Abstract

In this paper, a novel TiO2 nanoparticle thin film coated optical fiber Fabry-Perot (F-P) sensor had been developed for refractive index (RI) sensing by monitoring the shifts of the fringe contrast in the reflectance spectra. Using in situ liquid phase deposition approach, the TiO2 nanoparticle thin film could be formed on the fiber surface in a controlled fashion. The optical properties of as-prepared F-P sensors were investigated both theoretically and experimentally. The results indicated that the RI sensitivity of F-P sensors could be effectively improved after the deposition of nanoparticle thin-films. It was about 69.38 dB/RIU, which was 2.6 times higher than that of uncoated one. The linear RI measurement range was also extended from 1.333~1.457 to 1.333~1.8423. More importantly, its optical properties exhibited the unique temperature-independent performance. Therefore, owing to these special optical properties, the TiO2 nanoparticle thin film coated F-P sensors have great potentials in medical diagnostics, food quality testing, environmental monitoring, biohazard detection and homeland security, even at elevated temperature.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Lin, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. Tsai, “Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate),” Appl. Opt.50(7), 992–998 (2011).
    [CrossRef] [PubMed]
  2. J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly Sensitive Refractive Index Optical Fiber Sensors Fabricated by a Femtosecond Laser,” IEEE. Photonics J.3(6), 1189–1197 (2011).
    [CrossRef]
  3. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
    [CrossRef]
  4. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
    [CrossRef]
  5. L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors (Basel)11(1), 54–61 (2011).
    [CrossRef] [PubMed]
  6. Y. Wang, M. Yang, D. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B27(3), 370–374 (2010).
    [CrossRef]
  7. Y. Hibino, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section, ” IEEE. Photonics J.2(2), 152–157 (2010).
    [CrossRef]
  8. X. Fang, C. R. Liao, and D. N. Wang, “Femtosecond laser fabricated fiber Bragg grating in microfiber for refractive index sensing,” Opt. Lett.35(7), 1007–1009 (2010).
    [CrossRef] [PubMed]
  9. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett.21(9), 692–694 (1996).
    [CrossRef] [PubMed]
  10. B. Li, L. Jiang, S. Wang, H. L. Tsai, and H. Xiao, “Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing,” Opt. Laser Technol.43(8), 1420–1423 (2011).
    [CrossRef]
  11. M. Jiang, A. P. Zhang, Y. C. Wang, H. Y. Tam, and S. He, “Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber end-face mirror,” Opt. Express17(20), 17976–17982 (2009).
    [CrossRef] [PubMed]
  12. M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE. Photon. Technol. Lett.14(3), 361–362 (2002).
    [CrossRef]
  13. Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys.148, 33–38 (2008).
  14. Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express16(3), 2252–2263 (2008).
    [CrossRef] [PubMed]
  15. J. R. Zhao, X. G. Huang, W. X. He, and J. H. Chen, “High-Resolution and Temperature-Insensitive Fiber Optic Refractive Index Sensor Based on Fresnel Reflection Modulated by Fabry–Perot Interference,” J. Lightwave Technol.28(19), 2799–2803 (2010).
    [CrossRef]
  16. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008).
    [CrossRef] [PubMed]
  17. Y. Gong, T. Zhao, Y. J. Rao, Y. Wu, and Y. Guo, “A ray-transfer-matrix model for hybrid fiber Fabry-Perot sensor based on graded-index multimode fiber,” Opt. Express18(15), 15844–15852 (2010).
    [CrossRef] [PubMed]
  18. Z. G. Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun.285(5), 521–526 (2012).
    [CrossRef]
  19. Z. G. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt.51(16), 3424–3430 (2012).
    [CrossRef] [PubMed]
  20. Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys.109(10), 103106 (2011).
    [CrossRef]
  21. R. B. Charters, S. E. Staines, and R. P. Tatam, “In-line fiber-optic components using Langmuir-Blodgett films,” Opt. Lett.19(23), 2036–2038 (1994).
    [CrossRef] [PubMed]
  22. D. Flannery, S. W. James, R. P. Tatam, and G. J. Ashwell, “Fiber-optic chemical sensing with Langmuir-Blodgett overlay waveguides,” Appl. Opt.38(36), 7370–7374 (1999).
    [CrossRef] [PubMed]
  23. E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. Pinto, “Characterization of optical fiber long period grating refractometer with nanocoating,” Sensor. Actuat. Biol. Chem.153, 335–339 (2011).
  24. Q. S. Li, X. L. Zhang, Y. S. Yu, Y. Qian, W. F. Dong, Y. Li, J. G. Shi, J. T. Yan, and H. Y. Wang, “Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers,” React. Funct. Polym.71(3), 335–339 (2011).
    [CrossRef]
  25. Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun.282(12), 2446–2450 (2009).
    [CrossRef]
  26. E. Davies, R. Viitala, M. Salomäki, S. Areva, L. Zhang, and I. Bennion, “Sol–gel derived coating applied to long-period gratings for enhanced refractive index sensing properties,” J. Opt. A, Pure Appl. Opt.11(1), 015501 (2009).
    [CrossRef]
  27. H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi, “Preparation of TiO2 fibers with well-organized structures,” J. Mater. Chem.10(9), 2005–2006 (2000).
    [CrossRef]

