Abstract

In this paper the Fano resonance in a free-standing LiNbO3 photonic crystal slab is demonstrated. We present a numerical analysis and experimental measurements with free space illumination where the dependence of slab thickness, radius of air holes and lattice types are investigated. The unique property of polarization dependence for LiNbO3 photonic crystal slabs is also analyzed, and we show that the transmission spectra exhibit significant sensitivity (~25nm) to polarization. A monolithic free-standing LiNbO3 photonic crystal slab was fabricated using ion beam enhanced etching (IBEE) technology. Measurement results of the reflection spectra agree with the numerical analysis.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
    [CrossRef]
  2. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express12(8), 1551–1561 (2004).
    [CrossRef] [PubMed]
  3. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
    [CrossRef]
  4. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
    [CrossRef] [PubMed]
  5. C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett.100(2), 021110 (2012).
    [CrossRef]
  6. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
    [CrossRef] [PubMed]
  7. W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett.28(19), 1763–1765 (2003).
    [CrossRef] [PubMed]
  8. W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
    [CrossRef]
  9. S. Kim, S. Hadzialic, A. S. Sudbo, and O. Solgaard, “Reflectivity and polarization dependence of polysilicon single-film broadband photonic crystal micro-mirrors,” Opt. Express20(6), 6306–6315 (2012).
    [CrossRef] [PubMed]
  10. S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron.13(2), 244–252 (2007).
    [CrossRef]
  11. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
    [CrossRef]
  12. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
    [CrossRef]
  13. I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett.24(12), 622–624 (1974).
    [CrossRef]
  14. E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett.87(21), 213503 (2005).
    [CrossRef]
  15. E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996).
    [CrossRef]
  16. G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide,” Opt. Express18(6), 6064–6070 (2010).
    [CrossRef] [PubMed]
  17. R. Schiek, Y. Baek, G. Krijnen, G. I. Stegeman, I. Baumann, and W. Sohler, “All-optical switching in lithium niobate directional couplers with cascaded nonlinearity,” Opt. Lett.21(13), 940–942 (1996).
    [CrossRef] [PubMed]
  18. Lj. Babić and M. J. de Dood, “Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs,” Opt. Express18(25), 26569–26582 (2010).
    [CrossRef] [PubMed]
  19. O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys.112(7), 074303 (2012).
    [CrossRef]
  20. F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater.27(8), 1421–1425 (2005).
    [CrossRef]
  21. F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater.32(11), 1427–1434 (2010).
    [CrossRef]
  22. X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys.90(10), 5274–5277 (2001).
    [CrossRef]
  23. G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
    [CrossRef]
  24. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).
  25. W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys.98(3), 033102 (2005).
    [CrossRef]
  26. S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun.17(3), 332–335 (1976).
    [CrossRef]
  27. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
    [CrossRef]

2012

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett.100(2), 021110 (2012).
[CrossRef]

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys.112(7), 074303 (2012).
[CrossRef]

S. Kim, S. Hadzialic, A. S. Sudbo, and O. Solgaard, “Reflectivity and polarization dependence of polysilicon single-film broadband photonic crystal micro-mirrors,” Opt. Express20(6), 6306–6315 (2012).
[CrossRef] [PubMed]

2010

G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160-Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide,” Opt. Express18(6), 6064–6070 (2010).
[CrossRef] [PubMed]

Lj. Babić and M. J. de Dood, “Interpretation of Fano lineshape reversal in the reflectivity spectra of photonic crystal slabs,” Opt. Express18(25), 26569–26582 (2010).
[CrossRef] [PubMed]

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater.32(11), 1427–1434 (2010).
[CrossRef]

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
[CrossRef]

2009

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

2007

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron.13(2), 244–252 (2007).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

2006

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

2005

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys.98(3), 033102 (2005).
[CrossRef]

E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett.87(21), 213503 (2005).
[CrossRef]

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater.27(8), 1421–1425 (2005).
[CrossRef]

2004

2003

2002

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

2001

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys.90(10), 5274–5277 (2001).
[CrossRef]

2000

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

1996

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996).
[CrossRef]

R. Schiek, Y. Baek, G. Krijnen, G. I. Stegeman, I. Baumann, and W. Sohler, “All-optical switching in lithium niobate directional couplers with cascaded nonlinearity,” Opt. Lett.21(13), 940–942 (1996).
[CrossRef] [PubMed]

1976

S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun.17(3), 332–335 (1976).
[CrossRef]

1974

I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett.24(12), 622–624 (1974).
[CrossRef]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Babic, Lj.

