Abstract

Being the closest layer to our body, textiles provide an ideal platform for integrating sensors and actuators to monitor physiological signals. We used a woven textile to integrate photodiodes and light emitting diodes. LEDs and photodiodes enable near-infrared spectroscopy (NIRS) systems to monitor arterial oxygen saturation and oxygenated and deoxygenated hemoglobin in human tissue. Photodiodes and LEDs are mounted on flexible plastic strips with widths of 4 mm and 2 mm, respectively. The strips are woven during the textile fabrication process in weft direction and interconnected with copper wires with a diameter of 71 μm in warp direction. The sensor textile is applied to measure the pulse waves in the fingertip and the changes in oxygenated and deoxygenated hemoglobin during a venous occlusion at the calf. The system has a signal-to-noise ratio of more than 70 dB and a system drift of 0.37% ± 0.48%. The presented work demonstrates the feasibility of integrating photodiodes and LEDs into woven textiles, a step towards wearable health monitoring devices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Suh, K. Carroll, and N. Cassill, “Critical Review on Smart Clothing Product Development,” J. Text. .Apparel Technol. Manage.6, 1–18 (2010).
  2. H. Harms, O. Amft, G. Tröster, and D. Roggen, “Smash: A distributed sensing and processing garment for the classification of upper body postures,” in Proceedings of the ICST 3rd Int. Conf. on Body Area Networks, (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, Brussels, 2008), 22:1–22:8.
  3. L. van Langenhove and C. Hertleer, “Smart clothing: a new life,” Int. J. Clothing Sci. Technol.16(1/2), 63–72 (2004).
    [CrossRef]
  4. J. W. Zheng, Z. B. Zhang, T. H. Wu, and Y. Zhang, “A wearable mobihealth care system supporting real-time diagnosis and alarm,” Med. Biol. Eng. Comput.45(9), 877–885 (2007).
    [CrossRef] [PubMed]
  5. C. Mattmann, O. Amft, H. Harms, G. Tröster, and F. Clemens, “Recognizing upper body postures using textile strain sensors,” in Proceedings of the 11th International Symposium on Wearable Computers, (Institute of Electrical and Electronics Engineers, New York, 2007), 29–36.
  6. S. Park, K. Mackenzie, and S. Jayaraman, “The wearable motherboard: A framework for personalized mobile information processing (PMIP),” in Proceedings of the 39th annual Design Automation Conf. (Association for Computing Machinery, New York, 2002), 174.
  7. I. Locher and G. Tröster, “Fundamental building blocks for circuits on textiles,” IEEE Trans. Adv. Packag.30(3), 541–550 (2007).
    [CrossRef]
  8. T. Martin, M. Jones, J. Chong, M. Quirk, K. Baumann, and L. Passauer, “Design and implementation of an electronic textile jumpsuit” in Proceedings of the 13th International Symposium on Wearable Computers, (Institute of Electrical and Electronics Engineers, New York, 2009), 157–158.
  9. I. Locher and G. Tröster, “Screen-printed textile transmission lines,” Text. Res. J.77(11), 837–842 (2007).
    [CrossRef]
  10. T. Linz, L. Gourmelon, and G. Langereis, “Contacless EMG sensors embroidered onto textile,” in Proceedings of the 4th Int. Workshop on Wearable and Implantable Body Sensor Networks, (Springer, 2007), 29–34.
  11. Y. Kim, H. Kim, and H. Yoo, “Electrical characterization of screen-printed circuits on the fabric,” IEEE Trans. Adv. Packag.33, 196–205 (2010).
  12. C. Zysset, K. Cherenack, T. Kinkeldei, and G. Tröster, “Weaving integrated circuits into textiles,” in Proceedings of the 14th International Symposium on Wearable Computers, (Institute of Electrical and Electronics Engineers, New York, 2010), 1–8.
  13. C. Zysset, T. Kinkeldei, N. Münzenrieder, K. Cherenack, and G. Tröster, “Integration Method for Electronics in Woven Textiles,” IEEE Trans Compon. Packag. Manuf. Technol.2(7), 1107–1117 (2012).
    [CrossRef]
  14. T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. R. Soc. London, Ser. A369, 4591–4604 (2011).
    [CrossRef]
  15. D. Haensse, P. Szabo, D. Brown, J. C. Fauchère, P. Niederer, H. U. Bucher, and M. Wolf, “A new multichannel near infrared spectrophotometry system for functional studies of the brain in adults and neonates,” Opt. Express13(12), 4525–4538 (2005).
    [CrossRef] [PubMed]
  16. D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
    [PubMed]
  17. A. D. Edwards, C. Richardson, P. van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, and E. O. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol.75(4), 1884–1889 (1993).
    [PubMed]
  18. M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
    [CrossRef] [PubMed]
  19. J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth.103(Suppl 1), i3–i13 (2009).
    [CrossRef] [PubMed]
  20. K. K. Tremper and S. J. Barker, “Pulse oximetry,” Anesthesiology70(1), 98–108 (1989).
    [CrossRef] [PubMed]
  21. H. Owen-Reece, M. Smith, C. E. Elwell, and J. C. Goldstone, “Near infrared spectroscopy,” Br. J. Anaesth.82(3), 418–426 (1999).
    [CrossRef] [PubMed]
  22. M. Rothmaier, B. Selm, S. Spichtig, D. Haensse, and M. Wolf, “Photonic textiles for pulse oximetry,” Opt. Express16(17), 12973–12986 (2008).
    [CrossRef] [PubMed]
  23. A. Afaq, P. S. Montgomery, K. J. Scott, S. M. Blevins, T. L. Whitsett, and A. W. Gardner, “The effect of current cigarette smoking on calf muscle hemoglobin oxygen saturation in patients with intermittent claudication,” Vasc. Med.12, 167–173 (2007).
    [CrossRef] [PubMed]
  24. R. Boushel and C. A. Piantadosi, “Near-infrared spectroscopy for monitoring muscle oxygenation,” Acta Physiol. Scand.168(4), 615–622 (2000).
    [CrossRef] [PubMed]
  25. A. Jubran, “Pulse oximetry,” Crit. Care3(2), R11–R17 (1999).
    [CrossRef] [PubMed]
  26. S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
    [CrossRef] [PubMed]
  27. M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol.29(4), 463–487 (2004).
    [CrossRef] [PubMed]
  28. K. K. McCully, L. Landsberg, M. Suarez, M. Hofmann, and J. D. Posner, “Identification of Peripheral Vascular Disease in Elderly Subjects Using Optical Spectroscopy,” J. Gerontol. A Biol. Sci. Med. Sci.52A(3), B159–B165 (1997).
    [CrossRef] [PubMed]
  29. T. Muehlemann, D. Haensse, and M. Wolf, “Wireless miniaturized in-vivo near infrared imaging,” Opt. Express16(14), 10323–10330 (2008).
    [CrossRef] [PubMed]
  30. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
    [CrossRef] [PubMed]
  31. J. G. Webster, Design of Pulse Oximeters (IOP Bristol 1997).
  32. R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bülow, and M. Kjaer, “Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease,” Scand. J. Med. Sci. Sports11(4), 213–222 (2001).
    [CrossRef] [PubMed]
  33. U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, A. Michalos, and E. Gratton, “Regional Differences of Hemodynamics and Oxygenation in the Human Calf Muscle Detected with Near-Infrared Spectrophotometry,” J. Vasc. Interv. Radiol.18(9), 1094–1101 (2007).
    [CrossRef] [PubMed]
  34. W. Cui, C. Kumar, and B. Chance, “Experimental study of migration depth for the photons measured at sample surface,” in Optics, Electro-Optics, and Laser Applications in Science and Engineering, 180–191 (1991).
  35. T. L. Wang and C. R. Hung, “Role of tissue oxygen saturation monitoring in diagnosing necrotizing fasciitis of the lower limbs,” Ann. Emerg. Med.44(3), 222–228 (2004).
    [CrossRef] [PubMed]
  36. U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol.510, 225–230 (2003).
    [CrossRef] [PubMed]
  37. K. J. Kek, R. Kibe, M. Niwayama, N. Kudo, and K. Yamamoto, “Optical imaging instrument for muscle oxygenation based on spatially resolved spectroscopy,” Opt. Express16(22), 18173–18187 (2008).
    [CrossRef] [PubMed]
  38. J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-Infrared Spectroscopy: Theory and Applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996).
    [CrossRef] [PubMed]
  39. P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The Effect of Optode Positioning on Optical Pathlength in Near Infrared Spectroscopy of Brain,” Adv. Exp. Med. Biol.277, 79–84 (1990).
    [CrossRef] [PubMed]
  40. J. Schumm, S. Axmann, B. Arnrich, and G. Tröster, “Automatic Signal Appraisal for Unobtrusive ECG Measurements,” Int. J. Bioelectromagn.12, 158–164 (2010).
  41. G. Medrano, L. Beckmann, N. Zimmermann, T. Grundmann, T. Gries, and S. Leonhardt, “Bioimpedance Spectroscopy with textile Electrodes for a continuous Monitoring Application,” in 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), 23–28 (2007).

