1)

J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

1991 (1)

H. Bonnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joupen, and B. Korall, “Formation of colloidal transition metals in organic phases and their application in catalysis,” Angew. Chem. Int. Ed. Engl. 30(10), 1312–1314 (1991).
[Crossref]

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

1981 (1)

T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, “Laser production of supersonic metal cluster beams,” J. Chem. Phys. 74(11), 6511–6512 (1981).
[Crossref]

1927 (1)

S. Roginsky and A. Schalnikoff, “Eine neue methode der herstellung kolloider lösungen,” Colloid Polym. Sci. 43, 67–70 (1927).

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Akai-Kasaya, M.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Aya, N.

T. Seto, Y. Kawakami, N. Suzuki, M. Hirasawa, and N. Aya, “Laser synthesis of uniform silicon single nanodots,” Nano Lett. 1(6), 315–318 (2001).
[Crossref]

Beck, M.

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for the 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61, 441–448 (2002).
[Crossref]

Bonnemann, H.

H. Bonnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joupen, and B. Korall, “Formation of colloidal transition metals in organic phases and their application in catalysis,” Angew. Chem. Int. Ed. Engl. 30(10), 1312–1314 (1991).
[Crossref]

Boriskina, S. V.

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Brijoux, W.

H. Bonnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joupen, and B. Korall, “Formation of colloidal transition metals in organic phases and their application in catalysis,” Angew. Chem. Int. Ed. Engl. 30(10), 1312–1314 (1991).
[Crossref]

Brinkmann, R.

H. Bonnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joupen, and B. Korall, “Formation of colloidal transition metals in organic phases and their application in catalysis,” Angew. Chem. Int. Ed. Engl. 30(10), 1312–1314 (1991).
[Crossref]

Butun, B.

B. Butun, J. Cesario, S. Enoch, R. Quidant, and E. Ozbay, “InGaN green light emitting diodes with deposited nanoparticles,” Photon. Nanostructures 5(2-3), 86–90 (2007).
[Crossref]

Byeon, C. C.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[Crossref]

Cesario, J.

B. Butun, J. Cesario, S. Enoch, R. Quidant, and E. Ozbay, “InGaN green light emitting diodes with deposited nanoparticles,” Photon. Nanostructures 5(2-3), 86–90 (2007).
[Crossref]

Chakravarty, U.

Chang, S.-H.

Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S.-H. Chang, Y. C. Lan, T. F. Guo, T. C. Tsai, and C. T. Lee, “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” J. Vac. Sci. Technol. B 25(6), 1899–1902 (2007).
[Crossref]

Chang, Y. C.

Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S.-H. Chang, Y. C. Lan, T. F. Guo, T. C. Tsai, and C. T. Lee, “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” J. Vac. Sci. Technol. B 25(6), 1899–1902 (2007).
[Crossref]

Che, Y.

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

B. Liu, Z. Hu, Y. Chen, K. Sun, X. Pan, and Y. Che, “Ultrafast pulsed laser ablation for synthesis of nanocrystals,” Proc. SPIE 6460, 66450R, 66450R-9 (2007).
[Crossref]

Chen, C. H.

C. H. Chen and Y. C. Lee, “Fabrication of metallic micro/nano-particles by surface patterning and pulsed laser annealing,” Thin Solid Films 518(17), 4786–4790 (2010).
[Crossref]

Chen, C. Y.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

Chen, H. W.

Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S.-H. Chang, Y. C. Lan, T. F. Guo, T. C. Tsai, and C. T. Lee, “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” J. Vac. Sci. Technol. B 25(6), 1899–1902 (2007).
[Crossref]

Chen, Y.

B. Liu, Z. Hu, Y. Chen, K. Sun, X. Pan, and Y. Che, “Ultrafast pulsed laser ablation for synthesis of nanocrystals,” Proc. SPIE 6460, 66450R, 66450R-9 (2007).
[Crossref]

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[Crossref] [PubMed]

Cho, C. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[Crossref]

Choi, C. H.