Baek, Y.

Bainier, C.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater.27(8), 1421–1425 (2005).
[CrossRef]

Bakir, B. B.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron.13(2), 244–252 (2007).
[CrossRef]

Baumann, I.

Beghoul, M. R.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater.32(11), 1427–1434 (2010).
[CrossRef]

Benchabane, S.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

Bernal, M. P.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater.27(8), 1421–1425 (2005).
[CrossRef]

Bettiol, A. A.

G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
[CrossRef]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Boudrioua, A.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater.32(11), 1427–1434 (2010).
[CrossRef]

Boutami, S.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron.13(2), 244–252 (2007).
[CrossRef]

Boutaoui, N.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater.32(11), 1427–1434 (2010).
[CrossRef]

Bradley, E. M.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996).
[CrossRef]

Bui, C. H.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett.100(2), 021110 (2012).
[CrossRef]

Chen, L.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Chuwongin, S.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Courjal, N.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater.27(8), 1421–1425 (2005).
[CrossRef]

Crozier, K. B.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

Dahdah, J.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

Dally, R. L.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys.112(7), 074303 (2012).
[CrossRef]

Danner, A. J.

G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
[CrossRef]

de Dood, M. J.

Degl’Innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Dogheche, E.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater.32(11), 1427–1434 (2010).
[CrossRef]

E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett.87(21), 213503 (2005).
[CrossRef]

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys.90(10), 5274–5277 (2001).
[CrossRef]

Edwin, R. P.

S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun.17(3), 332–335 (1976).
[CrossRef]

Fan, S.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys.98(3), 033102 (2005).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

W. Suh and S. Fan, “Mechanically switchable photonic crystal filter with either all-pass transmission or flat-top reflection characteristics,” Opt. Lett.28(19), 1763–1765 (2003).
[CrossRef] [PubMed]

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
[CrossRef] [PubMed]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Fischer, A.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater.32(11), 1427–1434 (2010).
[CrossRef]

Fogarassy, E.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater.32(11), 1427–1434 (2010).
[CrossRef]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Furukawa, H.

Garrigues, M.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron.13(2), 244–252 (2007).
[CrossRef]

Gruson, Y.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

Guarino, A.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Guilloux-viry, M.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys.90(10), 5274–5277 (2001).
[CrossRef]

Günter, P.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Hachigo, A.

E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett.87(21), 213503 (2005).
[CrossRef]

Hadzialic, S.

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Harris, J. G. E.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett.100(2), 021110 (2012).
[CrossRef]

Hoch, S. W.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett.100(2), 021110 (2012).
[CrossRef]

Ito, H.

Joannopoulos, J. D.

S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A20(3), 569–572 (2003).
[CrossRef] [PubMed]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Kaminow, I. P.

I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett.24(12), 622–624 (1974).
[CrossRef]

Kilic, O.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

Kim, S.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Kremer, R.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater.32(11), 1427–1434 (2010).
[CrossRef]

Krijnen, G.

Kuramochi, E.

Lacour, F.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater.27(8), 1421–1425 (2005).
[CrossRef]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Lansiaux, X.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys.90(10), 5274–5277 (2001).
[CrossRef]

Laude, V.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

Leclercq, J. L.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron.13(2), 244–252 (2007).
[CrossRef]

Lee, L. Y. T.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett.100(2), 021110 (2012).
[CrossRef]

Letartre, X.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron.13(2), 244–252 (2007).
[CrossRef]

Lousse, V.

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

Lu, G.-W.

Ma, Z.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Malley, S. T.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys.112(7), 074303 (2012).
[CrossRef]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Meriche, F.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater.32(11), 1427–1434 (2010).
[CrossRef]

Miles, E. W.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996).
[CrossRef]

Mitsugi, S.

Miyazaki, T.

Mouras, R.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater.32(11), 1427–1434 (2010).
[CrossRef]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Nakahata, H.

E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett.87(21), 213503 (2005).
[CrossRef]

Neiss-Clauss, E.

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater.32(11), 1427–1434 (2010).
[CrossRef]

Notomi, M.