2012

C. Zysset, T. Kinkeldei, N. Münzenrieder, K. Cherenack, and G. Tröster, “Integration Method for Electronics in Woven Textiles,” IEEE Trans Compon. Packag. Manuf. Technol.2(7), 1107–1117 (2012).
[CrossRef]

2011

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. R. Soc. London, Ser. A369, 4591–4604 (2011).
[CrossRef]

2010

M. Suh, K. Carroll, and N. Cassill, “Critical Review on Smart Clothing Product Development,” J. Text. .Apparel Technol. Manage.6, 1–18 (2010).

Y. Kim, H. Kim, and H. Yoo, “Electrical characterization of screen-printed circuits on the fabric,” IEEE Trans. Adv. Packag.33, 196–205 (2010).

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

J. Schumm, S. Axmann, B. Arnrich, and G. Tröster, “Automatic Signal Appraisal for Unobtrusive ECG Measurements,” Int. J. Bioelectromagn.12, 158–164 (2010).

2009

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth.103(Suppl 1), i3–i13 (2009).
[CrossRef] [PubMed]

2008

2007

A. Afaq, P. S. Montgomery, K. J. Scott, S. M. Blevins, T. L. Whitsett, and A. W. Gardner, “The effect of current cigarette smoking on calf muscle hemoglobin oxygen saturation in patients with intermittent claudication,” Vasc. Med.12, 167–173 (2007).
[CrossRef] [PubMed]

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, A. Michalos, and E. Gratton, “Regional Differences of Hemodynamics and Oxygenation in the Human Calf Muscle Detected with Near-Infrared Spectrophotometry,” J. Vasc. Interv. Radiol.18(9), 1094–1101 (2007).
[CrossRef] [PubMed]

J. W. Zheng, Z. B. Zhang, T. H. Wu, and Y. Zhang, “A wearable mobihealth care system supporting real-time diagnosis and alarm,” Med. Biol. Eng. Comput.45(9), 877–885 (2007).
[CrossRef] [PubMed]

I. Locher and G. Tröster, “Fundamental building blocks for circuits on textiles,” IEEE Trans. Adv. Packag.30(3), 541–550 (2007).
[CrossRef]

I. Locher and G. Tröster, “Screen-printed textile transmission lines,” Text. Res. J.77(11), 837–842 (2007).
[CrossRef]

2005

2004

T. L. Wang and C. R. Hung, “Role of tissue oxygen saturation monitoring in diagnosing necrotizing fasciitis of the lower limbs,” Ann. Emerg. Med.44(3), 222–228 (2004).
[CrossRef] [PubMed]

L. van Langenhove and C. Hertleer, “Smart clothing: a new life,” Int. J. Clothing Sci. Technol.16(1/2), 63–72 (2004).
[CrossRef]

