Abstract

The illumination pattern of an LED street light is required to have a rectangular distribution at a divergence-angle ratio of 7:3 for economical illumination. Hence, research supplying a secondary optics with two cylindrical lenses was different from free-form curvature for rectangular illumination. The analytical solution for curvatures with different ratio rectangles solved this detail by light tracing and boundary conditions. Similarities between the experiments and the simulation for a single LED and a 9-LED module were analyzed by Normalized Cross Correlation (NCC), and the error rate was studied by the Root Mean Square (RMS). The tolerance of position must be kept under ± 0.2 mm in the x, y and z directions to ensure that the relative illumination is over 99%.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Pelka and K. Patel, “An overview of LED applications for general illumination,” Proc. SPIE5186, 15–26 (2003).
    [CrossRef]
  2. Y. Narukawa, “White-light LEDs,” Opt. Photon. News15, 24–29 (2004).
  3. J. Wafer, “LEDs continue to advance,” Photon. Spectra39, 60–62 (2005).
  4. S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron.8(2), 333–338 (2002).
    [CrossRef]
  5. M. Liu, B. Rong, and H. W. M. Salemink, “Evaluation of LED application in general lighting,” Opt. Eng.46(7), 074002 (2007).
    [CrossRef]
  6. H. Ries, I. Leike, and J. Muschaweck, “Mixing colored LED sources,” Proc. SPIE5186, 27–32 (2003).
    [CrossRef]
  7. H. C. Chen, C. -C. Lee, and J. J. Huang, “Improving the illumination efficiency and color temperature for a projection system by depositing thin-film coatings on an x-cube prism,” Opt. Eng.45(11), 113801 (2006).
    [CrossRef]
  8. A. F. McDonagh, “Phototherapy: from ancient Egypt to the new millennium,” J. Perinatol.21(Suppl 1), S7–S12 (2001).
    [CrossRef] [PubMed]
  9. H. J. Vreman, R. J. Wong, and D. K. Stevenson, “Phototherapy: current methods and future directions,” Semin. Perinatol.28(5), 326–333 (2004).
    [CrossRef] [PubMed]
  10. H. C. Chen and G. Y. Wu, “Investigation of irradiance efficiency for LED phototherapy with different arrays,” Opt. Commun.283(24), 4882–4886 (2010).
    [CrossRef]
  11. J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik (Stuttg.)122, 358–363 (2011).
  12. Y. Luo, Z. Feng, Y. Han, and H. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express18(9), 9055–9063 (2010).
    [CrossRef] [PubMed]
  13. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express16(17), 12958–12966 (2008).
    [CrossRef] [PubMed]
  14. H. Yang, J. W. M. Bergmans, T. C. W. Schenk, J. P. M. G. Linnartz, and R. Rietman, “An analytical model for the illuminance distribution of a power LED,” Opt. Express16(26), 21641–21646 (2008).
    [CrossRef] [PubMed]
  15. K. Wang, F. Chen, Z. Liu, X. Luo, and S. Liu, “Design of compact freeform lens for application specific Light-Emitting Diode packaging,” Opt. Express18(2), 413–425 (2010).
    [CrossRef] [PubMed]
  16. R. Winston, J. C. Miñano, and P. Benítez, eds., with contributions by N. Shatz and J. C. Bortz, eds., Nonimaging Optics (Elsevier Press, 2005), Chap. 7.
  17. O. Cakmakci, B. Moore, H. Foroosh, and J. P. Rolland, “Optimal local shape description for rotationally non-symmetric optical surface design and analysis,” Opt. Express16(3), 1583–1589 (2008).
    [CrossRef] [PubMed]
  18. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett.31(14), 2193–2195 (2006).
    [CrossRef] [PubMed]
  19. I. Moreno, M. Avendaño-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance,” Appl. Opt.45(10), 2265–2272 (2006).
    [CrossRef] [PubMed]
  20. IESNA, American national standard practice for roadway lighting. Illuminating Engineering Society of North America, 1983.

2011 (1)

J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik (Stuttg.)122, 358–363 (2011).