2012 (2)

Z. G. Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun.285(5), 521–526 (2012).
[CrossRef]

Z. G. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt.51(16), 3424–3430 (2012).
[CrossRef] [PubMed]

2011 (7)

N. Lin, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. Tsai, “Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate),” Appl. Opt.50(7), 992–998 (2011).
[CrossRef] [PubMed]

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys.109(10), 103106 (2011).
[CrossRef]

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. Pinto, “Characterization of optical fiber long period grating refractometer with nanocoating,” Sensor. Actuat. Biol. Chem.153, 335–339 (2011).

Q. S. Li, X. L. Zhang, Y. S. Yu, Y. Qian, W. F. Dong, Y. Li, J. G. Shi, J. T. Yan, and H. Y. Wang, “Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers,” React. Funct. Polym.71(3), 335–339 (2011).
[CrossRef]

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly Sensitive Refractive Index Optical Fiber Sensors Fabricated by a Femtosecond Laser,” IEEE. Photonics J.3(6), 1189–1197 (2011).
[CrossRef]

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors (Basel)11(1), 54–61 (2011).
[CrossRef] [PubMed]

B. Li, L. Jiang, S. Wang, H. L. Tsai, and H. Xiao, “Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing,” Opt. Laser Technol.43(8), 1420–1423 (2011).
[CrossRef]

2010 (6)

2009 (3)

M. Jiang, A. P. Zhang, Y. C. Wang, H. Y. Tam, and S. He, “Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber end-face mirror,” Opt. Express17(20), 17976–17982 (2009).
[CrossRef] [PubMed]

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun.282(12), 2446–2450 (2009).
[CrossRef]

E. Davies, R. Viitala, M. Salomäki, S. Areva, L. Zhang, and I. Bennion, “Sol–gel derived coating applied to long-period gratings for enhanced refractive index sensing properties,” J. Opt. A, Pure Appl. Opt.11(1), 015501 (2009).
[CrossRef]

2008 (3)

2005 (1)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

2002 (1)

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE. Photon. Technol. Lett.14(3), 361–362 (2002).
[CrossRef]

2000 (1)

H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi, “Preparation of TiO2 fibers with well-organized structures,” J. Mater. Chem.10(9), 2005–2006 (2000).
[CrossRef]

1999 (1)

1996 (1)

1994 (1)

Abe, I.

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. Pinto, “Characterization of optical fiber long period grating refractometer with nanocoating,” Sensor. Actuat. Biol. Chem.153, 335–339 (2011).

Areva, S.