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol.29(4), 463–487 (2004).
[CrossRef] [PubMed]

2003

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol.510, 225–230 (2003).
[CrossRef] [PubMed]

2002

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

2001

R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bülow, and M. Kjaer, “Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease,” Scand. J. Med. Sci. Sports11(4), 213–222 (2001).
[CrossRef] [PubMed]

2000

R. Boushel and C. A. Piantadosi, “Near-infrared spectroscopy for monitoring muscle oxygenation,” Acta Physiol. Scand.168(4), 615–622 (2000).
[CrossRef] [PubMed]

1999

A. Jubran, “Pulse oximetry,” Crit. Care3(2), R11–R17 (1999).
[CrossRef] [PubMed]

H. Owen-Reece, M. Smith, C. E. Elwell, and J. C. Goldstone, “Near infrared spectroscopy,” Br. J. Anaesth.82(3), 418–426 (1999).
[CrossRef] [PubMed]

1997

K. K. McCully, L. Landsberg, M. Suarez, M. Hofmann, and J. D. Posner, “Identification of Peripheral Vascular Disease in Elderly Subjects Using Optical Spectroscopy,” J. Gerontol. A Biol. Sci. Med. Sci.52A(3), B159–B165 (1997).
[CrossRef] [PubMed]

1996

J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-Infrared Spectroscopy: Theory and Applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996).
[CrossRef] [PubMed]

1994

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

1993

A. D. Edwards, C. Richardson, P. van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, and E. O. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol.75(4), 1884–1889 (1993).
[PubMed]

1990

P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The Effect of Optode Positioning on Optical Pathlength in Near Infrared Spectroscopy of Brain,” Adv. Exp. Med. Biol.277, 79–84 (1990).
[CrossRef] [PubMed]

1989

K. K. Tremper and S. J. Barker, “Pulse oximetry,” Anesthesiology70(1), 98–108 (1989).
[CrossRef] [PubMed]

1988

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Afaq, A.

A. Afaq, P. S. Montgomery, K. J. Scott, S. M. Blevins, T. L. Whitsett, and A. W. Gardner, “The effect of current cigarette smoking on calf muscle hemoglobin oxygen saturation in patients with intermittent claudication,” Vasc. Med.12, 167–173 (2007).
[CrossRef] [PubMed]

Arango, M.

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth.103(Suppl 1), i3–i13 (2009).
[CrossRef] [PubMed]

Arnrich, B.

J. Schumm, S. Axmann, B. Arnrich, and G. Tröster, “Automatic Signal Appraisal for Unobtrusive ECG Measurements,” Int. J. Bioelectromagn.12, 158–164 (2010).

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Arridge, S. R.

P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The Effect of Optode Positioning on Optical Pathlength in Near Infrared Spectroscopy of Brain,” Adv. Exp. Med. Biol.277, 79–84 (1990).
[CrossRef] [PubMed]

Axmann, S.

J. Schumm, S. Axmann, B. Arnrich, and G. Tröster, “Automatic Signal Appraisal for Unobtrusive ECG Measurements,” Int. J. Bioelectromagn.12, 158–164 (2010).

Barker, S. J.

K. K. Tremper and S. J. Barker, “Pulse oximetry,” Anesthesiology70(1), 98–108 (1989).
[CrossRef] [PubMed]

Blasi, A.

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

Blevins, S. M.

A. Afaq, P. S. Montgomery, K. J. Scott, S. M. Blevins, T. L. Whitsett, and A. W. Gardner, “The effect of current cigarette smoking on calf muscle hemoglobin oxygen saturation in patients with intermittent claudication,” Vasc. Med.12, 167–173 (2007).
[CrossRef] [PubMed]

Bolinger, L.

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

Boushel, R.

R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bülow, and M. Kjaer, “Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease,” Scand. J. Med. Sci. Sports11(4), 213–222 (2001).
[CrossRef] [PubMed]

R. Boushel and C. A. Piantadosi, “Near-infrared spectroscopy for monitoring muscle oxygenation,” Acta Physiol. Scand.168(4), 615–622 (2000).
[CrossRef] [PubMed]

Brown, D.

Bucher, H. U.

Bülow, J.

R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bülow, and M. Kjaer, “Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease,” Scand. J. Med. Sci. Sports11(4), 213–222 (2001).
[CrossRef] [PubMed]

Carroll, K.

M. Suh, K. Carroll, and N. Cassill, “Critical Review on Smart Clothing Product Development,” J. Text. .Apparel Technol. Manage.6, 1–18 (2010).

Cassill, N.

M. Suh, K. Carroll, and N. Cassill, “Critical Review on Smart Clothing Product Development,” J. Text. .Apparel Technol. Manage.6, 1–18 (2010).

Chance, B.

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. R. Soc. London, Ser. A369, 4591–4604 (2011).
[CrossRef]

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

Cherenack, K.

C. Zysset, T. Kinkeldei, N. Münzenrieder, K. Cherenack, and G. Tröster, “Integration Method for Electronics in Woven Textiles,” IEEE Trans Compon. Packag. Manuf. Technol.2(7), 1107–1117 (2012).
[CrossRef]

Choi, J. H.

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, A. Michalos, and E. Gratton, “Regional Differences of Hemodynamics and Oxygenation in the Human Calf Muscle Detected with Near-Infrared Spectrophotometry,” J. Vasc. Interv. Radiol.18(9), 1094–1101 (2007).
[CrossRef] [PubMed]

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol.510, 225–230 (2003).
[CrossRef] [PubMed]

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Cope, M.

A. D. Edwards, C. Richardson, P. van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, and E. O. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol.75(4), 1884–1889 (1993).
[PubMed]

P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The Effect of Optode Positioning on Optical Pathlength in Near Infrared Spectroscopy of Brain,” Adv. Exp. Med. Biol.277, 79–84 (1990).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Delpy, D. T.