2010 (3)

2008 (3)

2007 (1)

M. Liu, B. Rong, and H. W. M. Salemink, “Evaluation of LED application in general lighting,” Opt. Eng.46(7), 074002 (2007).
[CrossRef]

2006 (3)

2005 (1)

J. Wafer, “LEDs continue to advance,” Photon. Spectra39, 60–62 (2005).

2004 (2)

Y. Narukawa, “White-light LEDs,” Opt. Photon. News15, 24–29 (2004).

H. J. Vreman, R. J. Wong, and D. K. Stevenson, “Phototherapy: current methods and future directions,” Semin. Perinatol.28(5), 326–333 (2004).
[CrossRef] [PubMed]

2003 (2)

D. G. Pelka and K. Patel, “An overview of LED applications for general illumination,” Proc. SPIE5186, 15–26 (2003).
[CrossRef]

H. Ries, I. Leike, and J. Muschaweck, “Mixing colored LED sources,” Proc. SPIE5186, 27–32 (2003).
[CrossRef]

2002 (1)

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron.8(2), 333–338 (2002).
[CrossRef]

2001 (1)

A. F. McDonagh, “Phototherapy: from ancient Egypt to the new millennium,” J. Perinatol.21(Suppl 1), S7–S12 (2001).
[CrossRef] [PubMed]

Avendaño-Alejo, M.

Bergmans, J. W. M.

Cakmakci, O.

Chen, F.

Chen, H. C.

H. C. Chen and G. Y. Wu, “Investigation of irradiance efficiency for LED phototherapy with different arrays,” Opt. Commun.283(24), 4882–4886 (2010).
[CrossRef]

H. C. Chen, C. -C. Lee, and J. J. Huang, “Improving the illumination efficiency and color temperature for a projection system by depositing thin-film coatings on an x-cube prism,” Opt. Eng.45(11), 113801 (2006).
[CrossRef]

Cheung, B.

J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik (Stuttg.)122, 358–363 (2011).

Ding, Y.

Feng, Z.

Foroosh, H.

Gu, P. F.

Han, Y.

Huang, J. J.

H. C. Chen, C. -C. Lee, and J. J. Huang, “Improving the illumination efficiency and color temperature for a projection system by depositing thin-film coatings on an x-cube prism,” Opt. Eng.45(11), 113801 (2006).
[CrossRef]

Huang, S. M.

Jiang, J.

J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik (Stuttg.)122, 358–363 (2011).

Lee, C. -C.

H. C. Chen, C. -C. Lee, and J. J. Huang, “Improving the illumination efficiency and color temperature for a projection system by depositing thin-film coatings on an x-cube prism,” Opt. Eng.45(11), 113801 (2006).
[CrossRef]

Lee, T. X.

Lee, W. B.

J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik (Stuttg.)122, 358–363 (2011).

Lee, Y. L.

Leike, I.

H. Ries, I. Leike, and J. Muschaweck, “Mixing colored LED sources,” Proc. SPIE5186, 27–32 (2003).
[CrossRef]

Li, H.

Linnartz, J. P. M. G.

Liu, M.

M. Liu, B. Rong, and H. W. M. Salemink, “Evaluation of LED application in general lighting,” Opt. Eng.46(7), 074002 (2007).
[CrossRef]

Liu, S.

Liu, X.

Liu, Z.

Luo, X.

Luo, Y.

Ma, S. H.

McDonagh, A. F.

A. F. McDonagh, “Phototherapy: from ancient Egypt to the new millennium,” J. Perinatol.21(Suppl 1), S7–S12 (2001).
[CrossRef] [PubMed]

Moore, B.

Moreno, I.

Muschaweck, J.

H. Ries, I. Leike, and J. Muschaweck, “Mixing colored LED sources,” Proc. SPIE5186, 27–32 (2003).
[CrossRef]

Muthu, S.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron.8(2), 333–338 (2002).
[CrossRef]

Narukawa, Y.