E. Davies, R. Viitala, M. Salomäki, S. Areva, L. Zhang, and I. Bennion, “Sol–gel derived coating applied to long-period gratings for enhanced refractive index sensing properties,” J. Opt. A, Pure Appl. Opt.11(1), 015501 (2009).
[CrossRef]

Ashwell, G. J.

Bennion, I.

E. Davies, R. Viitala, M. Salomäki, S. Areva, L. Zhang, and I. Bennion, “Sol–gel derived coating applied to long-period gratings for enhanced refractive index sensing properties,” J. Opt. A, Pure Appl. Opt.11(1), 015501 (2009).
[CrossRef]

Bhatia, V.

Caldas, P.

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. Pinto, “Characterization of optical fiber long period grating refractometer with nanocoating,” Sensor. Actuat. Biol. Chem.153, 335–339 (2011).

Charters, R. B.

Chen, D. R.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Chen, J. H.

Chen, Q.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly Sensitive Refractive Index Optical Fiber Sensors Fabricated by a Femtosecond Laser,” IEEE. Photonics J.3(6), 1189–1197 (2011).
[CrossRef]

Chen, Z.

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE. Photon. Technol. Lett.14(3), 361–362 (2002).
[CrossRef]

Chiang, K. S.

Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Opt. Express16(3), 2252–2263 (2008).
[CrossRef] [PubMed]

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE. Photon. Technol. Lett.14(3), 361–362 (2002).
[CrossRef]

Davies, E.

E. Davies, R. Viitala, M. Salomäki, S. Areva, L. Zhang, and I. Bennion, “Sol–gel derived coating applied to long-period gratings for enhanced refractive index sensing properties,” J. Opt. A, Pure Appl. Opt.11(1), 015501 (2009).
[CrossRef]

Deng, M.

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys.148, 33–38 (2008).

Dong, W. F.

Q. S. Li, X. L. Zhang, Y. S. Yu, Y. Qian, W. F. Dong, Y. Li, J. G. Shi, J. T. Yan, and H. Y. Wang, “Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers,” React. Funct. Polym.71(3), 335–339 (2011).
[CrossRef]

Duan, D. W.

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys.148, 33–38 (2008).

Fan, X.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

Fang, X.

Flannery, D.

Frazão, O.

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. Pinto, “Characterization of optical fiber long period grating refractometer with nanocoating,” Sensor. Actuat. Biol. Chem.153, 335–339 (2011).

Gong, Y.

Guo, Y.

Han, Y.

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

He, L.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

He, S.

He, W. X.

Hibino, Y.

Y. Hibino, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section, ” IEEE. Photonics J.2(2), 152–157 (2010).
[CrossRef]

Hirashima, H.

H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi, “Preparation of TiO2 fibers with well-organized structures,” J. Mater. Chem.10(9), 2005–2006 (2000).
[CrossRef]

Huang, X. G.

Imai, H.

H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi, “Preparation of TiO2 fibers with well-organized structures,” J. Mater. Chem.10(9), 2005–2006 (2000).
[CrossRef]

James, S. W.

Jiang, L.

N. Lin, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. Tsai, “Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate),” Appl. Opt.50(7), 992–998 (2011).
[CrossRef] [PubMed]

B. Li, L. Jiang, S. Wang, H. L. Tsai, and H. Xiao, “Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing,” Opt. Laser Technol.43(8), 1420–1423 (2011).
[CrossRef]

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly Sensitive Refractive Index Optical Fiber Sensors Fabricated by a Femtosecond Laser,” IEEE. Photonics J.3(6), 1189–1197 (2011).
[CrossRef]

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors (Basel)11(1), 54–61 (2011).
[CrossRef] [PubMed]

Jiang, M.