J. H. Sung, B. S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and O. B. Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng. 86(4-6), 1120–1123 (2009).
[Crossref]

Chou, F. Y.

Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S.-H. Chang, Y. C. Lan, T. F. Guo, T. C. Tsai, and C. T. Lee, “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” J. Vac. Sci. Technol. B 25(6), 1899–1902 (2007).
[Crossref]

Dal Negro, L.

Dietz, T. G.

T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, “Laser production of supersonic metal cluster beams,” J. Chem. Phys. 74(11), 6511–6512 (1981).
[Crossref]

Dinjus, E.

H. Bonnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joupen, and B. Korall, “Formation of colloidal transition metals in organic phases and their application in catalysis,” Angew. Chem. Int. Ed. Engl. 30(10), 1312–1314 (1991).
[Crossref]

Duche, D.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[Crossref]

Duncan, M. A.

T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, “Laser production of supersonic metal cluster beams,” J. Chem. Phys. 74(11), 6511–6512 (1981).
[Crossref]

Duval, M. L.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

Duyne, R. P. V.

J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

Eliaz, N.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
[Crossref]

Eliezer, D.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
[Crossref]

Eliezer, S.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Enoch, S.

B. Butun, J. Cesario, S. Enoch, R. Quidant, and E. Ozbay, “InGaN green light emitting diodes with deposited nanoparticles,” Photon. Nanostructures 5(2-3), 86–90 (2007).
[Crossref]

Escoubas, L.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[Crossref]

Ezersky, V.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
[Crossref]

Feldmann, J.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004).
[Crossref]

Fisher, D.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
[Crossref]

Flory, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[Crossref]

Fraenkel, M.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
[Crossref]

Fujiki, A.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Ganeev, R. A.

Ginger, D. S.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Gopinath, A.

Gouzman, I.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
[Crossref]

Graczyk, M.

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for the 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61, 441–448 (2002).
[Crossref]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Grossman, E.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
[Crossref]

Guo, T. F.

Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S.-H. Chang, Y. C. Lan, T. F. Guo, T. C. Tsai, and C. T. Lee, “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” J. Vac. Sci. Technol. B 25(6), 1899–1902 (2007).
[Crossref]

Gupta, P. D.

Guyer, S. R.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Halas, N. J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Henis, Z.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
[Crossref]

Hirasawa, M.

T. Seto, Y. Kawakami, N. Suzuki, M. Hirasawa, and N. Aya, “Laser synthesis of uniform silicon single nanodots,” Nano Lett. 1(6), 315–318 (2001).
[Crossref]

Hoan, O. B.

J. H. Sung, B. S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and O. B. Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng. 86(4-6), 1120–1123 (2009).
[Crossref]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Horovitz, Y.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
[Crossref]

Hu, Z.

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

B. Liu, Z. Hu, Y. Chen, K. Sun, X. Pan, and Y. Che, “Ultrafast pulsed laser ablation for synthesis of nanocrystals,” Proc. SPIE 6460, 66450R, 66450R-9 (2007).
[Crossref]

Huang, C. F.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

Hulteen, J. C.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004).
[Crossref]

Jäckel, F.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Jain, V. K.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Jensen, T. R.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

Jo, J.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[Crossref]

Joupen, T.

H. Bonnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joupen, and B. Korall, “Formation of colloidal transition metals in organic phases and their application in catalysis,” Angew. Chem. Int. Ed. Engl. 30(10), 1312–1314 (1991).
[Crossref]

Jung, G. Y.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[Crossref] [PubMed]

Kawakami, Y.

K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, K. Nishizuka, Y. Kawakami, and A. Scherer, “Surface plasmon enhanced InGaN light emitter,” Proc. SPIE 5733, 94–103 (2005).
[Crossref]

T. Seto, Y. Kawakami, N. Suzuki, M. Hirasawa, and N. Aya, “Laser synthesis of uniform silicon single nanodots,” Nano Lett. 1(6), 315–318 (2001).
[Crossref]

Keil, M.

