Abstract

The CdS/SiO2 core/shell nanowires (NWs) with controlled shell thickness were successfully synthesized and subsequently heat-treated at 500 °C. The influences of silica shell coating and annealing processes on their optical properties have been investigated. Compared with original CdS NWs, the annealed CdS/SiO2 NWs exhibited an enhanced band-edge emission with slowed photoluminescence lifetime, while the intensity of defect emission decreased. The results were ascribed to the surface passivation and recrystallization by shell coating and annealing. We believe our finding would help improving the optical properties of semiconductor NWs, and facilitate its applications in various realms, such as nanoscale emitter, sensor, and photoelectric device.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater.5(5), 352–356 (2006).
    [CrossRef] [PubMed]
  2. C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett.4(10), 1981–1985 (2004).
    [CrossRef]
  3. Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
    [CrossRef]
  4. Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. (Deerfield Beach Fla.)24(11), 1410–1417 (2012).
    [CrossRef] [PubMed]
  5. Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, “Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3127–3130 (2008).
    [CrossRef]
  6. J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
    [CrossRef] [PubMed]
  7. C. H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S. W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater.10(9), 669–675 (2011).
    [CrossRef] [PubMed]
  8. D. Li, J. Zhang, Q. Zhang, and Q. Xiong, “Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: exciton ionization, franz-keldysh, and stark effects,” Nano Lett.12(6), 2993–2999 (2012).
    [CrossRef] [PubMed]
  9. Q. Zhang, X. Y. Shan, X. Feng, C. X. Wang, Q. Q. Wang, J. F. Jia, and Q. K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11(10), 4270–4274 (2011).
    [CrossRef] [PubMed]
  10. J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano2(2), 357–367 (2008).
    [CrossRef] [PubMed]
  11. R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett.5(5), 917–920 (2005).
    [CrossRef] [PubMed]
  12. A. Pan, S. Wang, R. Liu, C. Li, and B. Zou, “Thermal stability and lasing of CdS nanowires coated by amorphous silica,” Small1(11), 1058–1062 (2005).
    [CrossRef] [PubMed]
  13. S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology23(36), 365204 (2012).
    [CrossRef] [PubMed]
  14. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  15. X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).
    [CrossRef] [PubMed]
  16. H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem.22(17), 8372–8376 (2012).
    [CrossRef]
  17. R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Qin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett.7(11), 3300–3304 (2007).
    [CrossRef] [PubMed]
  18. T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires,” Nano Lett.12(6), 2705–2709 (2012).
    [CrossRef] [PubMed]
  19. M. I. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, and Q. Xiong, “Synthesis and optical properties of II-VI 1D nanostructures,” Nanoscale4(5), 1422–1435 (2012).
    [CrossRef] [PubMed]
  20. B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol.7(10), 640–645 (2012).
    [CrossRef] [PubMed]
  21. Z. X. Yang, W. Zhong, P. Zhang, M. H. Xu, Y. Deng, C. T. Au, and Y. W. Du, “Controllable synthesis, characterization and photoluminescence properties of morphology-tunable CdS nanomaterials generated in thermal evaporation processes,” Appl. Surf. Sci.258(19), 7343–7347 (2012).
    [CrossRef]
  22. D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, “Preparation and characterization of CdS nanowire arrays by DC electrodeposit in porous anodic aluminum oxide templates,” Chem. Phys. Lett.325(4), 340–344 (2000).
    [CrossRef]
  23. H. Gai, Y. Wu, L. Wu, Z. Wang, Y. Shi, M. Jing, and K. Zou, “Solvothermal synthesis of CdS nanowires using L-cysteine as sulfur source and their characterization,” Appl. Phys., A Mater. Sci. Process.91(1), 69–72 (2008).
    [CrossRef]
  24. K. B. Tang, Y. T. Qian, J. H. Zeng, and X. G. Yang, “Solvothermal route to semiconductor nanowires,” Adv. Mater. (Deerfield Beach Fla.)15(5), 448–450 (2003).
    [CrossRef]
  25. C. C. Kang, C. W. Lai, H. C. Peng, J. J. Shyue, and P. T. Chou, “Surfactant- and temperature-controlled CdS nanowire formation,” Small3(11), 1882–1885 (2007).
    [CrossRef] [PubMed]
  26. Q. Wang, G. Zhao, and G. Han, “Synthesis of single crystalline CdS nanorods by a PVP-assisted solvothermal method,” Mater. Lett.59(21), 2625–2629 (2005).
    [CrossRef]
  27. K. Pal, U. N. Maiti, T. P. Majumder, and S. C. Debnath, “A facile strategy for the fabrication of uniform CdS nanowires with high yield and its controlled morphological growth with the assistance of PEG in hydrothermal route,” Appl. Surf. Sci.258(1), 163–168 (2011).
    [CrossRef]
  28. M. A. Correa-Duarte, M. Giersig, N. A. Kotov, and L. M. Liz-Marzán, “Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation,” Langmuir14(22), 6430–6435 (1998).
    [CrossRef]
  29. X. F. Yu, L. D. Chen, M. Li, M. Y. Xie, L. Zhou, Y. Li, and Q. Q. Wang, “Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4118–4123 (2008).
    [CrossRef]
  30. S. T. Selvan, T. T. Tan, and J. Y. Ying, “Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)17(13), 1620–1625 (2005).
    [CrossRef]
  31. L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A.108(25), 10050–10055 (2011).
    [CrossRef] [PubMed]
  32. A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface crystallization effects on the optical and electric properties of CdS nanorods,” Nanotechnology16(10), 2402–2406 (2005).
    [CrossRef] [PubMed]
  33. P. Liu, V. P. Singh, C. A. Jarro, and S. Rajaputra, “Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS-CdTe solar cells,” Nanotechnology22(14), 145304 (2011).
    [CrossRef] [PubMed]
  34. F. Wu, J. Z. Zhang, R. Kho, and R. K. Mehra, “Radiative and nonradiative lifetimes of band edge states and deep trap states of CdS nanoparticles determined by time-correlated single photon counting,” Chem. Phys. Lett.330(3-4), 237–242 (2000).
    [CrossRef]
  35. L. Yu, X. F. Yu, Y. Qiu, Y. Chen, and S. Yang, “Nonlinear photoluminescence of ZnO/ZnS nanotetrapods,” Chem. Phys. Lett.465(4-6), 272–274 (2008).
    [CrossRef]

2012

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. (Deerfield Beach Fla.)24(11), 1410–1417 (2012).
[CrossRef] [PubMed]