Li, B.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly Sensitive Refractive Index Optical Fiber Sensors Fabricated by a Femtosecond Laser,” IEEE. Photonics J.3(6), 1189–1197 (2011).
[CrossRef]

B. Li, L. Jiang, S. Wang, H. L. Tsai, and H. Xiao, “Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing,” Opt. Laser Technol.43(8), 1420–1423 (2011).
[CrossRef]

Li, L.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Li, Q. S.

Q. S. Li, X. L. Zhang, Y. S. Yu, Y. Qian, W. F. Dong, Y. Li, J. G. Shi, J. T. Yan, and H. Y. Wang, “Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers,” React. Funct. Polym.71(3), 335–339 (2011).
[CrossRef]

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun.282(12), 2446–2450 (2009).
[CrossRef]

Li, Y.

Q. S. Li, X. L. Zhang, Y. S. Yu, Y. Qian, W. F. Dong, Y. Li, J. G. Shi, J. T. Yan, and H. Y. Wang, “Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers,” React. Funct. Polym.71(3), 335–339 (2011).
[CrossRef]

T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008).
[CrossRef] [PubMed]

Liao, C. R.

Liao, X.

Lin, N.

Liu, S.

Liu, W. J.

Lu, P.

Lu, Y.

N. Lin, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. Tsai, “Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate),” Appl. Opt.50(7), 992–998 (2011).
[CrossRef] [PubMed]

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors (Basel)11(1), 54–61 (2011).
[CrossRef] [PubMed]

Matsuta, M.

H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi, “Preparation of TiO2 fibers with well-organized structures,” J. Mater. Chem.10(9), 2005–2006 (2000).
[CrossRef]

Negishi, N.

H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi, “Preparation of TiO2 fibers with well-organized structures,” J. Mater. Chem.10(9), 2005–2006 (2000).
[CrossRef]

Ng, M. N.

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE. Photon. Technol. Lett.14(3), 361–362 (2002).
[CrossRef]

Oliveira, J.

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. Pinto, “Characterization of optical fiber long period grating refractometer with nanocoating,” Sensor. Actuat. Biol. Chem.153, 335–339 (2011).

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

Pinto, J.

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. Pinto, “Characterization of optical fiber long period grating refractometer with nanocoating,” Sensor. Actuat. Biol. Chem.153, 335–339 (2011).

Qian, Y.

Q. S. Li, X. L. Zhang, Y. S. Yu, Y. Qian, W. F. Dong, Y. Li, J. G. Shi, J. T. Yan, and H. Y. Wang, “Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers,” React. Funct. Polym.71(3), 335–339 (2011).
[CrossRef]

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun.282(12), 2446–2450 (2009).
[CrossRef]

Ran, Z. L.

Rao, Y. J.

Salomäki, M.

E. Davies, R. Viitala, M. Salomäki, S. Areva, L. Zhang, and I. Bennion, “Sol–gel derived coating applied to long-period gratings for enhanced refractive index sensing properties,” J. Opt. A, Pure Appl. Opt.11(1), 015501 (2009).
[CrossRef]

Shi, J. G.

Q. S. Li, X. L. Zhang, Y. S. Yu, Y. Qian, W. F. Dong, Y. Li, J. G. Shi, J. T. Yan, and H. Y. Wang, “Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers,” React. Funct. Polym.71(3), 335–339 (2011).
[CrossRef]

Shimizu, K.

H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi, “Preparation of TiO2 fibers with well-organized structures,” J. Mater. Chem.10(9), 2005–2006 (2000).
[CrossRef]

Simões, E.

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. Pinto, “Characterization of optical fiber long period grating refractometer with nanocoating,” Sensor. Actuat. Biol. Chem.153, 335–339 (2011).

Staines, S. E.

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

Sui, Z. Y.

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun.282(12), 2446–2450 (2009).
[CrossRef]

Tam, H. Y.

Tatam, R. P.

Tsai, H.

Tsai, H. L.