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for the 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61, 441–448 (2002).
[Crossref]

Kelly, K. L.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105(12), 2343–2350 (2001).
[Crossref]

Kim, B. H.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[Crossref]

Kim, B. S.

J. H. Sung, B. S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and O. B. Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng. 86(4-6), 1120–1123 (2009).
[Crossref]

Kim, D. Y.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[Crossref]

Kim, J. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[Crossref]

Kim, S. S.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[Crossref]

Klar, T. A.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Kohno, J. Y.

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105(22), 5114–5120 (2001).
[Crossref]

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104(39), 9111–9117 (2000).
[Crossref]

F. Mafun, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104(35), 8333–8337 (2000).
[Crossref]

Kondow, T.

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105(22), 5114–5120 (2001).
[Crossref]

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104(39), 9111–9117 (2000).
[Crossref]

F. Mafun, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104(35), 8333–8337 (2000).
[Crossref]

Korall, B.

H. Bonnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joupen, and B. Korall, “Formation of colloidal transition metals in organic phases and their application in catalysis,” Angew. Chem. Int. Ed. Engl. 30(10), 1312–1314 (1991).
[Crossref]

Korovin, A. V.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

Kulkarni, A. P.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Kuwahara, Y.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Kwon, M. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[Crossref]

Lan, Y. C.

Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S.-H. Chang, Y. C. Lan, T. F. Guo, T. C. Tsai, and C. T. Lee, “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” J. Vac. Sci. Technol. B 25(6), 1899–1902 (2007).
[Crossref]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Lee, C. T.

Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S.-H. Chang, Y. C. Lan, T. F. Guo, T. C. Tsai, and C. T. Lee, “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” J. Vac. Sci. Technol. B 25(6), 1899–1902 (2007).
[Crossref]

Lee, E. H.

J. H. Sung, B. S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and O. B. Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng. 86(4-6), 1120–1123 (2009).
[Crossref]

Lee, M. W.

J. H. Sung, B. S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and O. B. Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng. 86(4-6), 1120–1123 (2009).
[Crossref]

Lee, S. G.

J. H. Sung, B. S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and O. B. Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng. 86(4-6), 1120–1123 (2009).
[Crossref]

Lee, Y. C.

C. H. Chen and Y. C. Lee, “Fabrication of metallic micro/nano-particles by surface patterning and pulsed laser annealing,” Thin Solid Films 518(17), 4786–4790 (2010).
[Crossref]

Lendl, B.

N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” J. Phys. Chem. B 107(24), 5723–5727 (2003).
[Crossref]

Leopold, N.

N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” J. Phys. Chem. B 107(24), 5723–5727 (2003).
[Crossref]

Li, Y.

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4249–4269 (2010).
[Crossref] [PubMed]

Li, Z.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[Crossref] [PubMed]

Ling, T. G. I.

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for the 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61, 441–448 (2002).
[Crossref]

Liu, B.

B. Liu, Z. Hu, Y. Chen, K. Sun, X. Pan, and Y. Che, “Ultrafast pulsed laser ablation for synthesis of nanocrystals,” Proc. SPIE 6460, 66450R, 66450R-9 (2007).
[Crossref]

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

Lu, Y. C.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

Mafun, F.

F. Mafun, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104(35), 8333–8337 (2000).
[Crossref]

Mafune, F.

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105(22), 5114–5120 (2001).
[Crossref]

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104(39), 9111–9117 (2000).
[Crossref]

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105(12), 2343–2350 (2001).
[Crossref]

Maltezos, G.

K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, K. Nishizuka, Y. Kawakami, and A. Scherer, “Surface plasmon enhanced InGaN light emitter,” Proc. SPIE 5733, 94–103 (2005).
[Crossref]

Maman, S.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
[Crossref]

Mathian, G.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[Crossref]

Maximov, I.

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for the 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61, 441–448 (2002).
[Crossref]

Mehta, D. S.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Monestier, F.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[Crossref]

Montelius, L.

