Abstract

An efficient near-infrared (NIR) phosphor LiSrPO4:Eu2+, Pr3+ is synthesized by solid-state reaction and systematically investigated using x-ray diffraction, diffuse reflection spectrum, photoluminescence spectra at room temperature and 3 K, and the decay curves. The UV-Vis-NIR energy transfer mechanism is proposed based on these results. The results demonstrate Eu2+ can be an efficient sensitizer for harvesting UV photon and greatly enhancing the NIR emission of Pr3+ between 960 and 1060 nm through efficient energy feeding by allowed 4f-5d absorption of Eu2+ with high oscillator strength. Eu2+/Pr3+ may be an efficient donor-acceptor pair as solar spectral converter for Si solar cells.

© 2013 OSA

Full Article  |  PDF Article
Related Articles
An intense charge transfer broadband sensitized near-infrared emitting CaLaGa3S6O:Yb3+ phosphor suitable for solar spectral convertor

Gongguo Zhang, Chunmeng Liu, Jing Wang, Xiaojun Kuang, and Qiang Su
Opt. Express 19(24) 24314-24319 (2011)

Study on the effects of 5d energy locations of Ce3+ ions on NIR quantum cutting process in Y2SiO5: Ce3+, Yb3+

Wenli Zhou, Jie Yang, Jing Wang, Ye Li, Xiaojun Kuang, Jinke Tang, and Hongbin Liang
Opt. Express 20(S4) A510-A518 (2012)

Near-infrared luminescence and energy transfer studies of LaOBr:Nd3+/Yb3+

Zhiguo Xia, Yi Luo, Ming Guan, and Libing Liao
Opt. Express 20(S5) A722-A728 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
    [Crossref]
  2. J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys. 106(4), 043101–043105 (2009).
    [Crossref]
  3. K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
    [Crossref]
  4. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
    [Crossref] [PubMed]
  5. G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11(4), 303–317 (1989).
    [Crossref]
  6. T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 71–74 (2012).
    [Crossref]
  7. Y. Iso, S. Takeshita, and T. Isobe, “Effects of YVO4:Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module,” J. Electrochem. Soc. 159(3), J72–J76 (2012).
    [Crossref]
  8. H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids 358(9), 1217–1220 (2012).
    [Crossref]
  9. J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater. 34(12), 1994–1997 (2012).
    [Crossref]
  10. A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater. 33(4), 587–591 (2011).
    [Crossref]
  11. Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009).
    [Crossref]
  12. G. S. Smith and R. L. Snyder, “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Cryst. 12(1), 60–65 (1979).
    [Crossref]
  13. Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
    [Crossref]
  14. C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc. 157(9), H900–H9038 (2010).
    [Crossref] [PubMed]
  15. Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem. 148(1), 259–263 (2010).
    [Crossref]
  16. O. K. Moune, M. D. Faucher, and N. Edelstein, “Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal,” J. Lumin. 96(1), 51–68 (2002).
    [Crossref]
  17. M.-T. Paques-Ledent, “Vibrational spectra and structure of LiB2+PO4 compounds with B=Sr, Ba, Pb,” J. Solid State Chem. 23(1-2), 147–154 (1978).
    [Crossref]
  18. B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 1–5 (2009).
    [Crossref]
  19. Y. H. Wang, L. Xie, and H. J. Zhang, “Cooperative near-infrared quantum in Tb3+, Yb3+ codoped polyborates La0.99-xYbxBaB9O16:Tb0.01,” Appl. Phys. (Berl.) 105, 023528–023534 (2009).

2012 (4)

T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 71–74 (2012).
[Crossref]

Y. Iso, S. Takeshita, and T. Isobe, “Effects of YVO4:Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module,” J. Electrochem. Soc. 159(3), J72–J76 (2012).
[Crossref]

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids 358(9), 1217–1220 (2012).
[Crossref]

J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater. 34(12), 1994–1997 (2012).
[Crossref]

2011 (1)

A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater. 33(4), 587–591 (2011).
[Crossref]

2010 (2)

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc. 157(9), H900–H9038 (2010).
[Crossref] [PubMed]

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem. 148(1), 259–263 (2010).
[Crossref]

2009 (5)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 1–5 (2009).
[Crossref]

Y. H. Wang, L. Xie, and H. J. Zhang, “Cooperative near-infrared quantum in Tb3+, Yb3+ codoped polyborates La0.99-xYbxBaB9O16:Tb0.01,” Appl. Phys. (Berl.) 105, 023528–023534 (2009).