D. Li, J. Zhang, Q. Zhang, and Q. Xiong, “Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: exciton ionization, franz-keldysh, and stark effects,” Nano Lett.12(6), 2993–2999 (2012).
[CrossRef] [PubMed]

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology23(36), 365204 (2012).
[CrossRef] [PubMed]

T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires,” Nano Lett.12(6), 2705–2709 (2012).
[CrossRef] [PubMed]

M. I. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, and Q. Xiong, “Synthesis and optical properties of II-VI 1D nanostructures,” Nanoscale4(5), 1422–1435 (2012).
[CrossRef] [PubMed]

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol.7(10), 640–645 (2012).
[CrossRef] [PubMed]

Z. X. Yang, W. Zhong, P. Zhang, M. H. Xu, Y. Deng, C. T. Au, and Y. W. Du, “Controllable synthesis, characterization and photoluminescence properties of morphology-tunable CdS nanomaterials generated in thermal evaporation processes,” Appl. Surf. Sci.258(19), 7343–7347 (2012).
[CrossRef]

H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem.22(17), 8372–8376 (2012).
[CrossRef]

2011

K. Pal, U. N. Maiti, T. P. Majumder, and S. C. Debnath, “A facile strategy for the fabrication of uniform CdS nanowires with high yield and its controlled morphological growth with the assistance of PEG in hydrothermal route,” Appl. Surf. Sci.258(1), 163–168 (2011).
[CrossRef]

L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A.108(25), 10050–10055 (2011).
[CrossRef] [PubMed]

P. Liu, V. P. Singh, C. A. Jarro, and S. Rajaputra, “Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS-CdTe solar cells,” Nanotechnology22(14), 145304 (2011).
[CrossRef] [PubMed]

C. H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S. W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater.10(9), 669–675 (2011).
[CrossRef] [PubMed]

Q. Zhang, X. Y. Shan, X. Feng, C. X. Wang, Q. Q. Wang, J. F. Jia, and Q. K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11(10), 4270–4274 (2011).
[CrossRef] [PubMed]

2009

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

2008

J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano2(2), 357–367 (2008).
[CrossRef] [PubMed]

Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, “Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3127–3130 (2008).
[CrossRef]

L. Yu, X. F. Yu, Y. Qiu, Y. Chen, and S. Yang, “Nonlinear photoluminescence of ZnO/ZnS nanotetrapods,” Chem. Phys. Lett.465(4-6), 272–274 (2008).
[CrossRef]

X. F. Yu, L. D. Chen, M. Li, M. Y. Xie, L. Zhou, Y. Li, and Q. Q. Wang, “Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4118–4123 (2008).
[CrossRef]

H. Gai, Y. Wu, L. Wu, Z. Wang, Y. Shi, M. Jing, and K. Zou, “Solvothermal synthesis of CdS nanowires using L-cysteine as sulfur source and their characterization,” Appl. Phys., A Mater. Sci. Process.91(1), 69–72 (2008).
[CrossRef]

2007

R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Qin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett.7(11), 3300–3304 (2007).
[CrossRef] [PubMed]

C. C. Kang, C. W. Lai, H. C. Peng, J. J. Shyue, and P. T. Chou, “Surfactant- and temperature-controlled CdS nanowire formation,” Small3(11), 1882–1885 (2007).
[CrossRef] [PubMed]

2006

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater.5(5), 352–356 (2006).
[CrossRef] [PubMed]

2005

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett.5(5), 917–920 (2005).
[CrossRef] [PubMed]

A. Pan, S. Wang, R. Liu, C. Li, and B. Zou, “Thermal stability and lasing of CdS nanowires coated by amorphous silica,” Small1(11), 1058–1062 (2005).
[CrossRef] [PubMed]

Q. Wang, G. Zhao, and G. Han, “Synthesis of single crystalline CdS nanorods by a PVP-assisted solvothermal method,” Mater. Lett.59(21), 2625–2629 (2005).
[CrossRef]

S. T. Selvan, T. T. Tan, and J. Y. Ying, “Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)17(13), 1620–1625 (2005).
[CrossRef]

A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface crystallization effects on the optical and electric properties of CdS nanorods,” Nanotechnology16(10), 2402–2406 (2005).
[CrossRef] [PubMed]

2004

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett.4(10), 1981–1985 (2004).
[CrossRef]

2003

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).
[CrossRef] [PubMed]

K. B. Tang, Y. T. Qian, J. H. Zeng, and X. G. Yang, “Solvothermal route to semiconductor nanowires,” Adv. Mater. (Deerfield Beach Fla.)15(5), 448–450 (2003).
[CrossRef]

2000

F. Wu, J. Z. Zhang, R. Kho, and R. K. Mehra, “Radiative and nonradiative lifetimes of band edge states and deep trap states of CdS nanoparticles determined by time-correlated single photon counting,” Chem. Phys. Lett.330(3-4), 237–242 (2000).
[CrossRef]

D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, “Preparation and characterization of CdS nanowire arrays by DC electrodeposit in porous anodic aluminum oxide templates,” Chem. Phys. Lett.325(4), 340–344 (2000).
[CrossRef]

1998

M. A. Correa-Duarte, M. Giersig, N. A. Kotov, and L. M. Liz-Marzán, “Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation,” Langmuir14(22), 6430–6435 (1998).
[CrossRef]

Agarwal, R.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol.7(10), 640–645 (2012).
[CrossRef] [PubMed]

C. H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S. W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater.10(9), 669–675 (2011).
[CrossRef] [PubMed]

L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A.108(25), 10050–10055 (2011).
[CrossRef] [PubMed]

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater.5(5), 352–356 (2006).
[CrossRef] [PubMed]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett.5(5), 917–920 (2005).
[CrossRef] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Aspetti, C. O.

C. H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S. W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater.10(9), 669–675 (2011).
[CrossRef] [PubMed]

Au, C. T.

Z. X. Yang, W. Zhong, P. Zhang, M. H. Xu, Y. Deng, C. T. Au, and Y. W. Du, “Controllable synthesis, characterization and photoluminescence properties of morphology-tunable CdS nanomaterials generated in thermal evaporation processes,” Appl. Surf. Sci.258(19), 7343–7347 (2012).
[CrossRef]

Barrelet, C. J.

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett.5(5), 917–920 (2005).
[CrossRef] [PubMed]

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett.4(10), 1981–1985 (2004).
[CrossRef]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Borschel, C.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology23(36), 365204 (2012).
[CrossRef] [PubMed]

Burghard, M.