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for the 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61, 441–448 (2002).
[Crossref]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, K. Nishizuka, Y. Kawakami, and A. Scherer, “Surface plasmon enhanced InGaN light emitter,” Proc. SPIE 5733, 94–103 (2005).
[Crossref]

Mukherjee, C.

Munechika, K.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Na, S. I.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[Crossref]

Nah, Y. C.

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[Crossref]

Naik, P. A.

Nandedkar, R. V.

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, K. Nishizuka, Y. Kawakami, and A. Scherer, “Surface plasmon enhanced InGaN light emitter,” Proc. SPIE 5733, 94–103 (2005).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, K. Nishizuka, Y. Kawakami, and A. Scherer, “Surface plasmon enhanced InGaN light emitter,” Proc. SPIE 5733, 94–103 (2005).
[Crossref]

Nishizuka, K.

K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, K. Nishizuka, Y. Kawakami, and A. Scherer, “Surface plasmon enhanced InGaN light emitter,” Proc. SPIE 5733, 94–103 (2005).
[Crossref]

Noone, K. M.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Nordlander, P.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, K. Nishizuka, Y. Kawakami, and A. Scherer, “Surface plasmon enhanced InGaN light emitter,” Proc. SPIE 5733, 94–103 (2005).
[Crossref]

Olynick, D. L.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[Crossref] [PubMed]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Ozbay, E.

B. Butun, J. Cesario, S. Enoch, R. Quidant, and E. Ozbay, “InGaN green light emitting diodes with deposited nanoparticles,” Photon. Nanostructures 5(2-3), 86–90 (2007).
[Crossref]

Pan, X.

B. Liu, Z. Hu, Y. Chen, K. Sun, X. Pan, and Y. Che, “Ultrafast pulsed laser ablation for synthesis of nanocrystals,” Proc. SPIE 6460, 66450R, 66450R-9 (2007).
[Crossref]

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

Park, I. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[Crossref]

Park, S. G.

J. H. Sung, B. S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and O. B. Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng. 86(4-6), 1120–1123 (2009).
[Crossref]

Park, S. J.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[Crossref]

Pecker, S.

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
[Crossref]

Peschel, U.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Powers, D. E.

T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, “Laser production of supersonic metal cluster beams,” J. Chem. Phys. 74(11), 6511–6512 (1981).
[Crossref]

Quidant, R.

B. Butun, J. Cesario, S. Enoch, R. Quidant, and E. Ozbay, “InGaN green light emitting diodes with deposited nanoparticles,” Photon. Nanostructures 5(2-3), 86–90 (2007).
[Crossref]

Regensburger, A.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

Reinhard, B. M.

Ren, B.

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B 106(37), 9463–9483 (2002).
[Crossref]

Rogach, A. L.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Roginsky, S.

S. Roginsky and A. Schalnikoff, “Eine neue methode der herstellung kolloider lösungen,” Colloid Polym. Sci. 43, 67–70 (1927).

Romanov, S. G.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

Saito, A.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Sarwe, E. L.

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for the 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61, 441–448 (2002).
[Crossref]

Sau, T. K.

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

Sawabe, H.

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105(22), 5114–5120 (2001).
[Crossref]

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104(39), 9111–9117 (2000).
[Crossref]

F. Mafun, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104(35), 8333–8337 (2000).
[Crossref]

Saxena, K.

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Schalnikoff, A.

S. Roginsky and A. Schalnikoff, “Eine neue methode der herstellung kolloider lösungen,” Colloid Polym. Sci. 43, 67–70 (1927).

Schatz, G. C.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105(12), 2343–2350 (2001).
[Crossref]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, K. Nishizuka, Y. Kawakami, and A. Scherer, “Surface plasmon enhanced InGaN light emitter,” Proc. SPIE 5733, 94–103 (2005).
[Crossref]

Seto, T.

