Abstract

We proposed and experimentally demonstrated a compact micro-displacement sensor with high sensitivity based on a long-period fiber grating (LPG) with an air-cavity. The sensor head is obtained by composing an air-cavity with the ends of a LPG and a single mode fiber (SMF). The wavelength shift of the LPG has a linear relationship with the length of the air gap which agrees well with the theoretical analysis. The experimental results show that the sensitivity is ~0.22 nm/µm within the micro-displacement range of 0 to 140 µm.

© 2013 OSA

Full Article  |  PDF Article
Related Articles
Optimization of long-period grating-based refractive index sensor by bent-fiber interference

Xinpu Zhang, Lingxiao Xie, Yang Zhang, and Wei Peng
Appl. Opt. 54(31) 9152-9156 (2015)

In-series double cladding fibers for simultaneous refractive index and temperature measurement

Huanhuan Liu, Fufei Pang, Hairui Guo, Wenxin Cao, Yunqi Liu, Na Chen, Zhenyi Chen, and Tingyun Wang
Opt. Express 18(12) 13072-13082 (2010)

Temperature-insensitive optical fiber refractometer based on multimode interference in two cascaded no-core square fibers

Jixuan Wu, Yinping Miao, Binbin Song, Kailiang Zhang, Wei Lin, Hao Zhang, Bo Liu, and Jianquan Yao
Appl. Opt. 53(22) 5037-5041 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. G. Xu, T. Ono, and M. Esashi, “Precise motion control of a nanopositioning PZT microstage using integrated capacitive displacement sensors,” J. Micromech. Microeng. 16(12), 2747–2754 (2006).
    [Crossref]
  2. S. Fericean and R. Droxler, “New noncontacting inductive analog proximity and inductive linear displacement sensors for industrial automation,” IEEE Sens. J. 7(11), 1538–1545 (2007).
    [Crossref]
  3. J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
    [Crossref]
  4. X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(2), N7–N10 (2005).
    [Crossref]
  5. Y. Zhu, P. Shum, C. Lu, M. Lacquet, P. Swart, A. Chtcherbakov, and S. Spammer, “Temperature insensitive measurements of static displacements using a fiber Bragg grating,” Opt. Express 11(16), 1918–1924 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-16-1918 .
    [Crossref] [PubMed]
  6. Y. Zhao, H. Huang, and Q. Wang, “Interrogation technique using a novel spectra bandwidth measurement method with a blazed FBG and a fiber-optic array for an FBG displacement sensor,” Sens. Actuators A Phys. 165(2), 185–188 (2011).
    [Crossref]
  7. C. Shen and C. Zhong, “Novel temperature-insensitive fiber Bragg grating sensor for displacement Measurement,” Sens. Actuators A Phys. 170(1–2), 51–54 (2011).
    [Crossref]
  8. T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol. 20(3), 034007 (2009).
    [Crossref]
  9. Q. Jiang and D. Hu, “Microdisplacement sensor based on tilted fiber Bragg grating transversal load effect,” IEEE Sens. J. 11(9), 1776–1779 (2011).
    [Crossref]
  10. J. M. Baptista, S. F. Santos, G. Rego, O. Frazão, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260(1), 8–11 (2006).
    [Crossref]
  11. Y. Wang, C.-L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
    [Crossref] [PubMed]
  12. Y. G. Han, B. H. Lee, W. T. Han, U. C. Peak, and Y. Chung, “Controllable transmission characteristics of multi-channel long period fiber gratings,” IEICE Trans. Electron. E 84-C(5), 610–614 (2001).
  13. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]
  14. W. Zhou, X. Dong, L.-Y. Shao, C. C. Chan, C.-L. Zhao, and P. Shum, “Compact refractometer based on extrinsic-phase-shift fiber Bragg grating,” Sens. Actuators A Phys. 168(1), 46–50 (2011).
    [Crossref]
  15. C.-L. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
    [Crossref]

2011 (5)