T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires,” Nano Lett.12(6), 2705–2709 (2012).
[CrossRef] [PubMed]

Cao, A.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Capasso, F.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology23(36), 365204 (2012).
[CrossRef] [PubMed]

Chen, D.

D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, “Preparation and characterization of CdS nanowire arrays by DC electrodeposit in porous anodic aluminum oxide templates,” Chem. Phys. Lett.325(4), 340–344 (2000).
[CrossRef]

Chen, L. D.

X. F. Yu, L. D. Chen, M. Li, M. Y. Xie, L. Zhou, Y. Li, and Q. Q. Wang, “Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4118–4123 (2008).
[CrossRef]

Chen, R.

M. I. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, and Q. Xiong, “Synthesis and optical properties of II-VI 1D nanostructures,” Nanoscale4(5), 1422–1435 (2012).
[CrossRef] [PubMed]

Chen, Y.

L. Yu, X. F. Yu, Y. Qiu, Y. Chen, and S. Yang, “Nonlinear photoluminescence of ZnO/ZnS nanotetrapods,” Chem. Phys. Lett.465(4-6), 272–274 (2008).
[CrossRef]

Cho, C. H.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol.7(10), 640–645 (2012).
[CrossRef] [PubMed]

C. H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S. W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater.10(9), 669–675 (2011).
[CrossRef] [PubMed]

L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A.108(25), 10050–10055 (2011).
[CrossRef] [PubMed]

Chou, P. T.

C. C. Kang, C. W. Lai, H. C. Peng, J. J. Shyue, and P. T. Chou, “Surfactant- and temperature-controlled CdS nanowire formation,” Small3(11), 1882–1885 (2007).
[CrossRef] [PubMed]

Correa-Duarte, M. A.

M. A. Correa-Duarte, M. Giersig, N. A. Kotov, and L. M. Liz-Marzán, “Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation,” Langmuir14(22), 6430–6435 (1998).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Qin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett.7(11), 3300–3304 (2007).
[CrossRef] [PubMed]

Debnath, S. C.

K. Pal, U. N. Maiti, T. P. Majumder, and S. C. Debnath, “A facile strategy for the fabrication of uniform CdS nanowires with high yield and its controlled morphological growth with the assistance of PEG in hydrothermal route,” Appl. Surf. Sci.258(1), 163–168 (2011).
[CrossRef]

Deng, Y.

Z. X. Yang, W. Zhong, P. Zhang, M. H. Xu, Y. Deng, C. T. Au, and Y. W. Du, “Controllable synthesis, characterization and photoluminescence properties of morphology-tunable CdS nanomaterials generated in thermal evaporation processes,” Appl. Surf. Sci.258(19), 7343–7347 (2012).
[CrossRef]

Ding, Y.

Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, “Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3127–3130 (2008).
[CrossRef]

Du, Y. W.

Z. X. Yang, W. Zhong, P. Zhang, M. H. Xu, Y. Deng, C. T. Au, and Y. W. Du, “Controllable synthesis, characterization and photoluminescence properties of morphology-tunable CdS nanomaterials generated in thermal evaporation processes,” Appl. Surf. Sci.258(19), 7343–7347 (2012).
[CrossRef]

Duan, X.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Dufaux, T.

T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires,” Nano Lett.12(6), 2705–2709 (2012).
[CrossRef] [PubMed]

Feng, X.

Q. Zhang, X. Y. Shan, X. Feng, C. X. Wang, Q. Q. Wang, J. F. Jia, and Q. K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11(10), 4270–4274 (2011).
[CrossRef] [PubMed]

Gai, H.

H. Gai, Y. Wu, L. Wu, Z. Wang, Y. Shi, M. Jing, and K. Zou, “Solvothermal synthesis of CdS nanowires using L-cysteine as sulfur source and their characterization,” Appl. Phys., A Mater. Sci. Process.91(1), 69–72 (2008).
[CrossRef]

Gao, H.

A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface crystallization effects on the optical and electric properties of CdS nanorods,” Nanotechnology16(10), 2402–2406 (2005).
[CrossRef] [PubMed]

Geburt, S.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology23(36), 365204 (2012).
[CrossRef] [PubMed]

Giersig, M.

M. A. Correa-Duarte, M. Giersig, N. A. Kotov, and L. M. Liz-Marzán, “Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation,” Langmuir14(22), 6430–6435 (1998).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Greytak, A. B.

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett.4(10), 1981–1985 (2004).
[CrossRef]

Gui, L.

D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, “Preparation and characterization of CdS nanowire arrays by DC electrodeposit in porous anodic aluminum oxide templates,” Chem. Phys. Lett.325(4), 340–344 (2000).
[CrossRef]

Guo, G.

D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, “Preparation and characterization of CdS nanowire arrays by DC electrodeposit in porous anodic aluminum oxide templates,” Chem. Phys. Lett.325(4), 340–344 (2000).
[CrossRef]

Han, G.

Q. Wang, G. Zhao, and G. Han, “Synthesis of single crystalline CdS nanorods by a PVP-assisted solvothermal method,” Mater. Lett.59(21), 2625–2629 (2005).
[CrossRef]

Hayden, O.

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater.5(5), 352–356 (2006).
[CrossRef] [PubMed]

He, X.

A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface crystallization effects on the optical and electric properties of CdS nanorods,” Nanotechnology16(10), 2402–2406 (2005).
[CrossRef] [PubMed]

Heo, K.

H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem.22(17), 8372–8376 (2012).
[CrossRef]

Hong, B. H.

H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem.22(17), 8372–8376 (2012).
[CrossRef]

Hong, S.

H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem.22(17), 8372–8376 (2012).
[CrossRef]

Huang, Y.

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Huo, H. B.

R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Qin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett.7(11), 3300–3304 (2007).
[CrossRef] [PubMed]

Jarro, C. A.

P. Liu, V. P. Singh, C. A. Jarro, and S. Rajaputra, “Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS-CdTe solar cells,” Nanotechnology22(14), 145304 (2011).
[CrossRef] [PubMed]

Ji, C.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Jia, J. F.

Q. Zhang, X. Y. Shan, X. Feng, C. X. Wang, Q. Q. Wang, J. F. Jia, and Q. K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11(10), 4270–4274 (2011).
[CrossRef] [PubMed]

Jian, J.

H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem.22(17), 8372–8376 (2012).
[CrossRef]

Jiang, Y.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Jie, J. S.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Jing, M.