T. Seto, Y. Kawakami, N. Suzuki, M. Hirasawa, and N. Aya, “Laser synthesis of uniform silicon single nanodots,” Nano Lett. 1(6), 315–318 (2001).
[Crossref]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, K. Nishizuka, Y. Kawakami, and A. Scherer, “Surface plasmon enhanced InGaN light emitter,” Proc. SPIE 5733, 94–103 (2005).
[Crossref]

Simon, J. J.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[Crossref]

Smalley, R. E.

T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, “Laser production of supersonic metal cluster beams,” J. Chem. Phys. 74(11), 6511–6512 (1981).
[Crossref]

Smith, M. T.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

Srivastava, H.

Sun, K.

B. Liu, Z. Hu, Y. Chen, K. Sun, X. Pan, and Y. Che, “Ultrafast pulsed laser ablation for synthesis of nanocrystals,” Proc. SPIE 6460, 66450R, 66450R-9 (2007).
[Crossref]

Sung, J. H.

J. H. Sung, B. S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and O. B. Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng. 86(4-6), 1120–1123 (2009).
[Crossref]

Suzuki, N.

T. Seto, Y. Kawakami, N. Suzuki, M. Hirasawa, and N. Aya, “Laser synthesis of uniform silicon single nanodots,” Nano Lett. 1(6), 315–318 (2001).
[Crossref]

Takeda, Y.

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105(22), 5114–5120 (2001).
[Crossref]

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104(39), 9111–9117 (2000).
[Crossref]

F. Mafun, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104(35), 8333–8337 (2000).
[Crossref]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

Tian, Z. Q.

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B 106(37), 9463–9483 (2002).
[Crossref]

Tiwari, M. K.

Tong, W. M.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[Crossref] [PubMed]

Torchio, P.

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[Crossref]

Treichel, D. A.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

Tsai, T. C.

Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S.-H. Chang, Y. C. Lan, T. F. Guo, T. C. Tsai, and C. T. Lee, “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” J. Vac. Sci. Technol. B 25(6), 1899–1902 (2007).
[Crossref]

Uemura, T.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Van Duyne, R. P.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105(12), 2343–2350 (2001).
[Crossref]

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Wang, S. Y.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[Crossref] [PubMed]

Williams, R. S.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[Crossref] [PubMed]

Wu, D. Y.

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B 106(37), 9463–9483 (2002).
[Crossref]

Wu, W.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[Crossref] [PubMed]

Yang, B.

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4249–4269 (2010).
[Crossref] [PubMed]

Yang, C. C.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

Yeh, D. M.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

Yeh, P. H.

Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S.-H. Chang, Y. C. Lan, T. F. Guo, T. C. Tsai, and C. T. Lee, “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” J. Vac. Sci. Technol. B 25(6), 1899–1902 (2007).
[Crossref]

Zettsu, N.

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Zhang, J.

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4249–4269 (2010).
[Crossref] [PubMed]

Zhang, X.

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4249–4269 (2010).
[Crossref] [PubMed]

ACS Nano (1)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (5)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. (Deerfield Beach Fla.) 16(19), 1685–1706 (2004).
[Crossref]

T. K. Sau, A. L. Rogach, F. Jäckel, T. A. Klar, and J. Feldmann, “Properties and applications of colloidal nonspherical noble metal nanoparticles,” Adv. Mater. (Deerfield Beach Fla.) 22(16), 1805–1825 (2010).
[Crossref] [PubMed]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.) 20(7), 1253–1257 (2008).
[Crossref]

J. Zhang, Y. Li, X. Zhang, and B. Yang, “Colloidal self-assembly meets nanofabrication: From two-dimensional colloidal crystals to nanostructure arrays,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4249–4269 (2010).
[Crossref] [PubMed]

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

H. Bonnemann, W. Brijoux, R. Brinkmann, E. Dinjus, T. Joupen, and B. Korall, “Formation of colloidal transition metals in organic phases and their application in catalysis,” Angew. Chem. Int. Ed. Engl. 30(10), 1312–1314 (1991).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

B. Liu, Z. Hu, Y. Che, Y. Chen, and X. Pan, “Nanoparticle generation in ultrafast pulsed laser ablation of nickel,” Appl. Phys. Lett. 90(4), 044103 (2007).
[Crossref]

S. S. Kim, S. I. Na, J. Jo, D. Y. Kim, and Y. C. Nah, “Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles,” Appl. Phys. Lett. 93(7), 073307 (2008).
[Crossref]

A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Colloid Polym. Sci. (1)

S. Roginsky and A. Schalnikoff, “Eine neue methode der herstellung kolloider lösungen,” Colloid Polym. Sci. 43, 67–70 (1927).