J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-Infrared Spectroscopy: Theory and Applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996).
[CrossRef] [PubMed]

A. D. Edwards, C. Richardson, P. van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, and E. O. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol.75(4), 1884–1889 (1993).
[PubMed]

P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The Effect of Optode Positioning on Optical Pathlength in Near Infrared Spectroscopy of Brain,” Adv. Exp. Med. Biol.277, 79–84 (1990).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Edwards, A. D.

A. D. Edwards, C. Richardson, P. van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, and E. O. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol.75(4), 1884–1889 (1993).
[PubMed]

Elwell, C.

A. D. Edwards, C. Richardson, P. van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, and E. O. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol.75(4), 1884–1889 (1993).
[PubMed]

Elwell, C. E.

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

H. Owen-Reece, M. Smith, C. E. Elwell, and J. C. Goldstone, “Near infrared spectroscopy,” Br. J. Anaesth.82(3), 418–426 (1999).
[CrossRef] [PubMed]

Fauchère, J. C.

Ferrari, M.

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol.29(4), 463–487 (2004).
[CrossRef] [PubMed]

Gardner, A. W.

A. Afaq, P. S. Montgomery, K. J. Scott, S. M. Blevins, T. L. Whitsett, and A. W. Gardner, “The effect of current cigarette smoking on calf muscle hemoglobin oxygen saturation in patients with intermittent claudication,” Vasc. Med.12, 167–173 (2007).
[CrossRef] [PubMed]

Goldstone, J. C.

H. Owen-Reece, M. Smith, C. E. Elwell, and J. C. Goldstone, “Near infrared spectroscopy,” Br. J. Anaesth.82(3), 418–426 (1999).
[CrossRef] [PubMed]

Gonzales-Alonzo, J.

R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bülow, and M. Kjaer, “Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease,” Scand. J. Med. Sci. Sports11(4), 213–222 (2001).
[CrossRef] [PubMed]

Gratton, E.

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, A. Michalos, and E. Gratton, “Regional Differences of Hemodynamics and Oxygenation in the Human Calf Muscle Detected with Near-Infrared Spectrophotometry,” J. Vasc. Interv. Radiol.18(9), 1094–1101 (2007).
[CrossRef] [PubMed]

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol.510, 225–230 (2003).
[CrossRef] [PubMed]

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Gupta, R.

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Haensse, D.

Hamaoka, T.

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. R. Soc. London, Ser. A369, 4591–4604 (2011).
[CrossRef]

Hertleer, C.

L. van Langenhove and C. Hertleer, “Smart clothing: a new life,” Int. J. Clothing Sci. Technol.16(1/2), 63–72 (2004).
[CrossRef]

Hofmann, M.

K. K. McCully, L. Landsberg, M. Suarez, M. Hofmann, and J. D. Posner, “Identification of Peripheral Vascular Disease in Elderly Subjects Using Optical Spectroscopy,” J. Gerontol. A Biol. Sci. Med. Sci.52A(3), B159–B165 (1997).
[CrossRef] [PubMed]

Hung, C. R.

T. L. Wang and C. R. Hung, “Role of tissue oxygen saturation monitoring in diagnosing necrotizing fasciitis of the lower limbs,” Ann. Emerg. Med.44(3), 222–228 (2004).
[CrossRef] [PubMed]

Jubran, A.

A. Jubran, “Pulse oximetry,” Crit. Care3(2), R11–R17 (1999).
[CrossRef] [PubMed]

Kek, K. J.

Kendrick, K.

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

Kibe, R.

Kim, H.

Y. Kim, H. Kim, and H. Yoo, “Electrical characterization of screen-printed circuits on the fabric,” IEEE Trans. Adv. Packag.33, 196–205 (2010).

Kim, Y.

Y. Kim, H. Kim, and H. Yoo, “Electrical characterization of screen-printed circuits on the fabric,” IEEE Trans. Adv. Packag.33, 196–205 (2010).

Kinkeldei, T.

C. Zysset, T. Kinkeldei, N. Münzenrieder, K. Cherenack, and G. Tröster, “Integration Method for Electronics in Woven Textiles,” IEEE Trans Compon. Packag. Manuf. Technol.2(7), 1107–1117 (2012).
[CrossRef]

Kjaer, M.

R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bülow, and M. Kjaer, “Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease,” Scand. J. Med. Sci. Sports11(4), 213–222 (2001).
[CrossRef] [PubMed]

Kudo, N.

Landsberg, L.

K. K. McCully, L. Landsberg, M. Suarez, M. Hofmann, and J. D. Posner, “Identification of Peripheral Vascular Disease in Elderly Subjects Using Optical Spectroscopy,” J. Gerontol. A Biol. Sci. Med. Sci.52A(3), B159–B165 (1997).
[CrossRef] [PubMed]

Langberg, H.

R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bülow, and M. Kjaer, “Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease,” Scand. J. Med. Sci. Sports11(4), 213–222 (2001).
[CrossRef] [PubMed]

Li, H.

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

Lloyd-Fox, S.

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

Locher, I.

I. Locher and G. Tröster, “Fundamental building blocks for circuits on textiles,” IEEE Trans. Adv. Packag.30(3), 541–550 (2007).
[CrossRef]

I. Locher and G. Tröster, “Screen-printed textile transmission lines,” Text. Res. J.77(11), 837–842 (2007).
[CrossRef]

Mancini, D. M.

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

McCully, K. K.

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. R. Soc. London, Ser. A369, 4591–4604 (2011).
[CrossRef]

K. K. McCully, L. Landsberg, M. Suarez, M. Hofmann, and J. D. Posner, “Identification of Peripheral Vascular Disease in Elderly Subjects Using Optical Spectroscopy,” J. Gerontol. A Biol. Sci. Med. Sci.52A(3), B159–B165 (1997).
[CrossRef] [PubMed]

Michalos, A.

