Abstract

We demonstrate a method of background component suppression of synthesized pulses for flatly broadened supercontinuum (SC) generation. An adaptive pulse shaping in frequency domain achieved a 26 dB contrast between pulse center and background level in auto-correlation trace by combining two fitness functions during feedback-controlled pulse shaping. The pulse was used as a SC pump, and the spectral peak of the SC at the pump wavelength was suppressed by 5 dB using the combination scheme. Simulation results show that the phase spectra control is required to be within ± π/100 rad to suppress the spectral peak below 3 dB. The results show that adaptive pulse shaping is required to improve SC flatness due to the small mismatch tolerance.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
    [CrossRef]
  2. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express12(2), 317–324 (2004).
    [CrossRef] [PubMed]
  3. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol.24(6), 2311–2317 (2006).
    [CrossRef]
  4. S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
    [CrossRef] [PubMed]
  5. S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
    [CrossRef]
  6. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008).
    [CrossRef] [PubMed]
  7. T. Shioda, K. Fujii, K. Kashiwagi, and T. Kurokawa, “High-resolution spectroscopy combined with the use of optical frequency comb and heterodyne detection,” J. Opt. Soc. Am. B27(7), 1487–1491 (2010).
    [CrossRef]
  8. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008).
    [CrossRef] [PubMed]
  9. F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81(6), 063105 (2010).
    [CrossRef] [PubMed]
  10. G. G. Ycas, F. Quinlan, S. A. Diddams, S. Osterman, S. Mahadevan, S. Redman, R. Terrien, L. Ramsey, C. F. Bender, B. Botzer, and S. Sigurdsson, “Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb,” Opt. Express20(6), 6631–6643 (2012).
    [CrossRef] [PubMed]
  11. T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
    [CrossRef]
  12. K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, K. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high-resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
    [CrossRef]
  13. H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
    [CrossRef]
  14. Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
    [CrossRef]
  15. K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
    [CrossRef]
  16. K. Kashiwagi, H. Ishizu, and T. Kurokawa, “Fiber transmission characteristics of parabolic pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.50(9), 092501 (2011).
    [CrossRef]
  17. S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
    [CrossRef]
  18. D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun.276(2), 288–292 (2007).
    [CrossRef]
  19. X. Yang, D. J. Richardson, and P. Petropoulos, “Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping,” J. Lightwave Technol.30(12), 1971–1977 (2012).
    [CrossRef]
  20. K. Kashiwagi, H. Ishizu, Y. Mizuno, and T. Kurokawa, “Optical pulse compression with waveform reshaping using pulse synthesizer and cascaded fiber pair,” in Proceedings of Conference on Lasers and Electro-Optics / Pacific Rim, Technical Digest (CD) (Optical Society of America, 2011), paper 3240-CT-6.

2012 (2)

2011 (1)

K. Kashiwagi, H. Ishizu, and T. Kurokawa, “Fiber transmission characteristics of parabolic pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.50(9), 092501 (2011).
[CrossRef]

2010 (2)

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81(6), 063105 (2010).
[CrossRef] [PubMed]

T. Shioda, K. Fujii, K. Kashiwagi, and T. Kurokawa, “High-resolution spectroscopy combined with the use of optical frequency comb and heterodyne detection,” J. Opt. Soc. Am. B27(7), 1487–1491 (2010).
[CrossRef]

2009 (3)

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

2008 (3)

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008).
[CrossRef] [PubMed]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

2007 (3)

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources (Invited),” J. Opt. Soc. Am. B24(8), 1771–1785 (2007).
[CrossRef]

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun.276(2), 288–292 (2007).
[CrossRef]

2006 (3)

2004 (1)

1997 (1)

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Abe, M.

Aizawa, K.

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, K. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high-resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Bender, C. F.

Benedick, A. J.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Botzer, B.

Choi, S.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
[CrossRef] [PubMed]

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008).
[CrossRef] [PubMed]

Coen, S.