B. Li, L. Jiang, S. Wang, H. L. Tsai, and H. Xiao, “Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing,” Opt. Laser Technol.43(8), 1420–1423 (2011).
[CrossRef]

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors (Basel)11(1), 54–61 (2011).
[CrossRef] [PubMed]

T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008).
[CrossRef] [PubMed]

Vengsarkar, A. M.

Viitala, R.

E. Davies, R. Viitala, M. Salomäki, S. Areva, L. Zhang, and I. Bennion, “Sol–gel derived coating applied to long-period gratings for enhanced refractive index sensing properties,” J. Opt. A, Pure Appl. Opt.11(1), 015501 (2009).
[CrossRef]

Wang, D.

Wang, D. N.

Wang, H. Y.

Q. S. Li, X. L. Zhang, Y. S. Yu, Y. Qian, W. F. Dong, Y. Li, J. G. Shi, J. T. Yan, and H. Y. Wang, “Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers,” React. Funct. Polym.71(3), 335–339 (2011).
[CrossRef]

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun.282(12), 2446–2450 (2009).
[CrossRef]

Wang, S.

B. Li, L. Jiang, S. Wang, H. L. Tsai, and H. Xiao, “Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing,” Opt. Laser Technol.43(8), 1420–1423 (2011).
[CrossRef]

N. Lin, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. Tsai, “Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate),” Appl. Opt.50(7), 992–998 (2011).
[CrossRef] [PubMed]

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors (Basel)11(1), 54–61 (2011).
[CrossRef] [PubMed]

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly Sensitive Refractive Index Optical Fiber Sensors Fabricated by a Femtosecond Laser,” IEEE. Photonics J.3(6), 1189–1197 (2011).
[CrossRef]

Wang, Y.

Wang, Y. C.

Wei, T.

White, I.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

Wu, G.

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun.282(12), 2446–2450 (2009).
[CrossRef]

Wu, Y.

Xiao, H.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly Sensitive Refractive Index Optical Fiber Sensors Fabricated by a Femtosecond Laser,” IEEE. Photonics J.3(6), 1189–1197 (2011).
[CrossRef]

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors (Basel)11(1), 54–61 (2011).
[CrossRef] [PubMed]

B. Li, L. Jiang, S. Wang, H. L. Tsai, and H. Xiao, “Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing,” Opt. Laser Technol.43(8), 1420–1423 (2011).
[CrossRef]

N. Lin, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. Tsai, “Thermostable refractive index sensors based on whispering gallery modes in a microsphere coated with poly(methyl methacrylate),” Appl. Opt.50(7), 992–998 (2011).
[CrossRef] [PubMed]

T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express16(8), 5764–5769 (2008).
[CrossRef] [PubMed]

Xiao, Y. F.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Yan, J. T.

Q. S. Li, X. L. Zhang, Y. S. Yu, Y. Qian, W. F. Dong, Y. Li, J. G. Shi, J. T. Yan, and H. Y. Wang, “Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers,” React. Funct. Polym.71(3), 335–339 (2011).
[CrossRef]

Yang, J.

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly Sensitive Refractive Index Optical Fiber Sensors Fabricated by a Femtosecond Laser,” IEEE. Photonics J.3(6), 1189–1197 (2011).
[CrossRef]

Yang, L.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Yang, M.

Yang, W. X.

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys.109(10), 103106 (2011).
[CrossRef]

Yu, Y. S.

Q. S. Li, X. L. Zhang, Y. S. Yu, Y. Qian, W. F. Dong, Y. Li, J. G. Shi, J. T. Yan, and H. Y. Wang, “Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers,” React. Funct. Polym.71(3), 335–339 (2011).
[CrossRef]

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun.282(12), 2446–2450 (2009).
[CrossRef]

Zang, Z. G.

Z. G. Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun.285(5), 521–526 (2012).
[CrossRef]

Z. G. Zang and Y. Zhang, “Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation,” Appl. Opt.51(16), 3424–3430 (2012).
[CrossRef] [PubMed]

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys.109(10), 103106 (2011).
[CrossRef]

Zhang, A. P.