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, A. Michalos, and E. Gratton, “Regional Differences of Hemodynamics and Oxygenation in the Human Calf Muscle Detected with Near-Infrared Spectrophotometry,” J. Vasc. Interv. Radiol.18(9), 1094–1101 (2007).
[CrossRef] [PubMed]

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol.510, 225–230 (2003).
[CrossRef] [PubMed]

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Montgomery, P. S.

A. Afaq, P. S. Montgomery, K. J. Scott, S. M. Blevins, T. L. Whitsett, and A. W. Gardner, “The effect of current cigarette smoking on calf muscle hemoglobin oxygen saturation in patients with intermittent claudication,” Vasc. Med.12, 167–173 (2007).
[CrossRef] [PubMed]

Mottola, L.

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol.29(4), 463–487 (2004).
[CrossRef] [PubMed]

Muehlemann, T.

Münzenrieder, N.

C. Zysset, T. Kinkeldei, N. Münzenrieder, K. Cherenack, and G. Tröster, “Integration Method for Electronics in Woven Textiles,” IEEE Trans Compon. Packag. Manuf. Technol.2(7), 1107–1117 (2012).
[CrossRef]

Murkin, J. M.

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth.103(Suppl 1), i3–i13 (2009).
[CrossRef] [PubMed]

Niederer, P.

Niwayama, M.

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. R. Soc. London, Ser. A369, 4591–4604 (2011).
[CrossRef]

K. J. Kek, R. Kibe, M. Niwayama, N. Kudo, and K. Yamamoto, “Optical imaging instrument for muscle oxygenation based on spatially resolved spectroscopy,” Opt. Express16(22), 18173–18187 (2008).
[CrossRef] [PubMed]

Olesen, J.

R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bülow, and M. Kjaer, “Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease,” Scand. J. Med. Sci. Sports11(4), 213–222 (2001).
[CrossRef] [PubMed]

Owen-Reece, H.

H. Owen-Reece, M. Smith, C. E. Elwell, and J. C. Goldstone, “Near infrared spectroscopy,” Br. J. Anaesth.82(3), 418–426 (1999).
[CrossRef] [PubMed]

Paunescu, L. A.

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, A. Michalos, and E. Gratton, “Regional Differences of Hemodynamics and Oxygenation in the Human Calf Muscle Detected with Near-Infrared Spectrophotometry,” J. Vasc. Interv. Radiol.18(9), 1094–1101 (2007).
[CrossRef] [PubMed]

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol.510, 225–230 (2003).
[CrossRef] [PubMed]

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Piantadosi, C. A.

R. Boushel and C. A. Piantadosi, “Near-infrared spectroscopy for monitoring muscle oxygenation,” Acta Physiol. Scand.168(4), 615–622 (2000).
[CrossRef] [PubMed]

Posner, J. D.

K. K. McCully, L. Landsberg, M. Suarez, M. Hofmann, and J. D. Posner, “Identification of Peripheral Vascular Disease in Elderly Subjects Using Optical Spectroscopy,” J. Gerontol. A Biol. Sci. Med. Sci.52A(3), B159–B165 (1997).
[CrossRef] [PubMed]

Quaresima, V.

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol.29(4), 463–487 (2004).
[CrossRef] [PubMed]

Reynolds, E. O.

A. D. Edwards, C. Richardson, P. van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, and E. O. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol.75(4), 1884–1889 (1993).
[PubMed]

Richardson, C.

A. D. Edwards, C. Richardson, P. van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, and E. O. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol.75(4), 1884–1889 (1993).
[PubMed]

Rothmaier, M.

Safonova, L. P.

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol.510, 225–230 (2003).
[CrossRef] [PubMed]

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Samra, S.

J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-Infrared Spectroscopy: Theory and Applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996).
[CrossRef] [PubMed]

Schumm, J.

J. Schumm, S. Axmann, B. Arnrich, and G. Tröster, “Automatic Signal Appraisal for Unobtrusive ECG Measurements,” Int. J. Bioelectromagn.12, 158–164 (2010).

Scott, K. J.

A. Afaq, P. S. Montgomery, K. J. Scott, S. M. Blevins, T. L. Whitsett, and A. W. Gardner, “The effect of current cigarette smoking on calf muscle hemoglobin oxygen saturation in patients with intermittent claudication,” Vasc. Med.12, 167–173 (2007).
[CrossRef] [PubMed]

Selm, B.

Smith, M.

H. Owen-Reece, M. Smith, C. E. Elwell, and J. C. Goldstone, “Near infrared spectroscopy,” Br. J. Anaesth.82(3), 418–426 (1999).
[CrossRef] [PubMed]

Spichtig, S.

Suarez, M.

K. K. McCully, L. Landsberg, M. Suarez, M. Hofmann, and J. D. Posner, “Identification of Peripheral Vascular Disease in Elderly Subjects Using Optical Spectroscopy,” J. Gerontol. A Biol. Sci. Med. Sci.52A(3), B159–B165 (1997).
[CrossRef] [PubMed]

Suh, M.

M. Suh, K. Carroll, and N. Cassill, “Critical Review on Smart Clothing Product Development,” J. Text. .Apparel Technol. Manage.6, 1–18 (2010).

Szabo, P.

Tremper, K. K.

J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-Infrared Spectroscopy: Theory and Applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996).
[CrossRef] [PubMed]

K. K. Tremper and S. J. Barker, “Pulse oximetry,” Anesthesiology70(1), 98–108 (1989).
[CrossRef] [PubMed]

Tröster, G.

C. Zysset, T. Kinkeldei, N. Münzenrieder, K. Cherenack, and G. Tröster, “Integration Method for Electronics in Woven Textiles,” IEEE Trans Compon. Packag. Manuf. Technol.2(7), 1107–1117 (2012).
[CrossRef]

J. Schumm, S. Axmann, B. Arnrich, and G. Tröster, “Automatic Signal Appraisal for Unobtrusive ECG Measurements,” Int. J. Bioelectromagn.12, 158–164 (2010).

