Abstract

This paper reports on the experimental implementation of an interferometer featuring sum frequency generation (SFG) processes powered by a pump spectral doublet. The aim of this configuration is to allow the use of the SFG process over an enlarged spectral domain. By analyzing the converted signal, we experimentally demonstrate a frequency spectral compression effect from the infrared input signal to the visible one converted through the SFG process. Recently, such a compression effect has been numerically demonstrated by Wabnitz et al. We also verify experimentally that we fully retrieve the temporal coherence properties of the infrared input signal in the visible field. The experimental setup permits to demonstrate an experimental frequency spectral compression factor greater than 4. This study takes place in the general field of coherence analysis through second order non-linear processes.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 mm by means of frequency upconversion,” Opt. Lett.29, 1449–1451 (2004).
    [CrossRef] [PubMed]
  2. A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt.51, 1433–1452 (2004).
  3. L. Ma, J. C. Bienfang, O. Slattery, and X. Tang, “Up-conversion single-photon detector using multi-wavelength sampling techniques,” Opt. Express19, 5470–5479 (2011).
    [CrossRef] [PubMed]
  4. K.-D. Bchter, H. Herrmann, C. Langrock, M.M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Express34, 470–472 (2009).
  5. S. Brustlein, L. Del Rio, A. Tonello, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of an infrared-to-visible up-conversion interferometer for spatial coherence analysis,” Phys. Rev. Lett.100, 153903 (2008).
    [CrossRef] [PubMed]
  6. D. Ceus, A. Tonello, L. Grossard, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Phase closure retrieval in an infrared-to-visible upconversion interferometer for high resolution astronomical imaging,” Opt. Express19, 8616–8624 (2011).
    [CrossRef] [PubMed]
  7. R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett.93, 071104 (2008).
    [CrossRef]
  8. Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express16, 19557–19561 (2008).
    [CrossRef] [PubMed]
  9. S. Wabnitz, A. Picozzi, A. Tonello, D. Modotto, and G. Millot, “Control of signal coherence in parametric frequency mixing with incoherent pumps: narrowband mid-infrared light generation by downconversion of broadband amplified spontaneous emission source at 1550 nm,” J. Opt. Soc. Am. B29, 3128–3135, (2012).
    [CrossRef]
  10. R. W. Boyd, Nonlinear Optics (Academic Press, New York, 2008), pp. 69–96.
    [CrossRef]
  11. L. Del Rio, M. Ribiere, L. Delage, and F. Reynaud, “First demonstration of a temporal coherence analysis through a parametric interferometer,” Opt. Commun.281, 2722–2726 (2008).
    [CrossRef]
  12. L. M. Simohamed, L. Delage, and F. Reynaud, “An optical delay line with a 318 mm stroke,” Pure Appl. Opt.5, 1005–1009 (1996).
    [CrossRef]
  13. L. Delage, F. Reynaud, and A. Lannes, “A laboratory imaging stellar interferometer with fiber links,” Appl. Opt.39, 6406–6420 (2000).
    [CrossRef]
  14. G. Huss, L. M. Simohamed, and F. Reynaud, “An all guided two-beam stellar interferometer: preliminary experiment,” Opt. Commun.182, 71–82 (2000).
    [CrossRef]
  15. G. Huss, F. Reynaud, and L. Delage, “An all guided three-arm interferometer for stellar interferometry,” Opt. Commun.196, 55–62 (2001).
    [CrossRef]
  16. M. Born and E. Wolf, Principle of Optics (Pergamon Press, London, 1964), pp. 503–504.

2012

2011

2009

K.-D. Bchter, H. Herrmann, C. Langrock, M.M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Express34, 470–472 (2009).

2008

S. Brustlein, L. Del Rio, A. Tonello, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of an infrared-to-visible up-conversion interferometer for spatial coherence analysis,” Phys. Rev. Lett.100, 153903 (2008).
[CrossRef] [PubMed]

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett.93, 071104 (2008).
[CrossRef]

Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express16, 19557–19561 (2008).
[CrossRef] [PubMed]

L. Del Rio, M. Ribiere, L. Delage, and F. Reynaud, “First demonstration of a temporal coherence analysis through a parametric interferometer,” Opt. Commun.281, 2722–2726 (2008).
[CrossRef]

2004

M. A. Albota and F. N. C. Wong, “Efficient single-photon counting at 1.55 mm by means of frequency upconversion,” Opt. Lett.29, 1449–1451 (2004).
[CrossRef] [PubMed]

A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt.51, 1433–1452 (2004).