Zhang, L.

E. Davies, R. Viitala, M. Salomäki, S. Areva, L. Zhang, and I. Bennion, “Sol–gel derived coating applied to long-period gratings for enhanced refractive index sensing properties,” J. Opt. A, Pure Appl. Opt.11(1), 015501 (2009).
[CrossRef]

Zhang, X. L.

Q. S. Li, X. L. Zhang, Y. S. Yu, Y. Qian, W. F. Dong, Y. Li, J. G. Shi, J. T. Yan, and H. Y. Wang, “Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers,” React. Funct. Polym.71(3), 335–339 (2011).
[CrossRef]

Zhang, Y.

Zhao, J. R.

Zhao, L.

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors (Basel)11(1), 54–61 (2011).
[CrossRef] [PubMed]

Zhao, T.

Zhu, J.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Zhu, T.

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys.148, 33–38 (2008).

Appl. Opt. (3)

Appl. Phys. Lett. (1)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. White, and X. Fan, “Refractometric sensors based on microsphere resonators,” Appl. Phys. Lett.87(20), 201107 (2005).
[CrossRef]

IEEE. Photon. Technol. Lett. (1)

M. N. Ng, Z. Chen, and K. S. Chiang, “Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect,” IEEE. Photon. Technol. Lett.14(3), 361–362 (2002).
[CrossRef]

IEEE. Photonics J. (2)

J. Yang, L. Jiang, S. Wang, Q. Chen, B. Li, and H. Xiao, “Highly Sensitive Refractive Index Optical Fiber Sensors Fabricated by a Femtosecond Laser,” IEEE. Photonics J.3(6), 1189–1197 (2011).
[CrossRef]

Y. Hibino, “Cladding-mode-recoupling-based tilted fiber Bragg grating sensor with a core-diameter-mismatched fiber section, ” IEEE. Photonics J.2(2), 152–157 (2010).
[CrossRef]

J. Appl. Phys. (1)

Z. G. Zang and W. X. Yang, “Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber,” J. Appl. Phys.109(10), 103106 (2011).
[CrossRef]

J. Lightwave Technol. (1)

J. Mater. Chem. (1)

H. Imai, M. Matsuta, K. Shimizu, H. Hirashima, and N. Negishi, “Preparation of TiO2 fibers with well-organized structures,” J. Mater. Chem.10(9), 2005–2006 (2000).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

E. Davies, R. Viitala, M. Salomäki, S. Areva, L. Zhang, and I. Bennion, “Sol–gel derived coating applied to long-period gratings for enhanced refractive index sensing properties,” J. Opt. A, Pure Appl. Opt.11(1), 015501 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4(1), 46–49 (2010).
[CrossRef]

Opt. Commun. (2)

Z. G. Zang, “Numerical analysis of optical bistability based on Fiber Bragg Grating cavity containing a high nonlinearity doped-fiber,” Opt. Commun.285(5), 521–526 (2012).
[CrossRef]

Q. S. Li, Y. Qian, Y. S. Yu, G. Wu, Z. Y. Sui, and H. Y. Wang, “Actions of sodium nitrite on long period fiber grating with self-assembled polyelectrolyte films,” Opt. Commun.282(12), 2446–2450 (2009).
[CrossRef]

Opt. Express (4)

Opt. Laser Technol. (1)

B. Li, L. Jiang, S. Wang, H. L. Tsai, and H. Xiao, “Femtosecond laser fabrication of long period fiber gratings and applications in refractive index sensing,” Opt. Laser Technol.43(8), 1420–1423 (2011).
[CrossRef]

Opt. Lett. (3)

React. Funct. Polym. (1)

Q. S. Li, X. L. Zhang, Y. S. Yu, Y. Qian, W. F. Dong, Y. Li, J. G. Shi, J. T. Yan, and H. Y. Wang, “Enhanced sucrose sensing sensitivity of long period fiber grating by self-assembled polyelectrolyte multilayers,” React. Funct. Polym.71(3), 335–339 (2011).
[CrossRef]

Sensor. Actuat. A-Phys. (1)

Y. J. Rao, M. Deng, D. W. Duan, and T. Zhu, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sensor. Actuat. A-Phys.148, 33–38 (2008).