Y. Narukawa, “White-light LEDs,” Opt. Photon. News15, 24–29 (2004).

Pashley, M. D.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron.8(2), 333–338 (2002).
[CrossRef]

Patel, K.

D. G. Pelka and K. Patel, “An overview of LED applications for general illumination,” Proc. SPIE5186, 15–26 (2003).
[CrossRef]

Pelka, D. G.

D. G. Pelka and K. Patel, “An overview of LED applications for general illumination,” Proc. SPIE5186, 15–26 (2003).
[CrossRef]

Ries, H.

H. Ries, I. Leike, and J. Muschaweck, “Mixing colored LED sources,” Proc. SPIE5186, 27–32 (2003).
[CrossRef]

Rietman, R.

Rolland, J. P.

Rong, B.

M. Liu, B. Rong, and H. W. M. Salemink, “Evaluation of LED application in general lighting,” Opt. Eng.46(7), 074002 (2007).
[CrossRef]

Salemink, H. W. M.

M. Liu, B. Rong, and H. W. M. Salemink, “Evaluation of LED application in general lighting,” Opt. Eng.46(7), 074002 (2007).
[CrossRef]

Schenk, T. C. W.

Schuurmans, F. J. P.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron.8(2), 333–338 (2002).
[CrossRef]

Stevenson, D. K.

H. J. Vreman, R. J. Wong, and D. K. Stevenson, “Phototherapy: current methods and future directions,” Semin. Perinatol.28(5), 326–333 (2004).
[CrossRef] [PubMed]

Sun, C. C.

To, S.

J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik (Stuttg.)122, 358–363 (2011).

Tzonchev, R. I.

Vreman, H. J.

H. J. Vreman, R. J. Wong, and D. K. Stevenson, “Phototherapy: current methods and future directions,” Semin. Perinatol.28(5), 326–333 (2004).
[CrossRef] [PubMed]

Wafer, J.

J. Wafer, “LEDs continue to advance,” Photon. Spectra39, 60–62 (2005).

Wang, K.

Wong, R. J.

H. J. Vreman, R. J. Wong, and D. K. Stevenson, “Phototherapy: current methods and future directions,” Semin. Perinatol.28(5), 326–333 (2004).
[CrossRef] [PubMed]

Wu, G. Y.

H. C. Chen and G. Y. Wu, “Investigation of irradiance efficiency for LED phototherapy with different arrays,” Opt. Commun.283(24), 4882–4886 (2010).
[CrossRef]

Yang, H.

Zheng, Z. R.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron.8(2), 333–338 (2002).
[CrossRef]

J. Perinatol. (1)

A. F. McDonagh, “Phototherapy: from ancient Egypt to the new millennium,” J. Perinatol.21(Suppl 1), S7–S12 (2001).
[CrossRef] [PubMed]

Opt. Commun. (1)

H. C. Chen and G. Y. Wu, “Investigation of irradiance efficiency for LED phototherapy with different arrays,” Opt. Commun.283(24), 4882–4886 (2010).
[CrossRef]

Opt. Eng. (2)

H. C. Chen, C. -C. Lee, and J. J. Huang, “Improving the illumination efficiency and color temperature for a projection system by depositing thin-film coatings on an x-cube prism,” Opt. Eng.45(11), 113801 (2006).
[CrossRef]

M. Liu, B. Rong, and H. W. M. Salemink, “Evaluation of LED application in general lighting,” Opt. Eng.46(7), 074002 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Opt. Photon. News (1)

Y. Narukawa, “White-light LEDs,” Opt. Photon. News15, 24–29 (2004).

Optik (Stuttg.) (1)

J. Jiang, S. To, W. B. Lee, and B. Cheung, “Optical design of a freeform TIR lens for LED streetlight,” Optik (Stuttg.)122, 358–363 (2011).