H. Gai, Y. Wu, L. Wu, Z. Wang, Y. Shi, M. Jing, and K. Zou, “Solvothermal synthesis of CdS nanowires using L-cysteine as sulfur source and their characterization,” Appl. Phys., A Mater. Sci. Process.91(1), 69–72 (2008).
[CrossRef]

Kang, C. C.

C. C. Kang, C. W. Lai, H. C. Peng, J. J. Shyue, and P. T. Chou, “Surfactant- and temperature-controlled CdS nanowire formation,” Small3(11), 1882–1885 (2007).
[CrossRef] [PubMed]

Kern, K.

T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires,” Nano Lett.12(6), 2705–2709 (2012).
[CrossRef] [PubMed]

Kho, R.

F. Wu, J. Z. Zhang, R. Kho, and R. K. Mehra, “Radiative and nonradiative lifetimes of band edge states and deep trap states of CdS nanoparticles determined by time-correlated single photon counting,” Chem. Phys. Lett.330(3-4), 237–242 (2000).
[CrossRef]

Kikkawa, J. M.

C. H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S. W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater.10(9), 669–675 (2011).
[CrossRef] [PubMed]

Kim, K. S.

H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem.22(17), 8372–8376 (2012).
[CrossRef]

Kosel, T. H.

J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano2(2), 357–367 (2008).
[CrossRef] [PubMed]

Kotov, N. A.

M. A. Correa-Duarte, M. Giersig, N. A. Kotov, and L. M. Liz-Marzán, “Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation,” Langmuir14(22), 6430–6435 (1998).
[CrossRef]

Kozlik, M.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology23(36), 365204 (2012).
[CrossRef] [PubMed]

Kühnel, J.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology23(36), 365204 (2012).
[CrossRef] [PubMed]

Kuno, M.

J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano2(2), 357–367 (2008).
[CrossRef] [PubMed]

Lai, C. W.

C. C. Kang, C. W. Lai, H. C. Peng, J. J. Shyue, and P. T. Chou, “Surfactant- and temperature-controlled CdS nanowire formation,” Small3(11), 1882–1885 (2007).
[CrossRef] [PubMed]

Lan, A.

J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano2(2), 357–367 (2008).
[CrossRef] [PubMed]

Lee, C.

H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem.22(17), 8372–8376 (2012).
[CrossRef]

Lee, H.

H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem.22(17), 8372–8376 (2012).
[CrossRef]

Lee, S. T.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Li, C.

A. Pan, S. Wang, R. Liu, C. Li, and B. Zou, “Thermal stability and lasing of CdS nanowires coated by amorphous silica,” Small1(11), 1058–1062 (2005).
[CrossRef] [PubMed]

A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface crystallization effects on the optical and electric properties of CdS nanorods,” Nanotechnology16(10), 2402–2406 (2005).
[CrossRef] [PubMed]

Li, D.

D. Li, J. Zhang, Q. Zhang, and Q. Xiong, “Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: exciton ionization, franz-keldysh, and stark effects,” Nano Lett.12(6), 2993–2999 (2012).
[CrossRef] [PubMed]

M. I. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, and Q. Xiong, “Synthesis and optical properties of II-VI 1D nanostructures,” Nanoscale4(5), 1422–1435 (2012).
[CrossRef] [PubMed]

Li, M.

X. F. Yu, L. D. Chen, M. Li, M. Y. Xie, L. Zhou, Y. Li, and Q. Q. Wang, “Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4118–4123 (2008).
[CrossRef]

Li, P.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Li, Y.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

X. F. Yu, L. D. Chen, M. Li, M. Y. Xie, L. Zhou, Y. Li, and Q. Q. Wang, “Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4118–4123 (2008).
[CrossRef]

Li, Y. Q.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Li, Z.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Lieber, C. M.

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater.5(5), 352–356 (2006).
[CrossRef] [PubMed]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett.5(5), 917–920 (2005).
[CrossRef] [PubMed]

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett.4(10), 1981–1985 (2004).
[CrossRef]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Lin, X.

A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface crystallization effects on the optical and electric properties of CdS nanorods,” Nanotechnology16(10), 2402–2406 (2005).
[CrossRef] [PubMed]

Lin, Y. F.

Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, “Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3127–3130 (2008).
[CrossRef]

Liu, J.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Liu, P.

P. Liu, V. P. Singh, C. A. Jarro, and S. Rajaputra, “Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS-CdTe solar cells,” Nanotechnology22(14), 145304 (2011).
[CrossRef] [PubMed]

Liu, R.

A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface crystallization effects on the optical and electric properties of CdS nanorods,” Nanotechnology16(10), 2402–2406 (2005).
[CrossRef] [PubMed]

A. Pan, S. Wang, R. Liu, C. Li, and B. Zou, “Thermal stability and lasing of CdS nanowires coated by amorphous silica,” Small1(11), 1058–1062 (2005).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. (Deerfield Beach Fla.)24(11), 1410–1417 (2012).
[CrossRef] [PubMed]

Liu, Z.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Liz-Marzán, L. M.

M. A. Correa-Duarte, M. Giersig, N. A. Kotov, and L. M. Liz-Marzán, “Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation,” Langmuir14(22), 6430–6435 (1998).
[CrossRef]

Lu, S. Y.

Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, “Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3127–3130 (2008).
[CrossRef]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Qin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett.7(11), 3300–3304 (2007).
[CrossRef] [PubMed]

Maiti, U. N.

K. Pal, U. N. Maiti, T. P. Majumder, and S. C. Debnath, “A facile strategy for the fabrication of uniform CdS nanowires with high yield and its controlled morphological growth with the assistance of PEG in hydrothermal route,” Appl. Surf. Sci.258(1), 163–168 (2011).
[CrossRef]

Majumder, T. P.

K. Pal, U. N. Maiti, T. P. Majumder, and S. C. Debnath, “A facile strategy for the fabrication of uniform CdS nanowires with high yield and its controlled morphological growth with the assistance of PEG in hydrothermal route,” Appl. Surf. Sci.258(1), 163–168 (2011).
[CrossRef]

McDonnell, A.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology23(36), 365204 (2012).
[CrossRef] [PubMed]

Mehra, R. K.

F. Wu, J. Z. Zhang, R. Kho, and R. K. Mehra, “Radiative and nonradiative lifetimes of band edge states and deep trap states of CdS nanoparticles determined by time-correlated single photon counting,” Chem. Phys. Lett.330(3-4), 237–242 (2000).
[CrossRef]

Meng, X. M.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Nam, S. W.

