Abstract

A distributed optical fiber sensing system merged Mach-Zehnder interferometer and phase sensitive optical time domain reflectometer (φ-OTDR) system for vibration measurement with high-frequency response and high spatial resolution is demonstrated, where modulated pulses are proposed to be used as sensing source. Frequency response and location information are obtained by Mach-Zehnder interferometer and φ-OTDR technology, respectively. In order to simulate high-frequency vibration of crack of cable and civil structure, experiments on detection of piezoelectric transducer and pencil-break are carried out. Spatial resolution of 5 m and the maximum frequency response of ~3 MHz are achieved in 1064 m fiber link when the narrow pulse width is 50 ns.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac-Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol.15(6), 972–976 (1997).
    [CrossRef]
  2. A. A. Chtcherbakov, P. L. Swart, S. J. Spammer, and B. M. Lacquet, “Modified Sagnac/Mach-Zehnder interferometer for distributed disturbance sensing,” Microw. Opt. Technol. Lett.20(1), 34–36 (1999).
    [CrossRef]
  3. S. J. Russell, K. R. C. Brady, and J. P. Dakin, “Real-time location of multiple time-varying strain disturbances acting over a 40 km fiber section using a novel dual-Sagnac interferometer,” J. Lightwave Technol.19(2), 205–213 (2001).
    [CrossRef]
  4. X. Fang, “A variable-loop Sagnac interferometer for distributed impact sensing,” J. Lightwave Technol.14(10), 2250–2254 (1996).
    [CrossRef]
  5. X. J. Fang, “Fiber-optic distributed sensing by a two-loop Sagnac interferometer,” Opt. Lett.21(6), 444–446 (1996).
    [CrossRef] [PubMed]
  6. M. Kondrat, M. Szustakowski, N. Pałka, W. Ciurapiński, and M. Życzkowski, “A Sagnac-Michelson fiber optic interferometer: signal processing for disturbance localization,” Opto-Electron. Rev.15(3), 127–132 (2007).
    [CrossRef]
  7. X. Hong, J. Wu, C. Zuo, F. Liu, H. Guo, and K. Xu, “Dual Michelson interferometers for distributed vibration detection,” Appl. Opt.50(22), 4333–4338 (2011).
    [CrossRef] [PubMed]
  8. B. Kizlik, “Fibre optic distributed sensor in Mach-Zehnder interferometer configuration,” in Modern Problems of Radio Engineering, TCSET, Proceedings of the International Conference (2002), pp. 128–130.
  9. T. Omori, K. Y. Hashimoto, and M. Yamaguchi, “Position-detectable optical distributed vibration sensor using an additional sub-loop,” Sensors, 2004. Proc. IEEE2, 583–586 (2004).
  10. M. Chojnacki, B. Kizlik, and W. Ciurapinski, “Distributed sensor of vibration in fiber optic Michelson interferometer configuration,” in The Experience of Designing and Application of CAD Systems in Microelectronics. CADSM 2001. Proceedings of the 6th International Conference (2001), pp. 183–186.
  11. J. C. Juarez, E. W. Maier, K. N. Choi, and H. F. Taylor, “Distributed fiber-optic intrusion sensor system,” J. Lightwave Technol.23(6), 2081–2087 (2005).
    [CrossRef]
  12. J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Appl. Opt.46(11), 1968–1971 (2007).
    [CrossRef] [PubMed]
  13. Y. Lu, T. Zhu, L. Chen, and X. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR,” J. Lightwave Technol.28, 3243–3249 (2010).
  14. Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system,” Opt. Express16(14), 10240–10247 (2008).
    [CrossRef] [PubMed]
  15. K. Hotate and S. S. L. Ong, “Distributed dynamic strain measurement using a correlation-based Brillouin sensing system,” IEEE Photon. Technol. Lett.15(2), 272–274 (2003).
    [CrossRef]
  16. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett.36(2), 277–279 (2011).
    [CrossRef] [PubMed]
  17. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett.34(17), 2613–2615 (2009).
    [CrossRef] [PubMed]

2011 (2)

2010 (1)

2009 (1)

2008 (1)

2007 (2)

J. C. Juarez and H. F. Taylor, “Field test of a distributed fiber-optic intrusion sensor system for long perimeters,” Appl. Opt.46(11), 1968–1971 (2007).
[CrossRef] [PubMed]

M. Kondrat, M. Szustakowski, N. Pałka, W. Ciurapiński, and M. Życzkowski, “A Sagnac-Michelson fiber optic interferometer: signal processing for disturbance localization,” Opto-Electron. Rev.15(3), 127–132 (2007).
[CrossRef]

2005 (1)

2004 (1)

T. Omori, K. Y. Hashimoto, and M. Yamaguchi, “Position-detectable optical distributed vibration sensor using an additional sub-loop,” Sensors, 2004. Proc. IEEE2, 583–586 (2004).