2001

G. Huss, F. Reynaud, and L. Delage, “An all guided three-arm interferometer for stellar interferometry,” Opt. Commun.196, 55–62 (2001).
[CrossRef]

2000

L. Delage, F. Reynaud, and A. Lannes, “A laboratory imaging stellar interferometer with fiber links,” Appl. Opt.39, 6406–6420 (2000).
[CrossRef]

G. Huss, L. M. Simohamed, and F. Reynaud, “An all guided two-beam stellar interferometer: preliminary experiment,” Opt. Commun.182, 71–82 (2000).
[CrossRef]

1996

L. M. Simohamed, L. Delage, and F. Reynaud, “An optical delay line with a 318 mm stroke,” Pure Appl. Opt.5, 1005–1009 (1996).
[CrossRef]

Albota, M. A.

Bchter, K.-D.

K.-D. Bchter, H. Herrmann, C. Langrock, M.M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Express34, 470–472 (2009).

Bienfang, J. C.

Born, M.

M. Born and E. Wolf, Principle of Optics (Pergamon Press, London, 1964), pp. 503–504.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, New York, 2008), pp. 69–96.
[CrossRef]

Brustlein, S.

S. Brustlein, L. Del Rio, A. Tonello, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of an infrared-to-visible up-conversion interferometer for spatial coherence analysis,” Phys. Rev. Lett.100, 153903 (2008).
[CrossRef] [PubMed]

Ceus, D.

Del Rio, L.

S. Brustlein, L. Del Rio, A. Tonello, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of an infrared-to-visible up-conversion interferometer for spatial coherence analysis,” Phys. Rev. Lett.100, 153903 (2008).
[CrossRef] [PubMed]

L. Del Rio, M. Ribiere, L. Delage, and F. Reynaud, “First demonstration of a temporal coherence analysis through a parametric interferometer,” Opt. Commun.281, 2722–2726 (2008).
[CrossRef]

Delage, L.

D. Ceus, A. Tonello, L. Grossard, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Phase closure retrieval in an infrared-to-visible upconversion interferometer for high resolution astronomical imaging,” Opt. Express19, 8616–8624 (2011).
[CrossRef] [PubMed]

S. Brustlein, L. Del Rio, A. Tonello, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of an infrared-to-visible up-conversion interferometer for spatial coherence analysis,” Phys. Rev. Lett.100, 153903 (2008).
[CrossRef] [PubMed]

L. Del Rio, M. Ribiere, L. Delage, and F. Reynaud, “First demonstration of a temporal coherence analysis through a parametric interferometer,” Opt. Commun.281, 2722–2726 (2008).
[CrossRef]

G. Huss, F. Reynaud, and L. Delage, “An all guided three-arm interferometer for stellar interferometry,” Opt. Commun.196, 55–62 (2001).
[CrossRef]

L. Delage, F. Reynaud, and A. Lannes, “A laboratory imaging stellar interferometer with fiber links,” Appl. Opt.39, 6406–6420 (2000).
[CrossRef]

L. M. Simohamed, L. Delage, and F. Reynaud, “An optical delay line with a 318 mm stroke,” Pure Appl. Opt.5, 1005–1009 (1996).
[CrossRef]

Fejer, M. M.

Fejer, M.M.

K.-D. Bchter, H. Herrmann, C. Langrock, M.M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Express34, 470–472 (2009).

Gisin, N.

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett.93, 071104 (2008).
[CrossRef]

Grossard, L.

Herrmann, H.

D. Ceus, A. Tonello, L. Grossard, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Phase closure retrieval in an infrared-to-visible upconversion interferometer for high resolution astronomical imaging,” Opt. Express19, 8616–8624 (2011).
[CrossRef] [PubMed]

K.-D. Bchter, H. Herrmann, C. Langrock, M.M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Express34, 470–472 (2009).

S. Brustlein, L. Del Rio, A. Tonello, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of an infrared-to-visible up-conversion interferometer for spatial coherence analysis,” Phys. Rev. Lett.100, 153903 (2008).
[CrossRef] [PubMed]

Huss, G.