C. H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S. W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater.10(9), 669–675 (2011).
[CrossRef] [PubMed]

Noh, S.

H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem.22(17), 8372–8376 (2012).
[CrossRef]

Nukala, P.

L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A.108(25), 10050–10055 (2011).
[CrossRef] [PubMed]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Pal, K.

K. Pal, U. N. Maiti, T. P. Majumder, and S. C. Debnath, “A facile strategy for the fabrication of uniform CdS nanowires with high yield and its controlled morphological growth with the assistance of PEG in hydrothermal route,” Appl. Surf. Sci.258(1), 163–168 (2011).
[CrossRef]

Pan, A.

A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface crystallization effects on the optical and electric properties of CdS nanorods,” Nanotechnology16(10), 2402–2406 (2005).
[CrossRef] [PubMed]

A. Pan, S. Wang, R. Liu, C. Li, and B. Zou, “Thermal stability and lasing of CdS nanowires coated by amorphous silica,” Small1(11), 1058–1062 (2005).
[CrossRef] [PubMed]

Park, J.

H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem.22(17), 8372–8376 (2012).
[CrossRef]

Park, Y.

H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem.22(17), 8372–8376 (2012).
[CrossRef]

Peng, H. C.

C. C. Kang, C. W. Lai, H. C. Peng, J. J. Shyue, and P. T. Chou, “Surfactant- and temperature-controlled CdS nanowire formation,” Small3(11), 1882–1885 (2007).
[CrossRef] [PubMed]

Piccione, B.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol.7(10), 640–645 (2012).
[CrossRef] [PubMed]

L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A.108(25), 10050–10055 (2011).
[CrossRef] [PubMed]

Puthussery, J.

J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano2(2), 357–367 (2008).
[CrossRef] [PubMed]

Qian, Y. T.

K. B. Tang, Y. T. Qian, J. H. Zeng, and X. G. Yang, “Solvothermal route to semiconductor nanowires,” Adv. Mater. (Deerfield Beach Fla.)15(5), 448–450 (2003).
[CrossRef]

Qin, G. G.

R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Qin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett.7(11), 3300–3304 (2007).
[CrossRef] [PubMed]

Qiu, Y.

L. Yu, X. F. Yu, Y. Qiu, Y. Chen, and S. Yang, “Nonlinear photoluminescence of ZnO/ZnS nanotetrapods,” Chem. Phys. Lett.465(4-6), 272–274 (2008).
[CrossRef]

Rajaputra, S.

P. Liu, V. P. Singh, C. A. Jarro, and S. Rajaputra, “Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS-CdTe solar cells,” Nanotechnology22(14), 145304 (2011).
[CrossRef] [PubMed]

Röder, R.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology23(36), 365204 (2012).
[CrossRef] [PubMed]

Ronning, C.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology23(36), 365204 (2012).
[CrossRef] [PubMed]

Selvan, S. T.

S. T. Selvan, T. T. Tan, and J. Y. Ying, “Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)17(13), 1620–1625 (2005).
[CrossRef]

Shan, X. Y.

Q. Zhang, X. Y. Shan, X. Feng, C. X. Wang, Q. Q. Wang, J. F. Jia, and Q. K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11(10), 4270–4274 (2011).
[CrossRef] [PubMed]

Shang, Y.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Shi, E.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Shi, Y.

H. Gai, Y. Wu, L. Wu, Z. Wang, Y. Shi, M. Jing, and K. Zou, “Solvothermal synthesis of CdS nanowires using L-cysteine as sulfur source and their characterization,” Appl. Phys., A Mater. Sci. Process.91(1), 69–72 (2008).
[CrossRef]

Shyue, J. J.

C. C. Kang, C. W. Lai, H. C. Peng, J. J. Shyue, and P. T. Chou, “Surfactant- and temperature-controlled CdS nanowire formation,” Small3(11), 1882–1885 (2007).
[CrossRef] [PubMed]

Singh, V. P.

P. Liu, V. P. Singh, C. A. Jarro, and S. Rajaputra, “Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS-CdTe solar cells,” Nanotechnology22(14), 145304 (2011).
[CrossRef] [PubMed]

Song, J.

Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, “Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3127–3130 (2008).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Sun, H.

M. I. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, and Q. Xiong, “Synthesis and optical properties of II-VI 1D nanostructures,” Nanoscale4(5), 1422–1435 (2012).
[CrossRef] [PubMed]

Sunter, K. A.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology23(36), 365204 (2012).
[CrossRef] [PubMed]

Tan, T. T.

S. T. Selvan, T. T. Tan, and J. Y. Ying, “Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)17(13), 1620–1625 (2005).
[CrossRef]

Tang, K. B.

K. B. Tang, Y. T. Qian, J. H. Zeng, and X. G. Yang, “Solvothermal route to semiconductor nanowires,” Adv. Mater. (Deerfield Beach Fla.)15(5), 448–450 (2003).
[CrossRef]

Tang, Y.

D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, “Preparation and characterization of CdS nanowire arrays by DC electrodeposit in porous anodic aluminum oxide templates,” Chem. Phys. Lett.325(4), 340–344 (2000).
[CrossRef]

Thielmann, A.

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology23(36), 365204 (2012).
[CrossRef] [PubMed]

Turk, M. E.

C. H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S. W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater.10(9), 669–675 (2011).
[CrossRef] [PubMed]

Utama, M. I.

M. I. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, and Q. Xiong, “Synthesis and optical properties of II-VI 1D nanostructures,” Nanoscale4(5), 1422–1435 (2012).
[CrossRef] [PubMed]

van Vugt, L. K.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol.7(10), 640–645 (2012).
[CrossRef] [PubMed]

L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A.108(25), 10050–10055 (2011).
[CrossRef] [PubMed]

Wang, C. X.

Q. Zhang, X. Y. Shan, X. Feng, C. X. Wang, Q. Q. Wang, J. F. Jia, and Q. K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11(10), 4270–4274 (2011).
[CrossRef] [PubMed]

Wang, K.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Wang, Q.

Q. Wang, G. Zhao, and G. Han, “Synthesis of single crystalline CdS nanorods by a PVP-assisted solvothermal method,” Mater. Lett.59(21), 2625–2629 (2005).
[CrossRef]

Wang, Q. Q.