Y. Zhao, H. Huang, and Q. Wang, “Interrogation technique using a novel spectra bandwidth measurement method with a blazed FBG and a fiber-optic array for an FBG displacement sensor,” Sens. Actuators A Phys. 165(2), 185–188 (2011).
[Crossref]

C. Shen and C. Zhong, “Novel temperature-insensitive fiber Bragg grating sensor for displacement Measurement,” Sens. Actuators A Phys. 170(1–2), 51–54 (2011).
[Crossref]

Q. Jiang and D. Hu, “Microdisplacement sensor based on tilted fiber Bragg grating transversal load effect,” IEEE Sens. J. 11(9), 1776–1779 (2011).
[Crossref]

Y. Wang, C.-L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

W. Zhou, X. Dong, L.-Y. Shao, C. C. Chan, C.-L. Zhao, and P. Shum, “Compact refractometer based on extrinsic-phase-shift fiber Bragg grating,” Sens. Actuators A Phys. 168(1), 46–50 (2011).
[Crossref]

2009 (1)

T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol. 20(3), 034007 (2009).
[Crossref]

2008 (1)

2007 (2)

S. Fericean and R. Droxler, “New noncontacting inductive analog proximity and inductive linear displacement sensors for industrial automation,” IEEE Sens. J. 7(11), 1538–1545 (2007).
[Crossref]

J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[Crossref]

2006 (2)

J. M. Baptista, S. F. Santos, G. Rego, O. Frazão, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260(1), 8–11 (2006).
[Crossref]

H. G. Xu, T. Ono, and M. Esashi, “Precise motion control of a nanopositioning PZT microstage using integrated capacitive displacement sensors,” J. Micromech. Microeng. 16(12), 2747–2754 (2006).
[Crossref]

2005 (1)

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(2), N7–N10 (2005).
[Crossref]

2003 (1)

2002 (1)

2001 (1)

Y. G. Han, B. H. Lee, W. T. Han, U. C. Peak, and Y. Chung, “Controllable transmission characteristics of multi-channel long period fiber gratings,” IEICE Trans. Electron. E 84-C(5), 610–614 (2001).

Albert, J.

T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol. 20(3), 034007 (2009).
[Crossref]

Baptista, J. M.

J. M. Baptista, S. F. Santos, G. Rego, O. Frazão, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260(1), 8–11 (2006).
[Crossref]

Bennion, I.

Chan, C. C.

W. Zhou, X. Dong, L.-Y. Shao, C. C. Chan, C.-L. Zhao, and P. Shum, “Compact refractometer based on extrinsic-phase-shift fiber Bragg grating,” Sens. Actuators A Phys. 168(1), 46–50 (2011).
[Crossref]

Chen, C.

T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol. 20(3), 034007 (2009).
[Crossref]

Chtcherbakov, A.

Chung, Y.

Y. G. Han, B. H. Lee, W. T. Han, U. C. Peak, and Y. Chung, “Controllable transmission characteristics of multi-channel long period fiber gratings,” IEICE Trans. Electron. E 84-C(5), 610–614 (2001).

Demokan, M. S.

Ding, L.

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(2), N7–N10 (2005).
[Crossref]

Dong, X.

Y. Wang, C.-L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

W. Zhou, X. Dong, L.-Y. Shao, C. C. Chan, C.-L. Zhao, and P. Shum, “Compact refractometer based on extrinsic-phase-shift fiber Bragg grating,” Sens. Actuators A Phys. 168(1), 46–50 (2011).
[Crossref]

Dong, X. Y.

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(2), N7–N10 (2005).
[Crossref]

Droxler, R.

S. Fericean and R. Droxler, “New noncontacting inductive analog proximity and inductive linear displacement sensors for industrial automation,” IEEE Sens. J. 7(11), 1538–1545 (2007).
[Crossref]

Esashi, M.