G. Huss, F. Reynaud, and L. Delage, “An all guided three-arm interferometer for stellar interferometry,” Opt. Commun.196, 55–62 (2001).
[CrossRef]

G. Huss, L. M. Simohamed, and F. Reynaud, “An all guided two-beam stellar interferometer: preliminary experiment,” Opt. Commun.182, 71–82 (2000).
[CrossRef]

Kwiat, P. G.

A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt.51, 1433–1452 (2004).

Langrock, C.

K.-D. Bchter, H. Herrmann, C. Langrock, M.M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Express34, 470–472 (2009).

Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express16, 19557–19561 (2008).
[CrossRef] [PubMed]

Lannes, A.

Ma, L.

Millot, G.

Modotto, D.

Picozzi, A.

Reynaud, F.

D. Ceus, A. Tonello, L. Grossard, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Phase closure retrieval in an infrared-to-visible upconversion interferometer for high resolution astronomical imaging,” Opt. Express19, 8616–8624 (2011).
[CrossRef] [PubMed]

S. Brustlein, L. Del Rio, A. Tonello, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of an infrared-to-visible up-conversion interferometer for spatial coherence analysis,” Phys. Rev. Lett.100, 153903 (2008).
[CrossRef] [PubMed]

L. Del Rio, M. Ribiere, L. Delage, and F. Reynaud, “First demonstration of a temporal coherence analysis through a parametric interferometer,” Opt. Commun.281, 2722–2726 (2008).
[CrossRef]

G. Huss, F. Reynaud, and L. Delage, “An all guided three-arm interferometer for stellar interferometry,” Opt. Commun.196, 55–62 (2001).
[CrossRef]

G. Huss, L. M. Simohamed, and F. Reynaud, “An all guided two-beam stellar interferometer: preliminary experiment,” Opt. Commun.182, 71–82 (2000).
[CrossRef]

L. Delage, F. Reynaud, and A. Lannes, “A laboratory imaging stellar interferometer with fiber links,” Appl. Opt.39, 6406–6420 (2000).
[CrossRef]

L. M. Simohamed, L. Delage, and F. Reynaud, “An optical delay line with a 318 mm stroke,” Pure Appl. Opt.5, 1005–1009 (1996).
[CrossRef]

Ribiere, M.

L. Del Rio, M. Ribiere, L. Delage, and F. Reynaud, “First demonstration of a temporal coherence analysis through a parametric interferometer,” Opt. Commun.281, 2722–2726 (2008).
[CrossRef]

Simohamed, L. M.

G. Huss, L. M. Simohamed, and F. Reynaud, “An all guided two-beam stellar interferometer: preliminary experiment,” Opt. Commun.182, 71–82 (2000).
[CrossRef]

L. M. Simohamed, L. Delage, and F. Reynaud, “An optical delay line with a 318 mm stroke,” Pure Appl. Opt.5, 1005–1009 (1996).
[CrossRef]

Slattery, O.

Sohler, W.

D. Ceus, A. Tonello, L. Grossard, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Phase closure retrieval in an infrared-to-visible upconversion interferometer for high resolution astronomical imaging,” Opt. Express19, 8616–8624 (2011).
[CrossRef] [PubMed]

K.-D. Bchter, H. Herrmann, C. Langrock, M.M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Express34, 470–472 (2009).

S. Brustlein, L. Del Rio, A. Tonello, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of an infrared-to-visible up-conversion interferometer for spatial coherence analysis,” Phys. Rev. Lett.100, 153903 (2008).
[CrossRef] [PubMed]

Tang, X.

Thew, R. T.

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett.93, 071104 (2008).
[CrossRef]

Tonello, A.

VanDevender, A. P.

A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt.51, 1433–1452 (2004).

Wabnitz, S.

Wolf, E.

M. Born and E. Wolf, Principle of Optics (Pergamon Press, London, 1964), pp. 503–504.

Wong, F. N. C.

Yamamoto, Y.

Zbinden, H.

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett.93, 071104 (2008).
[CrossRef]

Zhang, Q.

Appl. Opt.

Appl. Phys. Lett.

R. T. Thew, H. Zbinden, and N. Gisin, “Tunable upconversion photon detector,” Appl. Phys. Lett.93, 071104 (2008).
[CrossRef]

J. Mod. Opt.

A. P. VanDevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt.51, 1433–1452 (2004).

J. Opt. Soc. Am. B

Opt. Commun.

