Abstract

We demonstrate numerically that metal-insulator-metal (MIM) configurations in which the top metal layer consists of a periodic arrangement of nanobricks, thus facilitating gap-surface plasmon resonances, can be designed to function as efficient and broadband quarter-wave plates in reflection by a proper choice of geometrical parameters. Using gold as the metal, we demonstrate quarter-wave plate behavior at λ ≃ 800 nm with an operation bandwidth of 160 nm, conversion efficiency of 82%, and angle of linear polarization fixed throughout the entire bandwidth. This work also includes a detailed analytical and numerical study of the optical properties and underlying physics of structured MIM configurations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice Hall, 1993), 2nd ed.
  2. L. H. Cescato, E. Gluch, and N. Streibl, “Holographic quarterwave plates,” Appl. Opt.29, 3286–3290 (1990).
    [CrossRef] [PubMed]
  3. F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, and A. Scherer, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett.20, 2457–2459 (1995).
    [CrossRef] [PubMed]
  4. G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express5, 163–168 (1999).
    [CrossRef] [PubMed]
  5. W. Yu, A. Mizutani, H. Kikuta, and T. Konishi, “Reduced wavelength-dependent quarter-wave plate fabricated by a multilayered subwavelength structure,” Appl. Opt.45, 2601–2606 (2006).
    [CrossRef] [PubMed]
  6. S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett.95, 013105 (2009).
    [CrossRef]
  7. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101, 043902 (2008).
    [CrossRef] [PubMed]
  8. J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80, 023807 (2009).
    [CrossRef]
  9. Y. Zhao and A. Alú, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84, 205428 (2011).
    [CrossRef]
  10. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett.36, 2498–2500 (2011).
    [CrossRef] [PubMed]
  11. P. F. Chimento, N. V. Kuzmin, J. Bosman, P. F. A. Alkemade, G. W. Hooft, and E. R. Eliel, “A subwavelength slit as a quarter-wave retarder,” Opt. Express19, 24219–24227 (2011).
    [CrossRef] [PubMed]
  12. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37, 1820–1822 (2012).
    [CrossRef] [PubMed]
  13. F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101, 023101 (2012).
    [CrossRef]
  14. F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B84, 035107 (2011).
    [CrossRef]
  15. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarization by anisotropic metamaterials,” Phys. Rev. Lett.99, 063908 (2007).
    [CrossRef] [PubMed]
  16. A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett.10, 4571–4577 (2010).
    [CrossRef] [PubMed]
  17. S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys.13, 023034 (2011).
    [CrossRef]
  18. A. Pors, M. G. Nielsen, G. Della Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett.36, 1626–1628 (2011).
    [CrossRef] [PubMed]
  19. J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Greens function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B77, 245310 (2008).
    [CrossRef]
  20. M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express19, 19310–19322 (2011).
    [CrossRef] [PubMed]
  21. D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012).
    [CrossRef]
  22. D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” (2012). ArXiv:1209.0095v1.
  23. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
    [CrossRef] [PubMed]
  24. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic matematerial,” Appl. Phys. Lett.96, 251104 (2010).
    [CrossRef]
  25. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 1–7 (2011).
    [CrossRef]
  26. J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestreb, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys Lett.100, 113305 (2012).
    [CrossRef]
  27. P. Bouchon, C. Koechlin, F. Pardo, R. Haider, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37, 1038–1040 (2012).
    [CrossRef] [PubMed]
  28. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express20, 13311–13319 (2012).
    [CrossRef] [PubMed]
  29. I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett.92, 233102 (2008).
    [CrossRef]
  30. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36, 927–929 (2011).
    [CrossRef] [PubMed]
  31. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. Chem.91, 634–643 (1987).
    [CrossRef]
  32. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, Weinheim, 1983).
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  34. Y. Zhao, N. Engheta, and A. Alú, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials5, 90–96 (2011).
    [CrossRef]
  35. T. Søndergaard and S. I. Bozhevolnyi, “Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions,” Phys. Rev. B67, 165405 (2003).
    [CrossRef]
  36. G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express16, 6867–6876 (2008).
    [CrossRef] [PubMed]
  37. Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34, 244–246 (2009).
    [CrossRef] [PubMed]
  38. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express15, 10869–10877 (2007).
    [CrossRef] [PubMed]
  39. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett.30, 3198–3200 (2005).
    [CrossRef] [PubMed]
  40. W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express15, 3333–3341 (2007).
    [CrossRef] [PubMed]
  41. D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
    [CrossRef]
  42. J. M. Hao, L. Zhou, and C. T. Chan, “An effective-medium model for high-impedance surfaces,” Appl. Phys. A87, 281–284 (2007).
    [CrossRef]