H. G. Xu, T. Ono, and M. Esashi, “Precise motion control of a nanopositioning PZT microstage using integrated capacitive displacement sensors,” J. Micromech. Microeng. 16(12), 2747–2754 (2006).
[Crossref]

Fericean, S.

S. Fericean and R. Droxler, “New noncontacting inductive analog proximity and inductive linear displacement sensors for industrial automation,” IEEE Sens. J. 7(11), 1538–1545 (2007).
[Crossref]

Frazão, O.

J. M. Baptista, S. F. Santos, G. Rego, O. Frazão, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260(1), 8–11 (2006).
[Crossref]

Guo, T.

T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol. 20(3), 034007 (2009).
[Crossref]

Han, W. T.

Y. G. Han, B. H. Lee, W. T. Han, U. C. Peak, and Y. Chung, “Controllable transmission characteristics of multi-channel long period fiber gratings,” IEICE Trans. Electron. E 84-C(5), 610–614 (2001).

Han, Y. G.

Y. G. Han, B. H. Lee, W. T. Han, U. C. Peak, and Y. Chung, “Controllable transmission characteristics of multi-channel long period fiber gratings,” IEICE Trans. Electron. E 84-C(5), 610–614 (2001).

Hao, J.

J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[Crossref]

Hu, D.

Q. Jiang and D. Hu, “Microdisplacement sensor based on tilted fiber Bragg grating transversal load effect,” IEEE Sens. J. 11(9), 1776–1779 (2011).
[Crossref]

Hu, L.

Y. Wang, C.-L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

Huang, H.

Y. Zhao, H. Huang, and Q. Wang, “Interrogation technique using a novel spectra bandwidth measurement method with a blazed FBG and a fiber-optic array for an FBG displacement sensor,” Sens. Actuators A Phys. 165(2), 185–188 (2011).
[Crossref]

Jiang, Q.

Q. Jiang and D. Hu, “Microdisplacement sensor based on tilted fiber Bragg grating transversal load effect,” IEEE Sens. J. 11(9), 1776–1779 (2011).
[Crossref]

Jin, S.

Y. Wang, C.-L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

Jin, W.

Jin, Y.

Y. Wang, C.-L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

Ju, J.

Lacquet, M.

Lee, B. H.

Y. G. Han, B. H. Lee, W. T. Han, U. C. Peak, and Y. Chung, “Controllable transmission characteristics of multi-channel long period fiber gratings,” IEICE Trans. Electron. E 84-C(5), 610–614 (2001).

Lu, C.

Ng, J. H.

J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[Crossref]

Ngo, N. Q.

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(2), N7–N10 (2005).
[Crossref]

Ono, T.

H. G. Xu, T. Ono, and M. Esashi, “Precise motion control of a nanopositioning PZT microstage using integrated capacitive displacement sensors,” J. Micromech. Microeng. 16(12), 2747–2754 (2006).
[Crossref]

Peak, U. C.

Y. G. Han, B. H. Lee, W. T. Han, U. C. Peak, and Y. Chung, “Controllable transmission characteristics of multi-channel long period fiber gratings,” IEICE Trans. Electron. E 84-C(5), 610–614 (2001).

Rego, G.

J. M. Baptista, S. F. Santos, G. Rego, O. Frazão, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260(1), 8–11 (2006).
[Crossref]

Santos, J. L.

J. M. Baptista, S. F. Santos, G. Rego, O. Frazão, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260(1), 8–11 (2006).
[Crossref]

Santos, S. F.

J. M. Baptista, S. F. Santos, G. Rego, O. Frazão, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260(1), 8–11 (2006).
[Crossref]

Shao, L.-Y.

W. Zhou, X. Dong, L.-Y. Shao, C. C. Chan, C.-L. Zhao, and P. Shum, “Compact refractometer based on extrinsic-phase-shift fiber Bragg grating,” Sens. Actuators A Phys. 168(1), 46–50 (2011).
[Crossref]

Shen, C.