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009).
[Crossref]

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys. 106(4), 043101–043105 (2009).
[Crossref]

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

2008 (1)

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

2006 (2)

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
[Crossref]

2002 (1)

O. K. Moune, M. D. Faucher, and N. Edelstein, “Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal,” J. Lumin. 96(1), 51–68 (2002).
[Crossref]

1989 (1)

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11(4), 303–317 (1989).
[Crossref]

1979 (1)

G. S. Smith and R. L. Snyder, “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Cryst. 12(1), 60–65 (1979).
[Crossref]

1978 (1)

M.-T. Paques-Ledent, “Vibrational spectra and structure of LiB2+PO4 compounds with B=Sr, Ba, Pb,” J. Solid State Chem. 23(1-2), 147–154 (1978).
[Crossref]

Aarts, L.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 1–5 (2009).
[Crossref]

Baldo, M. A.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Bätzner, D. L.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

Bettiol, F.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

Blamire, M. G.

T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 71–74 (2012).
[Crossref]

Chan, T. S.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc. 157(9), H900–H9038 (2010).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem. 148(1), 259–263 (2010).
[Crossref]

Cotsell, J. N.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

Cui, S.

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids 358(9), 1217–1220 (2012).
[Crossref]

Currie, M. J.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

del-Castillo, J.

J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater. 34(12), 1994–1997 (2012).
[Crossref]

del-Castilloa, J.

A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater. 33(4), 587–591 (2011).
[Crossref]

Edelstein, N.

O. K. Moune, M. D. Faucher, and N. Edelstein, “Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal,” J. Lumin. 96(1), 51–68 (2002).
[Crossref]

Fan, X.

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids 358(9), 1217–1220 (2012).
[Crossref]

Faucher, M. D.

O. K. Moune, M. D. Faucher, and N. Edelstein, “Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal,” J. Lumin. 96(1), 51–68 (2002).
[Crossref]

Fix, T.

T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 71–74 (2012).
[Crossref]

Fu, H.

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids 358(9), 1217–1220 (2012).
[Crossref]

Goffri, S.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Gong, M. L.

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem. 148(1), 259–263 (2010).
[Crossref]

Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
[Crossref]

Guo, G. Y.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc. 157(9), H900–H9038 (2010).
[Crossref] [PubMed]

Hanton, K.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

Heidel, T. D.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Iso, Y.

Y. Iso, S. Takeshita, and T. Isobe, “Effects of YVO4:Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module,” J. Electrochem. Soc. 159(3), J72–J76 (2012).
[Crossref]

Isobe, T.

Y. Iso, S. Takeshita, and T. Isobe, “Effects of YVO4:Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module,” J. Electrochem. Soc. 159(3), J72–J76 (2012).
[Crossref]

Lau, G.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

Lin, C. C.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc. 157(9), H900–H9038 (2010).
[Crossref] [PubMed]

Liu, R. S.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc. 157(9), H900–H9038 (2010).
[Crossref] [PubMed]

Luo, Q.

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids 358(9), 1217–1220 (2012).
[Crossref]

MacManus-Driscoll, J. L.

T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 71–74 (2012).
[Crossref]

Mapel, J. K.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

McIntosh, K. R.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

Meijerink, A.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 1–5 (2009).
[Crossref]

Méndez-Ramos, J.

J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater. 34(12), 1994–1997 (2012).
[Crossref]

Méndez-Ramosb, J.

A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater. 33(4), 587–591 (2011).
[Crossref]

Moune, O. K.

O. K. Moune, M. D. Faucher, and N. Edelstein, “Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal,” J. Lumin. 96(1), 51–68 (2002).
[Crossref]

Paques-Ledent, M.-T.

M.-T. Paques-Ledent, “Vibrational spectra and structure of LiB2+PO4 compounds with B=Sr, Ba, Pb,” J. Solid State Chem. 23(1-2), 147–154 (1978).
[Crossref]

Qiao, X.

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids 358(9), 1217–1220 (2012).
[Crossref]

Richards, B. S.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

Rinnert, H.

T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 71–74 (2012).
[Crossref]

Rodríguez, V. D.

J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater. 34(12), 1994–1997 (2012).
[Crossref]

A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater. 33(4), 587–591 (2011).
[Crossref]

Santana-Alonso, A.

A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater. 33(4), 587–591 (2011).
[Crossref]

Seybold, G.

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11(4), 303–317 (1989).
[Crossref]

Shi, J. X.

Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
[Crossref]

Slaoui, A.

T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 71–74 (2012).
[Crossref]

Smith, G. S.

G. S. Smith and R. L. Snyder, “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Cryst. 12(1), 60–65 (1979).
[Crossref]

Snyder, R. L.

G. S. Smith and R. L. Snyder, “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Cryst. 12(1), 60–65 (1979).
[Crossref]

Su, Q.