2012 (6)

A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37, 1820–1822 (2012).
[CrossRef] [PubMed]

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101, 023101 (2012).
[CrossRef]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012).
[CrossRef]

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestreb, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys Lett.100, 113305 (2012).
[CrossRef]

P. Bouchon, C. Koechlin, F. Pardo, R. Haider, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37, 1038–1040 (2012).
[CrossRef] [PubMed]

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express20, 13311–13319 (2012).
[CrossRef] [PubMed]

2011 (10)

M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express19, 19310–19322 (2011).
[CrossRef] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 1–7 (2011).
[CrossRef]

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36, 927–929 (2011).
[CrossRef] [PubMed]

Y. Zhao, N. Engheta, and A. Alú, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials5, 90–96 (2011).
[CrossRef]

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B84, 035107 (2011).
[CrossRef]

S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys.13, 023034 (2011).
[CrossRef]

A. Pors, M. G. Nielsen, G. Della Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett.36, 1626–1628 (2011).
[CrossRef] [PubMed]

Y. Zhao and A. Alú, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84, 205428 (2011).
[CrossRef]

E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett.36, 2498–2500 (2011).
[CrossRef] [PubMed]

P. F. Chimento, N. V. Kuzmin, J. Bosman, P. F. A. Alkemade, G. W. Hooft, and E. R. Eliel, “A subwavelength slit as a quarter-wave retarder,” Opt. Express19, 24219–24227 (2011).
[CrossRef] [PubMed]

2010 (3)

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett.10, 4571–4577 (2010).
[CrossRef] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic matematerial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

2009 (3)

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34, 244–246 (2009).
[CrossRef] [PubMed]

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80, 023807 (2009).
[CrossRef]

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett.95, 013105 (2009).
[CrossRef]

2008 (4)

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101, 043902 (2008).
[CrossRef] [PubMed]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Greens function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B77, 245310 (2008).
[CrossRef]

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett.92, 233102 (2008).
[CrossRef]

G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express16, 6867–6876 (2008).
[CrossRef] [PubMed]

2007 (4)

J. M. Hao, L. Zhou, and C. T. Chan, “An effective-medium model for high-impedance surfaces,” Appl. Phys. A87, 281–284 (2007).
[CrossRef]

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express15, 10869–10877 (2007).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express15, 3333–3341 (2007).
[CrossRef] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarization by anisotropic metamaterials,” Phys. Rev. Lett.99, 063908 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

2003 (1)

T. Søndergaard and S. I. Bozhevolnyi, “Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions,” Phys. Rev. B67, 165405 (2003).
[CrossRef]

1999 (2)

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
[CrossRef]

G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express5, 163–168 (1999).
[CrossRef] [PubMed]

1995 (1)

1990 (1)

1987 (1)

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. Chem.91, 634–643 (1987).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Albrektsen, O.

Alexópolous, N. G.

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
[CrossRef]

Alkemade, P. F. A.

Alú, A.

Y. Zhao and A. Alú, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84, 205428 (2011).
[CrossRef]

Y. Zhao, N. Engheta, and A. Alú, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials5, 90–96 (2011).
[CrossRef]

An, Z.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80, 023807 (2009).
[CrossRef]

Andryieuski, A.

D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” (2012). ArXiv:1209.0095v1.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 1–7 (2011).
[CrossRef]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 1–7 (2011).
[CrossRef]

Baida, F. I.

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B84, 035107 (2011).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, Weinheim, 1983).

Bosman, J.

Bouchon, P.

Boutria, M.

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B84, 035107 (2011).
[CrossRef]

Bozhevolnyi, S. I.

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express20, 13311–13319 (2012).
[CrossRef] [PubMed]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012).
[CrossRef]

M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express19, 19310–19322 (2011).
[CrossRef] [PubMed]

A. Pors, M. G. Nielsen, G. Della Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett.36, 1626–1628 (2011).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys.13, 023034 (2011).
[CrossRef]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett.10, 4571–4577 (2010).
[CrossRef] [PubMed]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Greens function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B77, 245310 (2008).
[CrossRef]

G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express16, 6867–6876 (2008).
[CrossRef] [PubMed]

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express15, 10869–10877 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions,” Phys. Rev. B67, 165405 (2003).
[CrossRef]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 1–7 (2011).
[CrossRef]

Cai, W.