Sensor. Actuat. Biol. Chem. (1)

E. Simões, I. Abe, J. Oliveira, O. Frazão, P. Caldas, and J. Pinto, “Characterization of optical fiber long period grating refractometer with nanocoating,” Sensor. Actuat. Biol. Chem.153, 335–339 (2011).

Sensors (Basel) (1)

L. Zhao, L. Jiang, S. Wang, H. Xiao, Y. Lu, and H. L. Tsai, “A high-quality Mach-Zehnder interferometer fiber sensor by femtosecond laser one-step processing,” Sensors (Basel)11(1), 54–61 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram and (b) reflection principle of thin-film coated F-P RI sensor.

Fig. 2
Fig. 2

Multi-reflection model of thin-film coated F-P RI sensor.

Fig. 3
Fig. 3

(a) simulated reflective spectrum of coated F-P sensor and (b) enlarged spectrum.

Fig. 4
Fig. 4

(a) Scheme of the sensor tip modified by TiO2 thin film, (b) Time-resolved reflection spectra of sensor during the film growth, (c) Relationship between fringe contrast and reaction time.

Fig. 5
Fig. 5

Relationship between fringe contrast of coated sensor and external RI.

Fig. 6
Fig. 6

Variation of the fringe contrast with the temperature in air.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E r = R 1 E i +(1α)(1 A 1 )(1 R 1 ) R 2 E i e j2β L 1 +jπ +(1α)(1 A 1 )(1 R 1 )(1 A 2 )(1 R 2 ) R 3 E i e j2β( L 1 + L 2 )+jπ +(1α)(1 A 1 )(1 R 1 )(1 A 2 )(1 R 2 )(1γ)(1 A 3 )(1 R 3 ) R 4 E i e j2β( L 1 + L 2 + L 3 )
R FP (λ)=| E r / E i | 2 = R 1 + (1α) 2 (1 A 1 ) 2 (1 R 1 ) 2 R 2 + (1α) 2 (1 A 1 ) 2 (1 R 1 ) 2 (1 A 2 ) 2 (1 R 2 ) 2 R 3 + (1α) 2 (1 A 1 ) 2 (1 R 1 ) 2 (1 A 2 ) 2 (1 R 2 ) 2 (1γ) 2 (1 A 3 ) 2 (1 R 3 ) 2 R 4 2 R 1 R 2 (1α)(1 A 1 )(1 R 1 )cos(4π L 1 /λ) 2 R 1 R 3 (1α)(1 A 1 )(1 R 1 )(1 A 2 )(1 R 2 )cos[4π( L 1 + n 0 L 2 )/λ] +2 R 1 R 4 (1α)(1 A 1 )(1 R 1 )(1 A 2 )(1 R 2 )(1γ)(1 A 3 )(1 R 3 )cos[4π( L 1 + n 0 L 2 + n f L 3 )/λ] +2 R 2 R 3 (1α) 2 (1 A 1 ) 2 (1 R 1 ) 2 (1 A 2 )(1 R 2 )cos(4π n 0 L 2 /λ) 2 R 2 R 4 (1α) 2 (1 A 1 ) 2 (1 R 1 ) 2 (1 A 2 )(1 R 2 )(1γ)(1 A 3 )(1 R 3 )cos[4π(2 L 1 + n 0 L 2 + n f L 3 )/λ] 2 R 3 R 4 (1α) 2 (1 A 1 ) 2 (1 R 1 ) 2 (1 A 2 ) 2 (1 R 2 ) 2 (1γ)(1 A 3 )(1 R 3 )cos(4π n f L 3 )

Metrics