J. Chem. Phys. (1)

T. G. Dietz, M. A. Duncan, D. E. Powers, and R. E. Smalley, “Laser production of supersonic metal cluster beams,” J. Chem. Phys. 74(11), 6511–6512 (1981).
[Crossref]

J. Phys. Chem. B (7)

F. Mafun, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B 104(35), 8333–8337 (2000).
[Crossref]

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation and size control of silver nanoparticles by laser ablation in aqueous solution,” J. Phys. Chem. B 104(39), 9111–9117 (2000).
[Crossref]

F. Mafune, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant,” J. Phys. Chem. B 105(22), 5114–5120 (2001).
[Crossref]

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[Crossref]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: Effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles,” J. Phys. Chem. B 105(12), 2343–2350 (2001).
[Crossref]

Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures,” J. Phys. Chem. B 106(37), 9463–9483 (2002).
[Crossref]

N. Leopold and B. Lendl, “A new method for fast preparation of highly surface-enhanced raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride,” J. Phys. Chem. B 107(24), 5723–5727 (2003).
[Crossref]

J. Vac. Sci. Technol. A (1)

J. C. Hulteen and R. P. V. Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[Crossref]

J. Vac. Sci. Technol. B (1)

Y. C. Chang, F. Y. Chou, P. H. Yeh, H. W. Chen, S.-H. Chang, Y. C. Lan, T. F. Guo, T. C. Tsai, and C. T. Lee, “Effects of surface plasmon resonant scattering on the power conversion efficiency of organic thin-film solar cells,” J. Vac. Sci. Technol. B 25(6), 1899–1902 (2007).
[Crossref]

Langmuir (1)

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[Crossref] [PubMed]

Laser Part. Beams (1)

S. Eliezer, N. Eliaz, E. Grossman, D. Fisher, I. Gouzman, Z. Henis, S. Pecker, Y. Horovitz, M. Fraenkel, S. Maman, V. Ezersky, and D. Eliezer, “Nanoparticles and nanotubes induced by femtosecond lasers,” Laser Part. Beams 23(01), 15–19 (2005).
[Crossref]

Microelectron. Eng. (2)

J. H. Sung, B. S. Kim, C. H. Choi, M. W. Lee, S. G. Lee, S. G. Park, E. H. Lee, and O. B. Hoan, “Enhanced luminescence of GaN-based light-emitting diode with a localized surface plasmon resonance,” Microelectron. Eng. 86(4-6), 1120–1123 (2009).
[Crossref]

M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil, and L. Montelius, “Improving stamps for the 10 nm level wafer scale nanoimprint lithography,” Microelectron. Eng. 61, 441–448 (2002).
[Crossref]

Nano Lett. (3)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[Crossref] [PubMed]

T. Seto, Y. Kawakami, N. Suzuki, M. Hirasawa, and N. Aya, “Laser synthesis of uniform silicon single nanodots,” Nano Lett. 1(6), 315–318 (2001).
[Crossref]

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Mater. (1)

K. Saxena, V. K. Jain, and D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32(1), 221–233 (2009).
[Crossref]

Photon. Nanostructures (1)

B. Butun, J. Cesario, S. Enoch, R. Quidant, and E. Ozbay, “InGaN green light emitting diodes with deposited nanoparticles,” Photon. Nanostructures 5(2-3), 86–90 (2007).
[Crossref]

Proc. SPIE (2)