Q. Zhang, X. Y. Shan, X. Feng, C. X. Wang, Q. Q. Wang, J. F. Jia, and Q. K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11(10), 4270–4274 (2011).
[CrossRef] [PubMed]

X. F. Yu, L. D. Chen, M. Li, M. Y. Xie, L. Zhou, Y. Li, and Q. Q. Wang, “Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4118–4123 (2008).
[CrossRef]

Wang, S.

A. Pan, S. Wang, R. Liu, C. Li, and B. Zou, “Thermal stability and lasing of CdS nanowires coated by amorphous silica,” Small1(11), 1058–1062 (2005).
[CrossRef] [PubMed]

Wang, Z.

H. Gai, Y. Wu, L. Wu, Z. Wang, Y. Shi, M. Jing, and K. Zou, “Solvothermal synthesis of CdS nanowires using L-cysteine as sulfur source and their characterization,” Appl. Phys., A Mater. Sci. Process.91(1), 69–72 (2008).
[CrossRef]

Wang, Z. L.

Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. (Deerfield Beach Fla.)24(11), 1410–1417 (2012).
[CrossRef] [PubMed]

Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, “Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3127–3130 (2008).
[CrossRef]

Wei, J.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Wu, D.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Wu, F.

F. Wu, J. Z. Zhang, R. Kho, and R. K. Mehra, “Radiative and nonradiative lifetimes of band edge states and deep trap states of CdS nanoparticles determined by time-correlated single photon counting,” Chem. Phys. Lett.330(3-4), 237–242 (2000).
[CrossRef]

Wu, L.

H. Gai, Y. Wu, L. Wu, Z. Wang, Y. Shi, M. Jing, and K. Zou, “Solvothermal synthesis of CdS nanowires using L-cysteine as sulfur source and their characterization,” Appl. Phys., A Mater. Sci. Process.91(1), 69–72 (2008).
[CrossRef]

Wu, Y.

H. Gai, Y. Wu, L. Wu, Z. Wang, Y. Shi, M. Jing, and K. Zou, “Solvothermal synthesis of CdS nanowires using L-cysteine as sulfur source and their characterization,” Appl. Phys., A Mater. Sci. Process.91(1), 69–72 (2008).
[CrossRef]

Xie, M. Y.

X. F. Yu, L. D. Chen, M. Li, M. Y. Xie, L. Zhou, Y. Li, and Q. Q. Wang, “Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4118–4123 (2008).
[CrossRef]

Xiong, Q.

M. I. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, and Q. Xiong, “Synthesis and optical properties of II-VI 1D nanostructures,” Nanoscale4(5), 1422–1435 (2012).
[CrossRef] [PubMed]

D. Li, J. Zhang, Q. Zhang, and Q. Xiong, “Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: exciton ionization, franz-keldysh, and stark effects,” Nano Lett.12(6), 2993–2999 (2012).
[CrossRef] [PubMed]

Xu, D.

D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, “Preparation and characterization of CdS nanowire arrays by DC electrodeposit in porous anodic aluminum oxide templates,” Chem. Phys. Lett.325(4), 340–344 (2000).
[CrossRef]

Xu, M. H.

Z. X. Yang, W. Zhong, P. Zhang, M. H. Xu, Y. Deng, C. T. Au, and Y. W. Du, “Controllable synthesis, characterization and photoluminescence properties of morphology-tunable CdS nanomaterials generated in thermal evaporation processes,” Appl. Surf. Sci.258(19), 7343–7347 (2012).
[CrossRef]

Xu, W. J.

R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Qin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett.7(11), 3300–3304 (2007).
[CrossRef] [PubMed]

Xu, X.

M. I. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, and Q. Xiong, “Synthesis and optical properties of II-VI 1D nanostructures,” Nanoscale4(5), 1422–1435 (2012).
[CrossRef] [PubMed]

Xu, Y.

D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, “Preparation and characterization of CdS nanowire arrays by DC electrodeposit in porous anodic aluminum oxide templates,” Chem. Phys. Lett.325(4), 340–344 (2000).
[CrossRef]

Xue, Q. K.

Q. Zhang, X. Y. Shan, X. Feng, C. X. Wang, Q. Q. Wang, J. F. Jia, and Q. K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11(10), 4270–4274 (2011).
[CrossRef] [PubMed]

Yang, Q.

Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. (Deerfield Beach Fla.)24(11), 1410–1417 (2012).
[CrossRef] [PubMed]

Yang, S.

L. Yu, X. F. Yu, Y. Qiu, Y. Chen, and S. Yang, “Nonlinear photoluminescence of ZnO/ZnS nanotetrapods,” Chem. Phys. Lett.465(4-6), 272–274 (2008).
[CrossRef]

Yang, X. G.

K. B. Tang, Y. T. Qian, J. H. Zeng, and X. G. Yang, “Solvothermal route to semiconductor nanowires,” Adv. Mater. (Deerfield Beach Fla.)15(5), 448–450 (2003).
[CrossRef]

Yang, Z.

Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. (Deerfield Beach Fla.)24(11), 1410–1417 (2012).
[CrossRef] [PubMed]

Yang, Z. X.

Z. X. Yang, W. Zhong, P. Zhang, M. H. Xu, Y. Deng, C. T. Au, and Y. W. Du, “Controllable synthesis, characterization and photoluminescence properties of morphology-tunable CdS nanomaterials generated in thermal evaporation processes,” Appl. Surf. Sci.258(19), 7343–7347 (2012).
[CrossRef]

Ying, J. Y.

S. T. Selvan, T. T. Tan, and J. Y. Ying, “Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)17(13), 1620–1625 (2005).
[CrossRef]

Yu, L.

L. Yu, X. F. Yu, Y. Qiu, Y. Chen, and S. Yang, “Nonlinear photoluminescence of ZnO/ZnS nanotetrapods,” Chem. Phys. Lett.465(4-6), 272–274 (2008).
[CrossRef]

Yu, X. F.

L. Yu, X. F. Yu, Y. Qiu, Y. Chen, and S. Yang, “Nonlinear photoluminescence of ZnO/ZnS nanotetrapods,” Chem. Phys. Lett.465(4-6), 272–274 (2008).
[CrossRef]

X. F. Yu, L. D. Chen, M. Li, M. Y. Xie, L. Zhou, Y. Li, and Q. Q. Wang, “Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4118–4123 (2008).
[CrossRef]

Zeng, J. H.

K. B. Tang, Y. T. Qian, J. H. Zeng, and X. G. Yang, “Solvothermal route to semiconductor nanowires,” Adv. Mater. (Deerfield Beach Fla.)15(5), 448–450 (2003).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, J.