Diddams, S. A.

Dudley, J. M.

Fendel, P.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Fujii, K.

Genty, G.

Glenday, A. G.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Goto, T.

Hori, T.

Inoue, Y.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Ishii, M.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Ishizu, H.

K. Kashiwagi, H. Ishizu, and T. Kurokawa, “Fiber transmission characteristics of parabolic pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.50(9), 092501 (2011).
[CrossRef]

Kärtner, F. X.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Kashiwagi, K.

K. Kashiwagi, H. Ishizu, and T. Kurokawa, “Fiber transmission characteristics of parabolic pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.50(9), 092501 (2011).
[CrossRef]

T. Shioda, K. Fujii, K. Kashiwagi, and T. Kurokawa, “High-resolution spectroscopy combined with the use of optical frequency comb and heterodyne detection,” J. Opt. Soc. Am. B27(7), 1487–1491 (2010).
[CrossRef]

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

Kobe, R.

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

Kodama, Y.

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

Kurokawa, T.

K. Kashiwagi, H. Ishizu, and T. Kurokawa, “Fiber transmission characteristics of parabolic pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.50(9), 092501 (2011).
[CrossRef]

T. Shioda, K. Fujii, K. Kashiwagi, and T. Kurokawa, “High-resolution spectroscopy combined with the use of optical frequency comb and heterodyne detection,” J. Opt. Soc. Am. B27(7), 1487–1491 (2010).
[CrossRef]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
[CrossRef] [PubMed]

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, K. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high-resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Levis, R. J.

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun.276(2), 288–292 (2007).
[CrossRef]

Li, C.-H.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Lorenc, D.

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun.276(2), 288–292 (2007).
[CrossRef]

Mahadevan, S.

Mandai, K.

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, K. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high-resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Markevitch, A. N.

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun.276(2), 288–292 (2007).
[CrossRef]

Masuda, H.

Miyamoto, D.

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, K. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high-resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Morioka, T.

Moteki, D.

Naganuma, K.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008).
[CrossRef] [PubMed]

Nishizawa, N.

Ohara, T.

Okamoto, K.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Osterman, S.

Petropoulos, P.

Phillips, D. F.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Quinlan, F.

Ramsey, L.

Redman, S.

Richardson, D. J.

Sasselov, D.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Shioda, T.

T. Shioda, K. Fujii, K. Kashiwagi, and T. Kurokawa, “High-resolution spectroscopy combined with the use of optical frequency comb and heterodyne detection,” J. Opt. Soc. Am. B27(7), 1487–1491 (2010).
[CrossRef]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
[CrossRef] [PubMed]

Sigurdsson, S.

Suzuki, T.

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, K. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high-resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008).
[CrossRef] [PubMed]

Szentgyorgyi, A.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Takahashi, H.

Takara, H.

Takayanagi, J.

Takenouchi, H.

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Tamura, N.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

Tanaka, Y.

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

S. Choi, M. Yamamoto, D. Moteki, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interferometer for profilometry and tomography,” Opt. Lett.31(13), 1976–1978 (2006).
[CrossRef] [PubMed]

Terrien, R.

Tsuda, H.

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008).
[CrossRef]

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, K. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high-resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

Velic, D.

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun.276(2), 288–292 (2007).
[CrossRef]

Walsworth, R. L.

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Yamamoto, M.

Yamamoto, T.

Yang, X.

Ycas, G.

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81(6), 063105 (2010).
[CrossRef] [PubMed]

Ycas, G. G.