I. Locher and G. Tröster, “Fundamental building blocks for circuits on textiles,” IEEE Trans. Adv. Packag.30(3), 541–550 (2007).
[CrossRef]

I. Locher and G. Tröster, “Screen-printed textile transmission lines,” Text. Res. J.77(11), 837–842 (2007).
[CrossRef]

van der Zee, P.

A. D. Edwards, C. Richardson, P. van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, and E. O. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol.75(4), 1884–1889 (1993).
[PubMed]

P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The Effect of Optode Positioning on Optical Pathlength in Near Infrared Spectroscopy of Brain,” Adv. Exp. Med. Biol.277, 79–84 (1990).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

van Langenhove, L.

L. van Langenhove and C. Hertleer, “Smart clothing: a new life,” Int. J. Clothing Sci. Technol.16(1/2), 63–72 (2004).
[CrossRef]

Wahr, J. A.

J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-Infrared Spectroscopy: Theory and Applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996).
[CrossRef] [PubMed]

Wang, T. L.

T. L. Wang and C. R. Hung, “Role of tissue oxygen saturation monitoring in diagnosing necrotizing fasciitis of the lower limbs,” Ann. Emerg. Med.44(3), 222–228 (2004).
[CrossRef] [PubMed]

Whitsett, T. L.

A. Afaq, P. S. Montgomery, K. J. Scott, S. M. Blevins, T. L. Whitsett, and A. W. Gardner, “The effect of current cigarette smoking on calf muscle hemoglobin oxygen saturation in patients with intermittent claudication,” Vasc. Med.12, 167–173 (2007).
[CrossRef] [PubMed]

Wilson, J. R.

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

Wolf, M.

M. Rothmaier, B. Selm, S. Spichtig, D. Haensse, and M. Wolf, “Photonic textiles for pulse oximetry,” Opt. Express16(17), 12973–12986 (2008).
[CrossRef] [PubMed]

T. Muehlemann, D. Haensse, and M. Wolf, “Wireless miniaturized in-vivo near infrared imaging,” Opt. Express16(14), 10323–10330 (2008).
[CrossRef] [PubMed]

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, A. Michalos, and E. Gratton, “Regional Differences of Hemodynamics and Oxygenation in the Human Calf Muscle Detected with Near-Infrared Spectrophotometry,” J. Vasc. Interv. Radiol.18(9), 1094–1101 (2007).
[CrossRef] [PubMed]

D. Haensse, P. Szabo, D. Brown, J. C. Fauchère, P. Niederer, H. U. Bucher, and M. Wolf, “A new multichannel near infrared spectrophotometry system for functional studies of the brain in adults and neonates,” Opt. Express13(12), 4525–4538 (2005).
[CrossRef] [PubMed]

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol.510, 225–230 (2003).
[CrossRef] [PubMed]

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Wolf, U.

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, A. Michalos, and E. Gratton, “Regional Differences of Hemodynamics and Oxygenation in the Human Calf Muscle Detected with Near-Infrared Spectrophotometry,” J. Vasc. Interv. Radiol.18(9), 1094–1101 (2007).
[CrossRef] [PubMed]

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol.510, 225–230 (2003).
[CrossRef] [PubMed]

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Wu, T. H.

J. W. Zheng, Z. B. Zhang, T. H. Wu, and Y. Zhang, “A wearable mobihealth care system supporting real-time diagnosis and alarm,” Med. Biol. Eng. Comput.45(9), 877–885 (2007).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J. S.

A. D. Edwards, C. Richardson, P. van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, and E. O. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol.75(4), 1884–1889 (1993).
[PubMed]

Yamamoto, K.

Yoo, H.

Y. Kim, H. Kim, and H. Yoo, “Electrical characterization of screen-printed circuits on the fabric,” IEEE Trans. Adv. Packag.33, 196–205 (2010).

Zhang, Y.

J. W. Zheng, Z. B. Zhang, T. H. Wu, and Y. Zhang, “A wearable mobihealth care system supporting real-time diagnosis and alarm,” Med. Biol. Eng. Comput.45(9), 877–885 (2007).
[CrossRef] [PubMed]

Zhang, Z. B.

J. W. Zheng, Z. B. Zhang, T. H. Wu, and Y. Zhang, “A wearable mobihealth care system supporting real-time diagnosis and alarm,” Med. Biol. Eng. Comput.45(9), 877–885 (2007).
[CrossRef] [PubMed]

Zheng, J. W.

J. W. Zheng, Z. B. Zhang, T. H. Wu, and Y. Zhang, “A wearable mobihealth care system supporting real-time diagnosis and alarm,” Med. Biol. Eng. Comput.45(9), 877–885 (2007).
[CrossRef] [PubMed]

Zysset, C.

C. Zysset, T. Kinkeldei, N. Münzenrieder, K. Cherenack, and G. Tröster, “Integration Method for Electronics in Woven Textiles,” IEEE Trans Compon. Packag. Manuf. Technol.2(7), 1107–1117 (2012).
[CrossRef]

Acta Physiol. Scand.

R. Boushel and C. A. Piantadosi, “Near-infrared spectroscopy for monitoring muscle oxygenation,” Acta Physiol. Scand.168(4), 615–622 (2000).
[CrossRef] [PubMed]

Adv. Exp. Med. Biol.

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, L. P. Safonova, A. Michalos, and E. Gratton, “Mapping of hemodynamics on the human calf with near infrared spectroscopy and the influence of the adipose tissue thickness,” Adv. Exp. Med. Biol.510, 225–230 (2003).
[CrossRef] [PubMed]

P. van der Zee, S. R. Arridge, M. Cope, and D. T. Delpy, “The Effect of Optode Positioning on Optical Pathlength in Near Infrared Spectroscopy of Brain,” Adv. Exp. Med. Biol.277, 79–84 (1990).
[CrossRef] [PubMed]

Anesthesiology

K. K. Tremper and S. J. Barker, “Pulse oximetry,” Anesthesiology70(1), 98–108 (1989).
[CrossRef] [PubMed]

Ann. Emerg. Med.