Novikov, H. P.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys.112(7), 074303 (2012).
[CrossRef]

Ozturk, B.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys.112(7), 074303 (2012).
[CrossRef]

Pang, H.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Perrin, A.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys.90(10), 5274–5277 (2001).
[CrossRef]

Perry, N. R.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys.112(7), 074303 (2012).
[CrossRef]

Poberaj, G.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Qiang, Z.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Qin, G.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Ramaswamy, V.

I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett.24(12), 622–624 (1974).
[CrossRef]

Regreny, P.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron.13(2), 244–252 (2007).
[CrossRef]

Remiens, D.

E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett.87(21), 213503 (2005).
[CrossRef]

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys.90(10), 5274–5277 (2001).
[CrossRef]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Riccius, H. D.

S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun.17(3), 332–335 (1976).
[CrossRef]

Rojo-Romeo, P.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron.13(2), 244–252 (2007).
[CrossRef]

Ruterana, P.

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys.90(10), 5274–5277 (2001).
[CrossRef]

Ryu, H.

Sabac, A.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater.27(8), 1421–1425 (2005).
[CrossRef]

Schiek, R.

Schmidt, R. V.

I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett.24(12), 622–624 (1974).
[CrossRef]

Seassal, C.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron.13(2), 244–252 (2007).
[CrossRef]

Shikata, S.

E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett.87(21), 213503 (2005).
[CrossRef]

Shinada, S.

Shinya, A.

Si, G. Y.

G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
[CrossRef]

Smith, S. D.

S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun.17(3), 332–335 (1976).
[CrossRef]

Sohler, W.

Solgaard, O.

S. Kim, S. Hadzialic, A. S. Sudbo, and O. Solgaard, “Reflectivity and polarization dependence of polysilicon single-film broadband photonic crystal micro-mirrors,” Opt. Express20(6), 6306–6315 (2012).
[CrossRef] [PubMed]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys.98(3), 033102 (2005).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12(8), 1575–1582 (2004).
[CrossRef] [PubMed]

Spajer, M.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater.27(8), 1421–1425 (2005).
[CrossRef]

Sridhar, S.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys.112(7), 074303 (2012).
[CrossRef]

Stegeman, G. I.

Stone, R. L.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996).
[CrossRef]

Sudbo, A. S.

Suh, W.

Teng, J. H.

G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
[CrossRef]

Teo, E. J.

G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
[CrossRef]

Turner, E. H.

I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett.24(12), 622–624 (1974).
[CrossRef]

Ulliac, G.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

Viktorovitch, P.

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron.13(2), 244–252 (2007).
[CrossRef]

Wada, N.

Wei Wong, C.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett.100(2), 021110 (2012).
[CrossRef]

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996).
[CrossRef]

Yang, H.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Yang, W.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Yavuzcetin, O.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys.112(7), 074303 (2012).
[CrossRef]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

Zhao, D.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Zheng, J.

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett.100(2), 021110 (2012).
[CrossRef]

Zhou, W.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

Appl. Phys. Lett.

N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, and V. Laude, “Acousto-optically tunable lithium niobate photonic crystal,” Appl. Phys. Lett.96(13), 131103 (2010).
[CrossRef]

C. H. Bui, J. Zheng, S. W. Hoch, L. Y. T. Lee, J. G. E. Harris, and C. Wei Wong, “High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling,” Appl. Phys. Lett.100(2), 021110 (2012).
[CrossRef]

I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E. H. Turner, “Lithium niobate ridge waveguide modulator,” Appl. Phys. Lett.24(12), 622–624 (1974).
[CrossRef]

E. Dogheche, D. Remiens, S. Shikata, A. Hachigo, and H. Nakahata, “High-frequency surface acoustic wave devices based on LiNbO3/diamond multilayered structure,” Appl. Phys. Lett.87(21), 213503 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron.6(1), 69–82 (2000).
[CrossRef]

S. Boutami, B. B. Bakir, J. L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic Crystal-Based MOEMS Devices,” IEEE J. Sel. Top. Quantum Electron.13(2), 244–252 (2007).
[CrossRef]

J. Appl. Phys.

O. Yavuzcetin, H. P. Novikov, R. L. Dally, S. T. Malley, N. R. Perry, B. Ozturk, and S. Sridhar, “Photonic crystal fabrication in lithium niobate via pattern transfer through wet and dry etched chromium mask,” J. Appl. Phys.112(7), 074303 (2012).
[CrossRef]

X. Lansiaux, E. Dogheche, D. Remiens, M. Guilloux-viry, A. Perrin, and P. Ruterana, “LiNbO3 thick films grown on sapphire by using a multistep sputtering process,” J. Appl. Phys.90(10), 5274–5277 (2001).
[CrossRef]

W. Suh, O. Solgaard, and S. Fan, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys.98(3), 033102 (2005).
[CrossRef]

J. Lightwave Technol.

E. L. Wooten, R. L. Stone, E. W. Miles, and E. M. Bradley, “Rapidly tunable narrowband wavelength filter using LiNbO3 unbalanced Mach-Zehnder interferometers,” J. Lightwave Technol.14(11), 2530–2536 (1996).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D Appl. Phys.