L. Del Rio, M. Ribiere, L. Delage, and F. Reynaud, “First demonstration of a temporal coherence analysis through a parametric interferometer,” Opt. Commun.281, 2722–2726 (2008).
[CrossRef]

G. Huss, L. M. Simohamed, and F. Reynaud, “An all guided two-beam stellar interferometer: preliminary experiment,” Opt. Commun.182, 71–82 (2000).
[CrossRef]

G. Huss, F. Reynaud, and L. Delage, “An all guided three-arm interferometer for stellar interferometry,” Opt. Commun.196, 55–62 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. Brustlein, L. Del Rio, A. Tonello, L. Delage, F. Reynaud, H. Herrmann, and W. Sohler, “Laboratory demonstration of an infrared-to-visible up-conversion interferometer for spatial coherence analysis,” Phys. Rev. Lett.100, 153903 (2008).
[CrossRef] [PubMed]

Pure Appl. Opt.

L. M. Simohamed, L. Delage, and F. Reynaud, “An optical delay line with a 318 mm stroke,” Pure Appl. Opt.5, 1005–1009 (1996).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics (Academic Press, New York, 2008), pp. 69–96.
[CrossRef]

M. Born and E. Wolf, Principle of Optics (Pergamon Press, London, 1964), pp. 503–504.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Normalized simulated sum frequency generation efficiency. The signal frequency νs (horizontal axis) is centered on ν s 0 = 194.35 THz ( λ s 0 = 1542.5 nm), and the pump frequency νp (vertical axis) is centered on ν p 0 = 281.76 THz ( λ p 0 = 1064.0 nm). The converted frequency is not represented here. For a perfect phase matching (red curve), νp depends linearly on νs

Fig. 2
Fig. 2

Experimental setup of the up-conversion interferometer. OPM: optical path modulator, WDM: wavelength division multiplexer, L: lens, P: prism, IF: interference filter

Fig. 3
Fig. 3

Positions of the experimental pump/signal couples on the normalized conversion efficiency curve linked to the PPLN waveguides

Fig. 4
Fig. 4

Experimental fringe contrast versus the OPD applied on the infrared stage. Dots represent the measured contrasts. The red curve is the best theoretical fit. The beat length, which is equal to the contrast period, is LbIR = 1.46 mm

Fig. 5
Fig. 5

Experimental fringe contrast versus the OPD applied on the visible stage. Dots represent the measured contrasts. The red curve is the best theoretical fit. The beat length, which is equal to the contrast period, is LbVi = 5.97 mm

Fig. 6
Fig. 6

Experimental fringe contrast versus the OPD applied on the infrared stage for an unbalance ratio α = 13.5. Dots represent the measured contrast. The red curve is the theoretical contrast evolution obtained from the Wiener-Khintchine theorem for the same configuration than the experimental setup. The constrast modulation amplitude is equal to 6.24%. Inset shows the normalized power spectral density of the infrared spectral doublet under analyze.

Fig. 7
Fig. 7

Experimental fringe contrast versus the OPD applied on the infrared stage for an unbalance ratio α = 13.5. Dots represent the measured contrasts. The red curve is the best theoretical fit. The constrast modulation amplitude is equal to 6.09%. Inset shows the normalized power spectral density of the infrared spectral doublet under analyze.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Δ k = 2 π c ( n c ν c n s ν s n p ν p + c Λ )
η ( ν s , ν p ) = sinc 2 ( Δ k L 2 )
ν p = a + b num ν s
ν c = a + ( 1 + b num ) ν s
Δ ν c = ( 1 + b num ) Δ ν s
ρ num = Δ ν s Δ ν c = | 1 1 + b num |
I 1 ( δ ) = 2 I 0 ( 1 + cos ( Δ ϕ s 1 + Δ ϕ c 1 ) )
I 2 ( δ ) = 2 I 0 ( 1 + cos ( Δ ϕ s 2 + Δ ϕ c 2 ) )
Itot ( δ ) = I 1 ( δ ) + I 2 ( δ ) = 4 I 0 ( 1 + ( δ ) ( δ ) )
with ( δ ) = cos ( π Δ δ I R L b I R + π Δ δ V i L b V i )
and ( δ ) = cos ( 2 π c Δ δ I R ν s ¯ + 2 π c Δ δ V i ν c ¯ )
ρ exp = L b V i L b I R = 4.09
ρ exp = | 1 1 + b exp | = 4.08
V ( δ ) = | T F [ P S D ( ν ) ] |

Metrics