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem. 148(1), 259–263 (2010).
[Crossref]

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009).
[Crossref]

Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
[Crossref]

Takeshita, S.

Y. Iso, S. Takeshita, and T. Isobe, “Effects of YVO4:Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module,” J. Electrochem. Soc. 159(3), J72–J76 (2012).
[Crossref]

Tanabe, S.

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys. 106(4), 043101–043105 (2009).
[Crossref]

Ueda, J.

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys. 106(4), 043101–043105 (2009).
[Crossref]

van der Ende, B. M.

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 1–5 (2009).
[Crossref]

Velázquez, J. J.

J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater. 34(12), 1994–1997 (2012).
[Crossref]

Wagenblast, G.

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11(4), 303–317 (1989).
[Crossref]

Wang, J.

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem. 148(1), 259–263 (2010).
[Crossref]

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009).
[Crossref]

Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
[Crossref]

Wang, Y. H.

Y. H. Wang, L. Xie, and H. J. Zhang, “Cooperative near-infrared quantum in Tb3+, Yb3+ codoped polyborates La0.99-xYbxBaB9O16:Tb0.01,” Appl. Phys. (Berl.) 105, 023528–023534 (2009).

Wu, Z. C.

Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
[Crossref]

Xiao, Z. R.

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc. 157(9), H900–H9038 (2010).
[Crossref] [PubMed]

Xie, L.

Y. H. Wang, L. Xie, and H. J. Zhang, “Cooperative near-infrared quantum in Tb3+, Yb3+ codoped polyborates La0.99-xYbxBaB9O16:Tb0.01,” Appl. Phys. (Berl.) 105, 023528–023534 (2009).

Yanes, A. C.

J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater. 34(12), 1994–1997 (2012).
[Crossref]

A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater. 33(4), 587–591 (2011).
[Crossref]

Zhang, G. G.

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem. 148(1), 259–263 (2010).
[Crossref]

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009).
[Crossref]

Zhang, H. J.

Y. H. Wang, L. Xie, and H. J. Zhang, “Cooperative near-infrared quantum in Tb3+, Yb3+ codoped polyborates La0.99-xYbxBaB9O16:Tb0.01,” Appl. Phys. (Berl.) 105, 023528–023534 (2009).

Zhang, Q. H.

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009).
[Crossref]

Zhang, X.

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids 358(9), 1217–1220 (2012).
[Crossref]

Zhang, X. G.

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem. 148(1), 259–263 (2010).
[Crossref]

Adv. Mater. (Deerfield Beach Fla.) (1)

B. M. van der Ende, L. Aarts, and A. Meijerink, “Near-infrared quantum cutting for photovoltaics,” Adv. Mater. (Deerfield Beach Fla.) 21(30), 1–5 (2009).
[Crossref]

Appl. Phys. (Berl.) (1)

Y. H. Wang, L. Xie, and H. J. Zhang, “Cooperative near-infrared quantum in Tb3+, Yb3+ codoped polyborates La0.99-xYbxBaB9O16:Tb0.01,” Appl. Phys. (Berl.) 105, 023528–023534 (2009).

Dyes Pigments (1)

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11(4), 303–317 (1989).
[Crossref]

J. Appl. Cryst. (1)

G. S. Smith and R. L. Snyder, “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Cryst. 12(1), 60–65 (1979).
[Crossref]

J. Appl. Phys. (1)

J. Ueda and S. Tanabe, “Visible to near infrared conversion in Ce3+-Yb3+ Co-doped YAG ceramics,” J. Appl. Phys. 106(4), 043101–043105 (2009).
[Crossref]

J. Electrochem. Soc. (2)

Y. Iso, S. Takeshita, and T. Isobe, “Effects of YVO4:Bi3+, Eu3+ nanophosphors spectral down-shifter on properties of monocrystalline silicon photovoltaic module,” J. Electrochem. Soc. 159(3), J72–J76 (2012).
[Crossref]

C. C. Lin, Z. R. Xiao, G. Y. Guo, T. S. Chan, and R. S. Liu, “Improving optical properties of white LED fabricated by a blue LED chip with Yellow/Red phosphors,” J. Electrochem. Soc. 157(9), H900–H9038 (2010).
[Crossref] [PubMed]

J. Lumin. (1)

O. K. Moune, M. D. Faucher, and N. Edelstein, “Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal,” J. Lumin. 96(1), 51–68 (2002).
[Crossref]

J. Mater. Chem. (1)

Q. H. Zhang, J. Wang, G. G. Zhang, and Q. Su, “UV photon harvesting and enhanced near-infrared emission in novel quantum cutting Ca2BO3Cl:Ce3+, Tb3+,Yb3+ phosphor,” J. Mater. Chem. 19(38), 7088–7092 (2009).
[Crossref]