W. Zhou, Z. Ma, H. Yang, Z. Qiang, G. Qin, H. Pang, L. Chen, W. Yang, S. Chuwongin, and D. Zhao, “Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes,” J. Phys. D Appl. Phys.42(23), 234007 (2009).
[CrossRef]

J. Vac. Sci. Technol. B

G. Y. Si, E. J. Teo, A. A. Bettiol, J. H. Teng, and A. J. Danner, “Suspended slab and photonic crystal waveguides in lithium niobate,” J. Vac. Sci. Technol. B28(2), 316–320 (2010).
[CrossRef]

Nat. Photonics

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’Innocenti, and P. Günter, “Electro-optically tunable microring resonators in lithium niobate,” Nat. Photonics1(7), 407–410 (2007).
[CrossRef]

Opt. Commun.

S. D. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun.17(3), 332–335 (1976).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

F. Lacour, N. Courjal, M. P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater.27(8), 1421–1425 (2005).
[CrossRef]

F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M. R. Beghoul, E. Fogarassy, and N. Boutaoui, “Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation,” Opt. Mater.32(11), 1427–1434 (2010).
[CrossRef]

Phys. Rev. B

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B73(11), 115126 (2006).
[CrossRef]

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the free-standing X-cut LiNbO3 PhC slab with slab thickness (t), radius of air holes (r) and lattice constant (a). The ordinary refractive index (no) of the slab is 2.227. The inset shows the fabricated photonic crystal slab on an X-cut LiNbO3 substrate.

Fig. 2
Fig. 2

Simulated normal-incident transmission spectra of PhC slabs with various slab thicknesses (a) 300nm, (b) 700nm, (c) 1500nm. The lattice constant (a) and radius (r) of holes keep the same value: a = 900nm and the ratio of r / a = 0.28.

Fig. 3
Fig. 3

Comparison of simulated transmission spectra of PhC slabs for different lattice types. The transmission spectra of PhC slabs with a square lattice are shown with solid lines, while transmission spectra of PhC slabs with a triangular lattice are shown with dashed lines. (a) The structure consists of a slab thickness t = 800 nm, lattice constant a = 800nm and the ratio of r / a = 0.1, (b) The structure consists of a slab thickness t = 800 nm, lattice constant a = 800nm and the ratio of r / a = 0.31.

Fig. 4
Fig. 4

Comparison of simulated transmission spectra of triangular lattice PhC slabs with a radius of (a) r / a = 0.1, (b) r / a = 0.153, (c) r / a = 0.26, and (d) r / a = 0.31. The lattice constant (a) and slab thickness (t) are kept at: a = 800nm, t = 800nm.

Fig. 5
Fig. 5

(a) Comparison of simulated transmission spectra of polarized light normally incident on a LiNbO3 PhC slab. The transmission spectra of y-polarized light are shown with solid lines, while the transmission spectra of z-polarized light are shown with dashed lines. The structure consists of a square lattice with a slab thickness t of 800nm, a lattice constant a of 800nm, and a radius r of 150nm. The inset (b) shows the coordinate system of the slab. The inset (c) also shows the comparison of simulated transmission spectra of polarized light on a different structure, which consists of a triangular lattice with a slab thickness t of 800nm, a lattice constant a of 800nm, and a radius r of 250nm.

Fig. 6
Fig. 6

SEM images of the fabricated free-standing X-cut LiNbO3 PhC slab. (a)Top view: square lattice with lattice constant a = 1000nm and radius of r / a = 0.15. (b)Side view: the free-standing PhC slab with a slab thickness of 800nm and suspended 250nm above the substrate.

Fig. 7
Fig. 7

Reflection spectra of un-polarized light normally incident on the fabricated PhC slab. Red solid line—measured reflection spectra. Blue dashed line—simulated reflection spectra.

Metrics