2003 (1)

K. Hotate and S. S. L. Ong, “Distributed dynamic strain measurement using a correlation-based Brillouin sensing system,” IEEE Photon. Technol. Lett.15(2), 272–274 (2003).
[CrossRef]

2001 (1)

1999 (1)

A. A. Chtcherbakov, P. L. Swart, S. J. Spammer, and B. M. Lacquet, “Modified Sagnac/Mach-Zehnder interferometer for distributed disturbance sensing,” Microw. Opt. Technol. Lett.20(1), 34–36 (1999).
[CrossRef]

1997 (1)

S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac-Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol.15(6), 972–976 (1997).
[CrossRef]

1996 (2)

X. Fang, “A variable-loop Sagnac interferometer for distributed impact sensing,” J. Lightwave Technol.14(10), 2250–2254 (1996).
[CrossRef]

X. J. Fang, “Fiber-optic distributed sensing by a two-loop Sagnac interferometer,” Opt. Lett.21(6), 444–446 (1996).
[CrossRef] [PubMed]

Bao, X.

Bernini, R.

Brady, K. R. C.

Chen, L.

Choi, K. N.

Chtcherbakov, A. A.

A. A. Chtcherbakov, P. L. Swart, S. J. Spammer, and B. M. Lacquet, “Modified Sagnac/Mach-Zehnder interferometer for distributed disturbance sensing,” Microw. Opt. Technol. Lett.20(1), 34–36 (1999).
[CrossRef]

S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac-Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol.15(6), 972–976 (1997).
[CrossRef]

Ciurapinski, W.

M. Kondrat, M. Szustakowski, N. Pałka, W. Ciurapiński, and M. Życzkowski, “A Sagnac-Michelson fiber optic interferometer: signal processing for disturbance localization,” Opto-Electron. Rev.15(3), 127–132 (2007).
[CrossRef]

Dakin, J. P.

Dong, Y.

Fang, X.

X. Fang, “A variable-loop Sagnac interferometer for distributed impact sensing,” J. Lightwave Technol.14(10), 2250–2254 (1996).
[CrossRef]

Fang, X. J.

Guo, H.

Hashimoto, K. Y.

T. Omori, K. Y. Hashimoto, and M. Yamaguchi, “Position-detectable optical distributed vibration sensor using an additional sub-loop,” Sensors, 2004. Proc. IEEE2, 583–586 (2004).

Hong, X.

Hotate, K.

K. Hotate and S. S. L. Ong, “Distributed dynamic strain measurement using a correlation-based Brillouin sensing system,” IEEE Photon. Technol. Lett.15(2), 272–274 (2003).
[CrossRef]

Juarez, J. C.

Kondrat, M.

M. Kondrat, M. Szustakowski, N. Pałka, W. Ciurapiński, and M. Życzkowski, “A Sagnac-Michelson fiber optic interferometer: signal processing for disturbance localization,” Opto-Electron. Rev.15(3), 127–132 (2007).
[CrossRef]

Lacquet, B. M.

A. A. Chtcherbakov, P. L. Swart, S. J. Spammer, and B. M. Lacquet, “Modified Sagnac/Mach-Zehnder interferometer for distributed disturbance sensing,” Microw. Opt. Technol. Lett.20(1), 34–36 (1999).
[CrossRef]

Liu, F.

Lu, Y.

Maier, E. W.

Minardo, A.

Omori, T.

T. Omori, K. Y. Hashimoto, and M. Yamaguchi, “Position-detectable optical distributed vibration sensor using an additional sub-loop,” Sensors, 2004. Proc. IEEE2, 583–586 (2004).

Ong, S. S. L.

K. Hotate and S. S. L. Ong, “Distributed dynamic strain measurement using a correlation-based Brillouin sensing system,” IEEE Photon. Technol. Lett.15(2), 272–274 (2003).
[CrossRef]

Palka, N.

M. Kondrat, M. Szustakowski, N. Pałka, W. Ciurapiński, and M. Życzkowski, “A Sagnac-Michelson fiber optic interferometer: signal processing for disturbance localization,” Opto-Electron. Rev.15(3), 127–132 (2007).
[CrossRef]

Russell, S. J.

Spammer, S. J.

A. A. Chtcherbakov, P. L. Swart, S. J. Spammer, and B. M. Lacquet, “Modified Sagnac/Mach-Zehnder interferometer for distributed disturbance sensing,” Microw. Opt. Technol. Lett.20(1), 34–36 (1999).
[CrossRef]

S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac-Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol.15(6), 972–976 (1997).
[CrossRef]

Swart, P. L.

A. A. Chtcherbakov, P. L. Swart, S. J. Spammer, and B. M. Lacquet, “Modified Sagnac/Mach-Zehnder interferometer for distributed disturbance sensing,” Microw. Opt. Technol. Lett.20(1), 34–36 (1999).
[CrossRef]

S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac-Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol.15(6), 972–976 (1997).
[CrossRef]

Szustakowski, M.