Photon. Spectra (1)

J. Wafer, “LEDs continue to advance,” Photon. Spectra39, 60–62 (2005).

Proc. SPIE (2)

H. Ries, I. Leike, and J. Muschaweck, “Mixing colored LED sources,” Proc. SPIE5186, 27–32 (2003).
[CrossRef]

D. G. Pelka and K. Patel, “An overview of LED applications for general illumination,” Proc. SPIE5186, 15–26 (2003).
[CrossRef]

Semin. Perinatol. (1)

H. J. Vreman, R. J. Wong, and D. K. Stevenson, “Phototherapy: current methods and future directions,” Semin. Perinatol.28(5), 326–333 (2004).
[CrossRef] [PubMed]

Other (2)

R. Winston, J. C. Miñano, and P. Benítez, eds., with contributions by N. Shatz and J. C. Bortz, eds., Nonimaging Optics (Elsevier Press, 2005), Chap. 7.

IESNA, American national standard practice for roadway lighting. Illuminating Engineering Society of North America, 1983.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Illumination patterns on the street for a (a) spherical and (b) cylindrical lens.

Fig. 2
Fig. 2

Mockup samples for the (a) single LED and (b) 9-LEDs module.

Fig. 3
Fig. 3

3D view of the secondary optics lens.

Fig. 4
Fig. 4

(a) Cylindrical lens focusing on an outside line and (b) divergence angles of the doubled cylindrical lens (U) and one spherical lens (V).

Fig. 5
Fig. 5

Light tracing of an oblique marginal ray in the x direction of (a) first surface and (b) second surface.

Fig. 6
Fig. 6

Light tracing of an oblique marginal ray in the y direction of (a) first surface and (b) second surface.

Fig. 7
Fig. 7

The flow of design and simulation.

Fig. 8
Fig. 8

The relationship of curvature Rx and divergence angle U with different (a) distance T and (b) tangent angle θ in the x-direction.

Fig. 9
Fig. 9

The variation of curvature Ry with the divergence angle V and distance T in the y-direction.

Fig. 10
Fig. 10

Rectangular illumination pattern in (a) simulation and (b) experiments for a single LED.

Fig. 11
Fig. 11

Rectangular illumination pattern in (a) simulation and (b) experiments for 9-LED modules.

Fig. 12
Fig. 12

Extent of similarity of (a) horizontal axis (X axis) and (b) vertical axis (Y axis) for a single LED.

Fig. 13
Fig. 13

Extent of similarity of (a) horizontal axis (X axis) and (b) vertical axis (Y axis) for 9-LED modules.

Fig. 14
Fig. 14

Polar candela pattern for (a) spherical lens and (b) cylindrical lens.

Fig. 15
Fig. 15

Relative illumination with different tolerance in the x, y and z directions.

Tables (1)

Tables Icon

Table 1 Comparison list of freeform lens and cylindrical lens

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

U=(I I )+ U
nsin( 90 U θ)=sin( 90 θ U )
U = 90 θarcsin( sin( 90 θ U ) n )
sinI=nsin I
U 90 θarcsin( sin( 90 θ U ) n )I+arcsin( sinI n )=0
R x sin I =( R x M )sin U
xtanθ=(Tx)tan U
( F M )tan U = R x 2 d 2
[ F ( R x d)x ]tan U =[ F ( R x d)x ]tan U
T= F ( R x d)= tan U tan U ( R x 2 d 2 tan U R x sin I sin U +dx )+x
R x = 2wsin I tan 2 U cos U ± ( 2wsin I tan 2 U cos U ) 2 4( 1 ( tan U cos I cos U ) 2 )( d 2 w 2 tan 2 U ) 2[ 1 ( tan U cos I cos U ) 2 ]
V =V+J J
nsin V =sin V
J =arcsin( sinJ n )
arcsin( sin V n )=V+Jarcsin( sinJ n )
N = R y + R y sin J sin V
Ttan V =[ N ( N T) ]tan V
N = Ttan V tan V +T+ N
N = R y d y +T
R y =( d+ Ttan V tan V ) sin V sin J
NCC= m n ( X mn X ¯ )( Y mn Y ¯ ) [ m n ( X mn X ¯ ) 2 ] [ m n ( Y mn Y ¯ ) 2 ]
RMS= 1 S m n [ X mn Y mn ] 2
uniformity= E av. E min.

Metrics