J. Non-Cryst. Solids (1)

H. Fu, S. Cui, Q. Luo, X. Qiao, X. Fan, and X. Zhang, “Broadband downshifting luminescence of Cr3+/Yb3+-codoped fluorosilicate glass,” J. Non-Cryst. Solids 358(9), 1217–1220 (2012).
[Crossref]

J. Solid State Chem. (2)

Z. C. Wu, J. X. Shi, J. Wang, M. L. Gong, and Q. Su, “A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs,” J. Solid State Chem. 179(8), 2356–2360 (2006).
[Crossref]

M.-T. Paques-Ledent, “Vibrational spectra and structure of LiB2+PO4 compounds with B=Sr, Ba, Pb,” J. Solid State Chem. 23(1-2), 147–154 (1978).
[Crossref]

Opt. Mater. (2)

J. J. Velázquez, V. D. Rodríguez, A. C. Yanes, J. del-Castillo, and J. Méndez-Ramos, “Down-shifting in Ce3+–Tb3+ Co-doped SiO2–LaF3 nano-glass–ceramics for photon conversion in solar cells,” Opt. Mater. 34(12), 1994–1997 (2012).
[Crossref]

A. Santana-Alonso, A. C. Yanes, J. Méndez-Ramosb, J. del-Castilloa, and V. D. Rodríguez, “Down-shifting by energy transfer in Dy3+-Yb3+ co-doped YF3-based solgel nano-glass-ceramics for photovoltaic applications,” Opt. Mater. 33(4), 587–591 (2011).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

Science (1)

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

Y. Chen, J. Wang, X. G. Zhang, G. G. Zhang, M. L. Gong, and Q. Su, “An intense green emitting LiSrPO4:Eu2+, Tb3+for phosphor-converted LED,” Sens. Actuators B Chem. 148(1), 259–263 (2010).
[Crossref]

Sol. Energy Mater. Sol. Cells (2)

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells 90(15), 2329–2337 (2006).
[Crossref]

T. Fix, H. Rinnert, M. G. Blamire, A. Slaoui, and J. L. MacManus-Driscoll, “Nd: SrTiO3 thin film as photon downshifting layers for photovoltaics,” Sol. Energy Mater. Sol. Cells 102, 71–74 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Powder XRD pattern of LSP: Eu2+0.005, Pr3+0.0011.

Fig. 2
Fig. 2

PLE (a: λem = 618nm) and PL (b: solid, λex = 443nm; dash, λex = 581nm) spectra of LSP: Pr3+0.0045 at 3K and the luminescence decay curves (c: λex = 484 and 581 nm, d: λem = 609nm) of LSP: Pr3+0.0045 at room temperature.

Fig. 3
Fig. 3

The schematic diagrams of the cross-relaxation processes and ET from Eu2+ to Pr3+ in LSP and from Pr3+ to Si solar cells. (2c: [3P0, 3H4] → [3H6, 1D2]; 2d: [1D2, 3H4] → [1G4, 3F4]; 3b: the lattice thermalization loss).

Fig. 4
Fig. 4

(a): The PL spectrum of LSP: Pr3+0.0045 in near-infrared region (λex = 484nm and 590nm) at 3K; The diffuse reflection spectrum (b), PLE spectra (c, λem = 1035nm) of LSP: Pr3+0.0045 at room temperature.

Fig. 5
Fig. 5

PLE and PL spectra of LSP: Eu2+0.005 (a), LSP: Pr3+0.0045 (b) and LSP: Eu2+0.005, Pr3+0.0045 (c) at room temperature. The inset of Fig. 5(c) is the magnified emission lines between 550 and 650nm.

Fig. 6
Fig. 6

Visible (a) and NIR (b) PL spectra of LSP: Eu2+ 0.005, Pr3+yex = 350 nm, y = 0, 0.0011, 0.0023, 0.0033, 0.0045, 0.0056); inset (a) is the magnified of (a) between 550 and 650 nm; inset of Fig. 6(b) is the PL spectrum of LSP:Eu2+0.005,Pr3+0.0045(LSP) and Ca2BO3Cl:Ce3+0.002,Tb3+0.01,Yb3+0.01(CBC); (c) is the concentration dependence of the integrated emission intensities of Eu2+ and Pr3+ ion; (d) (color online) is the decay curves, lifetime and the ET efficiency (ηET) of LSP: Eu2+0.005, Pr3+y (y = 0, 0.0011, 0.0023, 0.0033, 0.0045, 0.0056; λex = 350 nm, λem = 445 nm).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ηET=1 τX τ0

Metrics