T. L. Wang and C. R. Hung, “Role of tissue oxygen saturation monitoring in diagnosing necrotizing fasciitis of the lower limbs,” Ann. Emerg. Med.44(3), 222–228 (2004).
[CrossRef] [PubMed]

Br. J. Anaesth.

H. Owen-Reece, M. Smith, C. E. Elwell, and J. C. Goldstone, “Near infrared spectroscopy,” Br. J. Anaesth.82(3), 418–426 (1999).
[CrossRef] [PubMed]

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth.103(Suppl 1), i3–i13 (2009).
[CrossRef] [PubMed]

Can. J. Appl. Physiol.

M. Ferrari, L. Mottola, and V. Quaresima, “Principles, techniques, and limitations of near infrared spectroscopy,” Can. J. Appl. Physiol.29(4), 463–487 (2004).
[CrossRef] [PubMed]

Crit. Care

A. Jubran, “Pulse oximetry,” Crit. Care3(2), R11–R17 (1999).
[CrossRef] [PubMed]

IEEE Trans Compon. Packag. Manuf. Technol.

C. Zysset, T. Kinkeldei, N. Münzenrieder, K. Cherenack, and G. Tröster, “Integration Method for Electronics in Woven Textiles,” IEEE Trans Compon. Packag. Manuf. Technol.2(7), 1107–1117 (2012).
[CrossRef]

IEEE Trans. Adv. Packag.

Y. Kim, H. Kim, and H. Yoo, “Electrical characterization of screen-printed circuits on the fabric,” IEEE Trans. Adv. Packag.33, 196–205 (2010).

I. Locher and G. Tröster, “Fundamental building blocks for circuits on textiles,” IEEE Trans. Adv. Packag.30(3), 541–550 (2007).
[CrossRef]

Int. J. Bioelectromagn.

J. Schumm, S. Axmann, B. Arnrich, and G. Tröster, “Automatic Signal Appraisal for Unobtrusive ECG Measurements,” Int. J. Bioelectromagn.12, 158–164 (2010).

Int. J. Clothing Sci. Technol.

L. van Langenhove and C. Hertleer, “Smart clothing: a new life,” Int. J. Clothing Sci. Technol.16(1/2), 63–72 (2004).
[CrossRef]

J. Appl. Physiol.

D. M. Mancini, L. Bolinger, H. Li, K. Kendrick, B. Chance, and J. R. Wilson, “Validation of near-infrared spectroscopy in humans,” J. Appl. Physiol.77(6), 2740–2747 (1994).
[PubMed]

A. D. Edwards, C. Richardson, P. van der Zee, C. Elwell, J. S. Wyatt, M. Cope, D. T. Delpy, and E. O. Reynolds, “Measurement of hemoglobin flow and blood flow by near-infrared spectroscopy,” J. Appl. Physiol.75(4), 1884–1889 (1993).
[PubMed]

J. Cardiothorac. Vasc. Anesth.

J. A. Wahr, K. K. Tremper, S. Samra, and D. T. Delpy, “Near-Infrared Spectroscopy: Theory and Applications,” J. Cardiothorac. Vasc. Anesth.10(3), 406–418 (1996).
[CrossRef] [PubMed]

J. Gerontol. A Biol. Sci. Med. Sci.

K. K. McCully, L. Landsberg, M. Suarez, M. Hofmann, and J. D. Posner, “Identification of Peripheral Vascular Disease in Elderly Subjects Using Optical Spectroscopy,” J. Gerontol. A Biol. Sci. Med. Sci.52A(3), B159–B165 (1997).
[CrossRef] [PubMed]

J. Text. .Apparel Technol. Manage.

M. Suh, K. Carroll, and N. Cassill, “Critical Review on Smart Clothing Product Development,” J. Text. .Apparel Technol. Manage.6, 1–18 (2010).

J. Vasc. Interv. Radiol.

U. Wolf, M. Wolf, J. H. Choi, L. A. Paunescu, A. Michalos, and E. Gratton, “Regional Differences of Hemodynamics and Oxygenation in the Human Calf Muscle Detected with Near-Infrared Spectrophotometry,” J. Vasc. Interv. Radiol.18(9), 1094–1101 (2007).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput.

J. W. Zheng, Z. B. Zhang, T. H. Wu, and Y. Zhang, “A wearable mobihealth care system supporting real-time diagnosis and alarm,” Med. Biol. Eng. Comput.45(9), 877–885 (2007).
[CrossRef] [PubMed]

Neuroimage

M. Wolf, U. Wolf, J. H. Choi, R. Gupta, L. P. Safonova, L. A. Paunescu, A. Michalos, and E. Gratton, “Functional frequency-domain near-infrared spectroscopy detects fast neuronal signal in the motor cortex,” Neuroimage17(4), 1868–1875 (2002).
[CrossRef] [PubMed]

Neurosci. Biobehav. Rev.

S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing brain: the past, present and future of functional near infrared spectroscopy,” Neurosci. Biobehav. Rev.34(3), 269–284 (2010).
[CrossRef] [PubMed]

Opt. Express

Philos. Trans. R. Soc. London, Ser. A

T. Hamaoka, K. K. McCully, M. Niwayama, and B. Chance, “The use of muscle near-infrared spectroscopy in sport, health and medical sciences: recent developments,” Philos. Trans. R. Soc. London, Ser. A369, 4591–4604 (2011).
[CrossRef]

Phys. Med. Biol.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol.33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Scand. J. Med. Sci. Sports

R. Boushel, H. Langberg, J. Olesen, J. Gonzales-Alonzo, J. Bülow, and M. Kjaer, “Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease,” Scand. J. Med. Sci. Sports11(4), 213–222 (2001).
[CrossRef] [PubMed]

Text. Res. J.

I. Locher and G. Tröster, “Screen-printed textile transmission lines,” Text. Res. J.77(11), 837–842 (2007).
[CrossRef]

Vasc. Med.