C. Shen and C. Zhong, “Novel temperature-insensitive fiber Bragg grating sensor for displacement Measurement,” Sens. Actuators A Phys. 170(1–2), 51–54 (2011).
[Crossref]

Y. Wang, C.-L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

Shu, X.

Shum, P.

W. Zhou, X. Dong, L.-Y. Shao, C. C. Chan, C.-L. Zhao, and P. Shum, “Compact refractometer based on extrinsic-phase-shift fiber Bragg grating,” Sens. Actuators A Phys. 168(1), 46–50 (2011).
[Crossref]

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(2), N7–N10 (2005).
[Crossref]

Y. Zhu, P. Shum, C. Lu, M. Lacquet, P. Swart, A. Chtcherbakov, and S. Spammer, “Temperature insensitive measurements of static displacements using a fiber Bragg grating,” Opt. Express 11(16), 1918–1924 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-16-1918 .
[Crossref] [PubMed]

Spammer, S.

Swart, P.

Wang, Q.

Y. Zhao, H. Huang, and Q. Wang, “Interrogation technique using a novel spectra bandwidth measurement method with a blazed FBG and a fiber-optic array for an FBG displacement sensor,” Sens. Actuators A Phys. 165(2), 185–188 (2011).
[Crossref]

Wang, Y.

Y. Wang, C.-L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

Xiao, L.

Xu, H. G.

H. G. Xu, T. Ono, and M. Esashi, “Precise motion control of a nanopositioning PZT microstage using integrated capacitive displacement sensors,” J. Micromech. Microeng. 16(12), 2747–2754 (2006).
[Crossref]

Yang, X.

J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[Crossref]

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(2), N7–N10 (2005).
[Crossref]

Zhang, L.

Zhao, C.-L.

W. Zhou, X. Dong, L.-Y. Shao, C. C. Chan, C.-L. Zhao, and P. Shum, “Compact refractometer based on extrinsic-phase-shift fiber Bragg grating,” Sens. Actuators A Phys. 168(1), 46–50 (2011).
[Crossref]

Y. Wang, C.-L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

C.-L. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
[Crossref]

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(2), N7–N10 (2005).
[Crossref]

Zhao, Y.

Y. Zhao, H. Huang, and Q. Wang, “Interrogation technique using a novel spectra bandwidth measurement method with a blazed FBG and a fiber-optic array for an FBG displacement sensor,” Sens. Actuators A Phys. 165(2), 185–188 (2011).
[Crossref]

Zhong, C.

C. Shen and C. Zhong, “Novel temperature-insensitive fiber Bragg grating sensor for displacement Measurement,” Sens. Actuators A Phys. 170(1–2), 51–54 (2011).
[Crossref]

Zhou, W.

W. Zhou, X. Dong, L.-Y. Shao, C. C. Chan, C.-L. Zhao, and P. Shum, “Compact refractometer based on extrinsic-phase-shift fiber Bragg grating,” Sens. Actuators A Phys. 168(1), 46–50 (2011).
[Crossref]

Zhou, X.

J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[Crossref]

Zhu, Y.

IEEE Sens. J. (2)

Q. Jiang and D. Hu, “Microdisplacement sensor based on tilted fiber Bragg grating transversal load effect,” IEEE Sens. J. 11(9), 1776–1779 (2011).
[Crossref]

S. Fericean and R. Droxler, “New noncontacting inductive analog proximity and inductive linear displacement sensors for industrial automation,” IEEE Sens. J. 7(11), 1538–1545 (2007).
[Crossref]

IEICE Trans. Electron. E (1)

Y. G. Han, B. H. Lee, W. T. Han, U. C. Peak, and Y. Chung, “Controllable transmission characteristics of multi-channel long period fiber gratings,” IEICE Trans. Electron. E 84-C(5), 610–614 (2001).