M. I. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, and Q. Xiong, “Synthesis and optical properties of II-VI 1D nanostructures,” Nanoscale4(5), 1422–1435 (2012).
[CrossRef] [PubMed]

D. Li, J. Zhang, Q. Zhang, and Q. Xiong, “Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: exciton ionization, franz-keldysh, and stark effects,” Nano Lett.12(6), 2993–2999 (2012).
[CrossRef] [PubMed]

Zhang, J. Z.

F. Wu, J. Z. Zhang, R. Kho, and R. K. Mehra, “Radiative and nonradiative lifetimes of band edge states and deep trap states of CdS nanoparticles determined by time-correlated single photon counting,” Chem. Phys. Lett.330(3-4), 237–242 (2000).
[CrossRef]

Zhang, L.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Zhang, P.

Z. X. Yang, W. Zhong, P. Zhang, M. H. Xu, Y. Deng, C. T. Au, and Y. W. Du, “Controllable synthesis, characterization and photoluminescence properties of morphology-tunable CdS nanomaterials generated in thermal evaporation processes,” Appl. Surf. Sci.258(19), 7343–7347 (2012).
[CrossRef]

Zhang, Q.

D. Li, J. Zhang, Q. Zhang, and Q. Xiong, “Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: exciton ionization, franz-keldysh, and stark effects,” Nano Lett.12(6), 2993–2999 (2012).
[CrossRef] [PubMed]

Q. Zhang, X. Y. Shan, X. Feng, C. X. Wang, Q. Q. Wang, J. F. Jia, and Q. K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11(10), 4270–4274 (2011).
[CrossRef] [PubMed]

Zhang, W. J.

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, Y.

Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. (Deerfield Beach Fla.)24(11), 1410–1417 (2012).
[CrossRef] [PubMed]

Zhao, G.

Q. Wang, G. Zhao, and G. Han, “Synthesis of single crystalline CdS nanorods by a PVP-assisted solvothermal method,” Mater. Lett.59(21), 2625–2629 (2005).
[CrossRef]

Zhong, W.

Z. X. Yang, W. Zhong, P. Zhang, M. H. Xu, Y. Deng, C. T. Au, and Y. W. Du, “Controllable synthesis, characterization and photoluminescence properties of morphology-tunable CdS nanomaterials generated in thermal evaporation processes,” Appl. Surf. Sci.258(19), 7343–7347 (2012).
[CrossRef]

Zhou, J.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Zhou, L.

X. F. Yu, L. D. Chen, M. Li, M. Y. Xie, L. Zhou, Y. Li, and Q. Q. Wang, “Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4118–4123 (2008).
[CrossRef]

Zhu, H.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Zhuang, D.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Zou, B.

A. Pan, S. Wang, R. Liu, C. Li, and B. Zou, “Thermal stability and lasing of CdS nanowires coated by amorphous silica,” Small1(11), 1058–1062 (2005).
[CrossRef] [PubMed]

A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface crystallization effects on the optical and electric properties of CdS nanorods,” Nanotechnology16(10), 2402–2406 (2005).
[CrossRef] [PubMed]

Zou, K.

H. Gai, Y. Wu, L. Wu, Z. Wang, Y. Shi, M. Jing, and K. Zou, “Solvothermal synthesis of CdS nanowires using L-cysteine as sulfur source and their characterization,” Appl. Phys., A Mater. Sci. Process.91(1), 69–72 (2008).
[CrossRef]

ACS Nano

J. Puthussery, A. Lan, T. H. Kosel, and M. Kuno, “Band-filling of solution-synthesized CdS nanowires,” ACS Nano2(2), 357–367 (2008).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.)

Y. Liu, Q. Yang, Y. Zhang, Z. Yang, and Z. L. Wang, “Nanowire piezo-phototronic photodetector: theory and experimental design,” Adv. Mater. (Deerfield Beach Fla.)24(11), 1410–1417 (2012).
[CrossRef] [PubMed]

Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, “Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect,” Adv. Mater. (Deerfield Beach Fla.)20(16), 3127–3130 (2008).
[CrossRef]

K. B. Tang, Y. T. Qian, J. H. Zeng, and X. G. Yang, “Solvothermal route to semiconductor nanowires,” Adv. Mater. (Deerfield Beach Fla.)15(5), 448–450 (2003).
[CrossRef]

X. F. Yu, L. D. Chen, M. Li, M. Y. Xie, L. Zhou, Y. Li, and Q. Q. Wang, “Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection,” Adv. Mater. (Deerfield Beach Fla.)20(21), 4118–4123 (2008).
[CrossRef]

S. T. Selvan, T. T. Tan, and J. Y. Ying, “Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence,” Adv. Mater. (Deerfield Beach Fla.)17(13), 1620–1625 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

H. Gai, Y. Wu, L. Wu, Z. Wang, Y. Shi, M. Jing, and K. Zou, “Solvothermal synthesis of CdS nanowires using L-cysteine as sulfur source and their characterization,” Appl. Phys., A Mater. Sci. Process.91(1), 69–72 (2008).
[CrossRef]

Appl. Surf. Sci.

Z. X. Yang, W. Zhong, P. Zhang, M. H. Xu, Y. Deng, C. T. Au, and Y. W. Du, “Controllable synthesis, characterization and photoluminescence properties of morphology-tunable CdS nanomaterials generated in thermal evaporation processes,” Appl. Surf. Sci.258(19), 7343–7347 (2012).
[CrossRef]

K. Pal, U. N. Maiti, T. P. Majumder, and S. C. Debnath, “A facile strategy for the fabrication of uniform CdS nanowires with high yield and its controlled morphological growth with the assistance of PEG in hydrothermal route,” Appl. Surf. Sci.258(1), 163–168 (2011).
[CrossRef]

Chem. Phys. Lett.

D. Xu, Y. Xu, D. Chen, G. Guo, L. Gui, and Y. Tang, “Preparation and characterization of CdS nanowire arrays by DC electrodeposit in porous anodic aluminum oxide templates,” Chem. Phys. Lett.325(4), 340–344 (2000).
[CrossRef]

F. Wu, J. Z. Zhang, R. Kho, and R. K. Mehra, “Radiative and nonradiative lifetimes of band edge states and deep trap states of CdS nanoparticles determined by time-correlated single photon counting,” Chem. Phys. Lett.330(3-4), 237–242 (2000).
[CrossRef]

L. Yu, X. F. Yu, Y. Qiu, Y. Chen, and S. Yang, “Nonlinear photoluminescence of ZnO/ZnS nanotetrapods,” Chem. Phys. Lett.465(4-6), 272–274 (2008).
[CrossRef]

J. Mater. Chem.

H. Lee, K. Heo, J. Park, Y. Park, S. Noh, K. S. Kim, C. Lee, B. H. Hong, J. Jian, and S. Hong, “Graphene–nanowire hybrid structures for high-performance photoconductive devices,” J. Mater. Chem.22(17), 8372–8376 (2012).
[CrossRef]

Langmuir

M. A. Correa-Duarte, M. Giersig, N. A. Kotov, and L. M. Liz-Marzán, “Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO2 coating by microwave irradiation,” Langmuir14(22), 6430–6435 (1998).
[CrossRef]

Mater. Lett.