K. Okamoto, I. Niki, A. Shvartser, G. Maltezos, Y. Narukawa, T. Mukai, K. Nishizuka, Y. Kawakami, and A. Scherer, “Surface plasmon enhanced InGaN light emitter,” Proc. SPIE 5733, 94–103 (2005).
[Crossref]

B. Liu, Z. Hu, Y. Chen, K. Sun, X. Pan, and Y. Che, “Ultrafast pulsed laser ablation for synthesis of nanocrystals,” Proc. SPIE 6460, 66450R, 66450R-9 (2007).
[Crossref]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[Crossref]

Science (1)

S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

D. Duche, P. Torchio, L. Escoubas, F. Monestier, J. J. Simon, F. Flory, and G. Mathian, “Improving light absorption in organic solar cells by plasmonic contribution,” Sol. Energy Mater. Sol. Cells 93(8), 1377–1382 (2009).
[Crossref]

Thin Solid Films (1)

C. H. Chen and Y. C. Lee, “Fabrication of metallic micro/nano-particles by surface patterning and pulsed laser annealing,” Thin Solid Films 518(17), 4786–4790 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Preparation of PDMS and h-PDMS soft molds from a silicon master mold.

Fig. 2
Fig. 2

Schematic diagrams for fabricating periodical arrays of metallic nano-particles on a flexible template.

Fig. 3
Fig. 3

SEM image shows the remaining Au films are on the concave surfaces of the hole-arrayed structures of a PDMS template before using laser annealing processes.

Fig. 4
Fig. 4

SEM images with two different magnification factors of Au nano-particles formed in arrayed holes of a PDMS template; the diameters of holes are: (a) and (b)300 nm, (c) and (d) 400 nm, (e) and (f) 800 nm, and (g) and (h) 2 μm.

Fig. 5
Fig. 5

The formation of compound Au/Ag nano-particles: (a) an SEM image, (b) and (c) the line mappings of Au and Ag elements, respectively, from an EDS measurement on the nano-particles.

Fig. 6
Fig. 6

SEM images of a Si mold at two different magnification factors; the mold surface contains hexagonally close-packed holes with a diameter of 200 nm and a center-to-center pitch of 400 nm.

Fig. 7
Fig. 7

SEM images of Au nano-particles on a PDMS template.

Fig. 8
Fig. 8

SEM images of Au nano-particles on an h-PDMS template.

Fig. 9
Fig. 9

SEM images of (a) a cross-section view of the hole-shaped structures on a h-PDMS template, and (b) a tilt view of the bowl-shaped structures on a PDMS template.

Fig. 10
Fig. 10

The distributions of the Au particles sizes fabricated on (a) a PDMS template with evaporated Au film thicknesses of 10 and 15 nm, and (b) an h-PDMS templates with evaporated Au film thicknesses of 20, 25, and 30 nm.

Fig. 11
Fig. 11

The spectral transmittance measured from PDMS templates, (a) before laser annealing so that metal film with a thickness of either 10 nm or 15 nm is deposited on the concave surface of bowl-shaped micro-structures, and (b) after laser annealing so that Au nano-particles are formed.

Fig. 12
Fig. 12

The spectral transmittance measured from h-PDMS templates, (a) before laser annealing so that metal film with a thickness of 20, 25, and 30 nm is deposited on the concave surface of hole-shaped micro-structures, and (b) after laser annealing so that Au nano-particles are formed.

Fig. 13
Fig. 13

Schematic diagram of the two kinds of PDMS templates and these templates are put an Au particle of 120 nm diameter on their holes structure; (a) Au particle is on a PDMS template with bowl structure (b) Au particle is on a PDMS template with cylindrical hole structure.

Fig. 14
Fig. 14

The relationship between simulated transmittance of the incidence light and the incidence wavelength for the assumed Au particles of diameter of 80 nm, 100 nm, 120 nm, and 140 nm; (a) the spectral transmittance on PDMS template (b) the spectral transmittance on h-PDMS template.

Tables (1)

Tables Icon

Table 1 The average sizes of Au nano-particles using PDMS and h-PDMS templates and different evaporated Au film thicknesses.

Metrics