J. Lightwave Technol. (2)

J. Micromech. Microeng. (1)

H. G. Xu, T. Ono, and M. Esashi, “Precise motion control of a nanopositioning PZT microstage using integrated capacitive displacement sensors,” J. Micromech. Microeng. 16(12), 2747–2754 (2006).
[Crossref]

Meas. Sci. Technol. (1)

T. Guo, C. Chen, and J. Albert, “Non-uniform-tilt-modulated fiber Bragg grating for temperature-immune micro-displacement measurement,” Meas. Sci. Technol. 20(3), 034007 (2009).
[Crossref]

Opt. Commun. (2)

J. H. Ng, X. Zhou, X. Yang, and J. Hao, “A simple temperature-insensitive fiber Bragg grating displacement sensor,” Opt. Commun. 273(2), 398–401 (2007).
[Crossref]

J. M. Baptista, S. F. Santos, G. Rego, O. Frazão, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260(1), 8–11 (2006).
[Crossref]

Opt. Express (1)

Rev. Sci. Instrum. (1)

Y. Wang, C.-L. Zhao, L. Hu, X. Dong, Y. Jin, C. Shen, and S. Jin, “A tilt sensor with a compact dimension based on a long-period fiber grating,” Rev. Sci. Instrum. 82(9), 093106 (2011).
[Crossref] [PubMed]

Sens. Actuators A Phys. (3)

Y. Zhao, H. Huang, and Q. Wang, “Interrogation technique using a novel spectra bandwidth measurement method with a blazed FBG and a fiber-optic array for an FBG displacement sensor,” Sens. Actuators A Phys. 165(2), 185–188 (2011).
[Crossref]

C. Shen and C. Zhong, “Novel temperature-insensitive fiber Bragg grating sensor for displacement Measurement,” Sens. Actuators A Phys. 170(1–2), 51–54 (2011).
[Crossref]

W. Zhou, X. Dong, L.-Y. Shao, C. C. Chan, C.-L. Zhao, and P. Shum, “Compact refractometer based on extrinsic-phase-shift fiber Bragg grating,” Sens. Actuators A Phys. 168(1), 46–50 (2011).
[Crossref]

Smart Mater. Struct. (1)

X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “A novel temperature-insensitive fiber Bragg grating sensor for displacement measurement,” Smart Mater. Struct. 14(2), N7–N10 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the proposed sensor.

Fig. 2
Fig. 2

Transmission spectra of the original LPG (in red), and the LPG with air cavity (in black).

Fig. 3
Fig. 3

Transmission spectra of the LPG with air cavity at different displacement variations.

Fig. 4
Fig. 4

The relationships of the dip wavelength with the displacement variations of the air cavity (in red) and cavity with LPG (in blue).

Fig. 5
Fig. 5

Transmission spectra of the air cavity at different displacement variation. The measured dip wavelength is marked by black arrows.

Tables (1)

Tables Icon

Table 1 Performance Comparison of Optical Fiber Grating Displacement Sensors

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

{ a co (L)=exp(i( β co - 1 2 Δ β ν )L)[ a co (0)( cossL+i Δ β ν 2s sinsL )+ a cl ν (0) iκ s sinsL ] a cl ν (L)=exp(i( β cl ν - 1 2 Δ β ν )L)[ a co (0) i κ s sinsL+ a cl ν (0)( cossLi Δ β ν 2s sinsL ) ]
Δ β ν = β co β cl ν 2π Λ
s= ( κ κ+ Δ β ν 2 4 ) 1 2
M= [ A E B F ]/ t gap 2
A= e if /α-α r gap 2 e -if
B=- r gap e if /α+α r gap e -if
E= r gap e if /α-α r gap e -if
F=- r gap 2 e if /α+α e -if
r gap = n eff -n gap n eff +n gap
t gap = 1- r gap 2
f= 2π n gap L gap λ
[ a co a cl ν ]=M·[ a co (L) a cl ν (L) ]
[ a co ]= [ A B ]/ t gap 2 [ a co (L) a cl ν (L) ]
λ= 2π n gap Δ L gap C + 2π n gap L gap0 C

Metrics