A. Afaq, P. S. Montgomery, K. J. Scott, S. M. Blevins, T. L. Whitsett, and A. W. Gardner, “The effect of current cigarette smoking on calf muscle hemoglobin oxygen saturation in patients with intermittent claudication,” Vasc. Med.12, 167–173 (2007).
[CrossRef] [PubMed]

Other

J. G. Webster, Design of Pulse Oximeters (IOP Bristol 1997).

W. Cui, C. Kumar, and B. Chance, “Experimental study of migration depth for the photons measured at sample surface,” in Optics, Electro-Optics, and Laser Applications in Science and Engineering, 180–191 (1991).

G. Medrano, L. Beckmann, N. Zimmermann, T. Grundmann, T. Gries, and S. Leonhardt, “Bioimpedance Spectroscopy with textile Electrodes for a continuous Monitoring Application,” in 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), 23–28 (2007).

T. Linz, L. Gourmelon, and G. Langereis, “Contacless EMG sensors embroidered onto textile,” in Proceedings of the 4th Int. Workshop on Wearable and Implantable Body Sensor Networks, (Springer, 2007), 29–34.

C. Zysset, K. Cherenack, T. Kinkeldei, and G. Tröster, “Weaving integrated circuits into textiles,” in Proceedings of the 14th International Symposium on Wearable Computers, (Institute of Electrical and Electronics Engineers, New York, 2010), 1–8.

C. Mattmann, O. Amft, H. Harms, G. Tröster, and F. Clemens, “Recognizing upper body postures using textile strain sensors,” in Proceedings of the 11th International Symposium on Wearable Computers, (Institute of Electrical and Electronics Engineers, New York, 2007), 29–36.

S. Park, K. Mackenzie, and S. Jayaraman, “The wearable motherboard: A framework for personalized mobile information processing (PMIP),” in Proceedings of the 39th annual Design Automation Conf. (Association for Computing Machinery, New York, 2002), 174.

H. Harms, O. Amft, G. Tröster, and D. Roggen, “Smash: A distributed sensing and processing garment for the classification of upper body postures,” in Proceedings of the ICST 3rd Int. Conf. on Body Area Networks, (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, Brussels, 2008), 22:1–22:8.

T. Martin, M. Jones, J. Chong, M. Quirk, K. Baumann, and L. Passauer, “Design and implementation of an electronic textile jumpsuit” in Proceedings of the 13th International Symposium on Wearable Computers, (Institute of Electrical and Electronics Engineers, New York, 2009), 157–158.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Smart textile with flexible plastic strips in weft direction and two conductive yarns in warp direction to interconnect electronics on the flexible plastic strips [13].

Fig. 2
Fig. 2

System overview: the sensor textile incorporates LEDs, transistor devices, photodiodes and transimpedance amplifiers and copper wires to contact the devices. The control and data acquisition hardware controls the LEDs, samples the voltages of the transimpedance amplifiers and sends the data to a host computer for storage and further processing.

Fig. 3
Fig. 3

Schematic of the sensor textile with two photodiode strips, two LED strips and a bus bar strip. The individual strips are connected among each other using copper wires in warp direction.

Fig. 4
Fig. 4

(a) LED strip with the LED pair at the center and the two transistors on the left and right side of the LED pair. (b) Photodiode strip with photodiode and transimpedance amplifier. (d) Bus bar strip with a plug to connect the sensor textile to the control hardware and the contact pads for the copper wires. In a) and b) the contact pads are indicated.

Fig. 5
Fig. 5

(a) Narrow fabric weaving machine (Müller Frick NFREQ42) used to weave flexible strips in weft direction into a textile. (b) Yarns in warp and weft direction.

Fig. 6
Fig. 6

Woven sensor textile with flexible plastic strips in weft direction carrying LEDs, transistors, photodiodes and transimpedance amplifiers. In the inset, woven copper wires in warp direction are visible together with two encapsulated contacts between copper wires and contact pads on a flexible strip.

Fig. 7
Fig. 7

In (a) the sensor textile is sewn into a textile cuff together with Velcro strips for attaching to the human body. (b) The cuff is strapped to the calf together with the control box. Between the control box and the cuff, the sensor cable is visible.

Fig. 8
Fig. 8

Timing of the LEDs in the sensor textile. The circles indicate the sampling of each photodiode for 250 µs.

Fig. 9
Fig. 9

Pulse waves recorded at the fingertip. In the 20 s period, 25 peaks are detected corresponding to a heart rate of 75 bpm. The maximum ADC value is 65472 (sum of 64 samples of a 10-bit ADC).

Fig. 10
Fig. 10

Pulse waves and their calculated SpO2 value.

Fig. 11
Fig. 11

Venous occlusions were performed on the calf for 2 minutes (marked in grey). During the occlusion, the HHb, O2Hb and tHb concentrations did increase while the tissue oxygen saturation StO2 stayed constant.

Fig. 12
Fig. 12

Changes in HHb and O2Hb during a venous occlusion, taking the source/detector distance variation of ± 2 mm into account. The solid lines represent the HHb and O2Hb changes with the initial distance of 17 mm short distance and 22 mm long distance, and the dashed lines the initial distance ± 2 mm.

Tables (2)

Tables Icon

Table 1 System Noise: Mean Over All Standard Deviations Calculated from Blocks of 10 Samples Recorded with a Sampling Rate of 100 Hz for a Time Period of 15 Minutes

Tables Icon

Table 2 Signal Drift for Both Wavelengths after System Start Upa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ΔHHbdDPF=0.3557Δ A 760nm +0.1959Δ A 870nm
Δ O 2 HbdDPF=0.2469Δ A 760nm 0.5066Δ A 870nm
Sp O 2 (%)= Δ O 2 HbdDPF stdΔ O 2 HbdDPF+ΔHHbdDPF 100
Sp O 2 (%)= Δ O 2 Hb Δ O 2 Hb+ΔHHb 100= σ(Δ O 2 Hb) σ(Δ O 2 Hb)+σ(ΔHHb) 100

Metrics