Q. Wang, G. Zhao, and G. Han, “Synthesis of single crystalline CdS nanorods by a PVP-assisted solvothermal method,” Mater. Lett.59(21), 2625–2629 (2005).
[CrossRef]

Nano Lett.

R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, and G. G. Qin, “High-performance logic circuits constructed on single CdS nanowires,” Nano Lett.7(11), 3300–3304 (2007).
[CrossRef] [PubMed]

T. Dufaux, M. Burghard, and K. Kern, “Efficient charge extraction out of nanoscale Schottky contacts to CdS nanowires,” Nano Lett.12(6), 2705–2709 (2012).
[CrossRef] [PubMed]

R. Agarwal, C. J. Barrelet, and C. M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett.5(5), 917–920 (2005).
[CrossRef] [PubMed]

J. S. Jie, W. J. Zhang, Y. Jiang, X. M. Meng, Y. Q. Li, and S. T. Lee, “Photoconductive characteristics of single-crystal CdS nanoribbons,” Nano Lett.6(9), 1887–1892 (2006).
[CrossRef] [PubMed]

C. J. Barrelet, A. B. Greytak, and C. M. Lieber, “Nanowire photonic circuit elements,” Nano Lett.4(10), 1981–1985 (2004).
[CrossRef]

D. Li, J. Zhang, Q. Zhang, and Q. Xiong, “Electric-field-dependent photoconductivity in CdS nanowires and nanobelts: exciton ionization, franz-keldysh, and stark effects,” Nano Lett.12(6), 2993–2999 (2012).
[CrossRef] [PubMed]

Q. Zhang, X. Y. Shan, X. Feng, C. X. Wang, Q. Q. Wang, J. F. Jia, and Q. K. Xue, “Modulating resonance modes and Q value of a CdS nanowire cavity by single Ag nanoparticles,” Nano Lett.11(10), 4270–4274 (2011).
[CrossRef] [PubMed]

Nano Res.

Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, and A. Cao, “Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes,” Nano Res.5(9), 595–604 (2012).
[CrossRef]

Nanoscale

M. I. Utama, J. Zhang, R. Chen, X. Xu, D. Li, H. Sun, and Q. Xiong, “Synthesis and optical properties of II-VI 1D nanostructures,” Nanoscale4(5), 1422–1435 (2012).
[CrossRef] [PubMed]

Nanotechnology

S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K. A. Sunter, F. Capasso, and C. Ronning, “Low threshold room-temperature lasing of CdS nanowires,” Nanotechnology23(36), 365204 (2012).
[CrossRef] [PubMed]

A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao, and B. Zou, “Surface crystallization effects on the optical and electric properties of CdS nanorods,” Nanotechnology16(10), 2402–2406 (2005).
[CrossRef] [PubMed]

P. Liu, V. P. Singh, C. A. Jarro, and S. Rajaputra, “Cadmium sulfide nanowires for the window semiconductor layer in thin film CdS-CdTe solar cells,” Nanotechnology22(14), 145304 (2011).
[CrossRef] [PubMed]

Nat. Mater.

O. Hayden, R. Agarwal, and C. M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater.5(5), 352–356 (2006).
[CrossRef] [PubMed]

C. H. Cho, C. O. Aspetti, M. E. Turk, J. M. Kikkawa, S. W. Nam, and R. Agarwal, “Tailoring hot-exciton emission and lifetimes in semiconducting nanowires via whispering-gallery nanocavity plasmons,” Nat. Mater.10(9), 669–675 (2011).
[CrossRef] [PubMed]

Nat. Nanotechnol.

B. Piccione, C. H. Cho, L. K. van Vugt, and R. Agarwal, “All-optical active switching in individual semiconductor nanowires,” Nat. Nanotechnol.7(10), 640–645 (2012).
[CrossRef] [PubMed]

Nature

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, “Single-nanowire electrically driven lasers,” Nature421(6920), 241–245 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

L. K. van Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal, “One-dimensional polaritons with size-tunable and enhanced coupling strengths in semiconductor nanowires,” Proc. Natl. Acad. Sci. U.S.A.108(25), 10050–10055 (2011).
[CrossRef] [PubMed]

Small

C. C. Kang, C. W. Lai, H. C. Peng, J. J. Shyue, and P. T. Chou, “Surfactant- and temperature-controlled CdS nanowire formation,” Small3(11), 1882–1885 (2007).
[CrossRef] [PubMed]

A. Pan, S. Wang, R. Liu, C. Li, and B. Zou, “Thermal stability and lasing of CdS nanowires coated by amorphous silica,” Small1(11), 1058–1062 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Low and high magnitude TEM images of CdS NWs. (b-d) CdS/SiO2 core/shell NWs with shell thickness of around (b) 11 nm, (c) 25 nm and (d) 70 nm.

Fig. 2
Fig. 2

XRD patterns of (a) CdS NWs, (b) uncoated CdS NWs annealed at 500 °C, (c) CdS/SiO2 core/shell NWs, and (d) CdS/SiO2 core/shell NWs annealed at 500 °C.

Fig. 3
Fig. 3

Normalized absorption spectra of CdS NWs, CdS/SiO2 NWs, and annealed CdS/SiO2 core/shell NWs.

Fig. 4
Fig. 4

(a) PL spectra of CdS NWs, CdS/SiO2 NWs and CdS/SiO2 NWs annealed at 500 °C. (b) Time-resolved PL of CdS NWs, CdS/SiO2 NWs and annealed CdS/SiO2 NWs at ~505 nm.

Fig. 5
Fig. 5

Excitation power dependence of PL intensity for CdS NWs, CdS/SiO2 core/shell NWs and annealed CdS/SiO2 core/shell NWs at (a) 505 nm and (b) 700 nm with excitation wavelength of 400 nm.

Metrics