M. Kondrat, M. Szustakowski, N. Pałka, W. Ciurapiński, and M. Życzkowski, “A Sagnac-Michelson fiber optic interferometer: signal processing for disturbance localization,” Opto-Electron. Rev.15(3), 127–132 (2007).
[CrossRef]

Taylor, H. F.

Wu, J.

Xu, K.

Yamaguchi, M.

T. Omori, K. Y. Hashimoto, and M. Yamaguchi, “Position-detectable optical distributed vibration sensor using an additional sub-loop,” Sensors, 2004. Proc. IEEE2, 583–586 (2004).

Zeni, L.

Zhang, Z.

Zhu, T.

Zuo, C.

Zyczkowski, M.

M. Kondrat, M. Szustakowski, N. Pałka, W. Ciurapiński, and M. Życzkowski, “A Sagnac-Michelson fiber optic interferometer: signal processing for disturbance localization,” Opto-Electron. Rev.15(3), 127–132 (2007).
[CrossRef]

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

K. Hotate and S. S. L. Ong, “Distributed dynamic strain measurement using a correlation-based Brillouin sensing system,” IEEE Photon. Technol. Lett.15(2), 272–274 (2003).
[CrossRef]

J. Lightwave Technol. (5)

Microw. Opt. Technol. Lett. (1)

A. A. Chtcherbakov, P. L. Swart, S. J. Spammer, and B. M. Lacquet, “Modified Sagnac/Mach-Zehnder interferometer for distributed disturbance sensing,” Microw. Opt. Technol. Lett.20(1), 34–36 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opto-Electron. Rev. (1)

M. Kondrat, M. Szustakowski, N. Pałka, W. Ciurapiński, and M. Życzkowski, “A Sagnac-Michelson fiber optic interferometer: signal processing for disturbance localization,” Opto-Electron. Rev.15(3), 127–132 (2007).
[CrossRef]

Sensors, 2004. Proc. IEEE (1)

T. Omori, K. Y. Hashimoto, and M. Yamaguchi, “Position-detectable optical distributed vibration sensor using an additional sub-loop,” Sensors, 2004. Proc. IEEE2, 583–586 (2004).

Other (2)

M. Chojnacki, B. Kizlik, and W. Ciurapinski, “Distributed sensor of vibration in fiber optic Michelson interferometer configuration,” in The Experience of Designing and Application of CAD Systems in Microelectronics. CADSM 2001. Proceedings of the 6th International Conference (2001), pp. 183–186.

B. Kizlik, “Fibre optic distributed sensor in Mach-Zehnder interferometer configuration,” in Modern Problems of Radio Engineering, TCSET, Proceedings of the International Conference (2002), pp. 128–130.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Modulated light pulses used in our experiment, (b). The corresponding relationship between offset level and intensity of I2 when I1 = 6.5dBm (Only applied to AFG 3102 of Tektronix).

Fig. 2
Fig. 2

Experimental setup of merged M-Z interferometer and φ-OTDR system

Fig. 3
Fig. 3

(a) Integrated interference waveform. (b) 100 consecutive traces superimposed with amplitude change at 390 m location (the zoomed in vibration information is shown in inset).

Fig. 4
Fig. 4

Frequency response of PZT detection. (a) and (b): power spectrum of 10Hz and 25kHz with 50mV offset level; (c) and (d): power spectrum of 10Hz and 25kHz with 200mV offset level.

Fig. 5
Fig. 5

99 superimposed differential backscattering traces of modulated pulses with 50ns pulse width under 50mV, 100mV, 150mV, and 200mV offset value.

Fig. 6
Fig. 6

(a) Integrated interference waveform. (b) 50 averaging traces (location circled in red dash line) with 50 averaging times.

Fig. 7
Fig. 7

Frequency response of pencil-break with 50ns modulated pulses. (a), (b), (c) and (d) were tested under 50mV, 100mV, 150mV and 200mV, respectively.

Fig. 8
Fig. 8

Superimposed 50 moving differential traces with 50 averaging times at around 610 m. (a), (b), (c) and (d) were tested for the 50ns pulsed under 50mV, 100mV, 150 mV and 200mV, respectively.

Fig. 9
Fig. 9

Frequency range and SNR of location information with different offset values.(a)PZT with 50ns or 100ns modulated pulses.(b) Pencil break with 50ns or 100ns modulated pulses.

Fig. 10
Fig. 10

Spatial resolution of pencil-break detection with 50ns modulated pulses. (a) Modulated pulses with no offset level. (b) Modulated pulses with 200mV of offset level.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y= I 1 rect( x[(2N+1) τ 1 2 +N τ 2 ] τ 1 )+ I 2 rect( x[(N+1) τ 1 +(2N+1) τ 2 2 ] τ 2 )
i(t)E c 2 (t)+E r 2 (t)+2Ec(t)Er(t)cos(θ)expj(2πΔft+φ(t))

Metrics