Electron. Lett. (1)

T. Kurokawa, H. Tsuda, K. Okamoto, K. Naganuma, H. Takenouchi, Y. Inoue, and M. Ishii, “Time-space-conversion optical signal processing using arrayed-waveguide grating,” Electron. Lett.33(22), 1890–1891 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Mandai, D. Miyamoto, T. Suzuki, H. Tsuda, K. Aizawa, and T. Kurokawa, “Repetition rate and center wavelength-tunable optical pulse generation using an optical comb generator and a high-resolution arrayed-waveguide grating,” IEEE Photon. Technol. Lett.18(5), 679–681 (2006).
[CrossRef]

Y. Tanaka, R. Kobe, T. Shioda, H. Tsuda, and T. Kurokawa, “Generation of 100-Gb/s Packets Having 8-Bit Return-to-Zero Patterns Using an Optical Pulse Synthesizer With a Lookup Table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (4)

S. Choi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Frequency-comb-based interference microscope with a line-type image sensor,” Jpn. J. Appl. Phys.46(10A), 6842–6847 (2007).
[CrossRef]

K. Kashiwagi, Y. Kodama, R. Kobe, T. Shioda, Y. Tanaka, and T. Kurokawa, “Fiber transmission characteristics of optical short pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.48(9), 09LF02 (2009).
[CrossRef]

K. Kashiwagi, H. Ishizu, and T. Kurokawa, “Fiber transmission characteristics of parabolic pulses generated by optical pulse synthesizer,” Jpn. J. Appl. Phys.50(9), 092501 (2011).
[CrossRef]

S. Choi, N. Tamura, K. Kashiwagi, T. Shioda, Y. Tanaka, and T. Kurokawa, “Supercontinuum comb generation using optical pulse synthesizer and highly nonlinear dispersion-shifted fiber,” Jpn. J. Appl. Phys.48(9), 09LF01 (2009).
[CrossRef]

Nature (1)

C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kärtner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1.,” Nature452(7187), 610–612 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun.276(2), 288–292 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett.100(1), 013902 (2008).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration,” Rev. Sci. Instrum.81(6), 063105 (2010).
[CrossRef] [PubMed]

Other (1)

K. Kashiwagi, H. Ishizu, Y. Mizuno, and T. Kurokawa, “Optical pulse compression with waveform reshaping using pulse synthesizer and cascaded fiber pair,” in Proceedings of Conference on Lasers and Electro-Optics / Pacific Rim, Technical Digest (CD) (Optical Society of America, 2011), paper 3240-CT-6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for optical pulse synthesis and generation of supercontinuum with wide mode spacing. TLD: tunable laser diode, LN: lithium niobate, AWG: arrayed waveguide grating, EDFA: erbium-doped fiber amplifier, DFF:dispersion flattened fiber, DSP:digital signal processor.

Fig. 2
Fig. 2

Illustrations of difference of the two fitness functions (a) peak power fitness function (Fitness 1), (b) Fitness function is calculated from the difference between target waveform and measured waveform (Fitness 2)

Fig. 3
Fig. 3

Fitness evolution during feedback control.

Fig. 4
Fig. 4

Auto-correlation waveforms of the generated Gaussian pulses (a) linear scale, vertical axis, and (b) logarithmic scale, vertical axis. (black curve: the phase spectrum controlled only by Fitness 1 (Pulse 1); red curve: the phase spectrum controlled by combining Fitness 1 and 2 (Pulse 2)).

Fig. 5
Fig. 5

Spectra generated from the pump pulses with simulation result without phase mismatch (blue curve): Pulse 1 (black curve), Pulse 2 (red curve).

Fig. 6
Fig. 6

Simulation of the SC generation with and without random phase shift ranging within ± π/2000: (a) pulse waveforms, (b) generated SC spectra, and (c) spectrograph of the SC generated from the pulse shown in (a) by the red curve.

Fig. 7
Fig. 7

Simulation of SC generation with and without random phase shift ranging within ± π/20: (a) pulse waveforms, (b) generated SC spectra, and (c) spectrograph of the SC generated from the pulse shown in (a) by the red curve.

Fig. 8
Fig. 8

(a)Spectral peak height and (b) highest sub peak in auto-correlation trace against random phase shift range.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Fitness 2= ( | log(target) log(measured) | 2 number of data points ) 1 2

Metrics