Cescato, L. H.

Chakrabarty, A.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101, 023101 (2012).
[CrossRef]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarization by anisotropic metamaterials,” Phys. Rev. Lett.99, 063908 (2007).
[CrossRef] [PubMed]

J. M. Hao, L. Zhou, and C. T. Chan, “An effective-medium model for high-impedance surfaces,” Appl. Phys. A87, 281–284 (2007).
[CrossRef]

Chen, Z.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80, 023807 (2009).
[CrossRef]

Cheng, C.-C.

Chettiar, U. K.

Chimento, P. F.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Chu, Y.

Crozier, K. B.

de Silva, V. C.

Deguzman, P. C.

Della Valle, G.

Desieres, Y.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestreb, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys Lett.100, 113305 (2012).
[CrossRef]

Dolling, G.

Drachev, V. P.

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101, 043902 (2008).
[CrossRef] [PubMed]

Ebbesen, T. W.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101, 043902 (2008).
[CrossRef] [PubMed]

Eliel, E. R.

Engheta, N.

Y. Zhao, N. Engheta, and A. Alú, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials5, 90–96 (2011).
[CrossRef]

Enkrich, C.

Espiau de Lamaestreb, R.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestreb, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys Lett.100, 113305 (2012).
[CrossRef]

Evlyukhin, A. B.

S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys.13, 023034 (2011).
[CrossRef]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett.10, 4571–4577 (2010).
[CrossRef] [PubMed]

Fainman, Y.

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 1–7 (2011).
[CrossRef]

Genet, C.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101, 043902 (2008).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Gluch, E.

Gramotnev, D. K.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012).
[CrossRef]

M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express19, 19310–19322 (2011).
[CrossRef] [PubMed]

Haider, R.

Hao, J.

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36, 927–929 (2011).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic matematerial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80, 023807 (2009).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarization by anisotropic metamaterials,” Phys. Rev. Lett.99, 063908 (2007).
[CrossRef] [PubMed]

Hao, J. M.

J. M. Hao, L. Zhou, and C. T. Chan, “An effective-medium model for high-impedance surfaces,” Appl. Phys. A87, 281–284 (2007).
[CrossRef]

He, Q.

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Hooft, G. W.

Hsu, S.-Y.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett.95, 013105 (2009).
[CrossRef]

Huang, X.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80, 023807 (2009).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, Weinheim, 1983).

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarization by anisotropic metamaterials,” Phys. Rev. Lett.99, 063908 (2007).
[CrossRef] [PubMed]

Jimenez Broas, R. F.

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Jung, J.

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Greens function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B77, 245310 (2008).
[CrossRef]

Khoo, E. H.

Kikuta, H.

Kildishev, A. V.

Koechlin, C.

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarization by anisotropic metamaterials,” Phys. Rev. Lett.99, 063908 (2007).
[CrossRef] [PubMed]

Konishi, T.

Kuzmin, N. V.

Lavrinenko, A. V.

D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” (2012). ArXiv:1209.0095v1.

Le Perchec, J.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestreb, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys Lett.100, 113305 (2012).
[CrossRef]

Lee, K.-L.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett.95, 013105 (2009).
[CrossRef]

Lee, M.-C.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett.95, 013105 (2009).
[CrossRef]

Li, E. P.

Lin, E.-H.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett.95, 013105 (2009).
[CrossRef]

Lin, L.

Linden, S.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic matematerial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

Malureanu, R.

D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” (2012). ArXiv:1209.0095v1.

Markovich, D. L.

D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” (2012). ArXiv:1209.0095v1.

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Minkowski, F.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101, 023101 (2012).
[CrossRef]

Mizutani, A.

Nielsen, M. G.

Nordin, G. P.

Oussaid, R.

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B84, 035107 (2011).
[CrossRef]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic matematerial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

Pardo, F.

Pedrotti, F. L.

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice Hall, 1993), 2nd ed.

Pedrotti, L. S.

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice Hall, 1993), 2nd ed.

Pelouard, J.-L.

Pors, A.

M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express20, 13311–13319 (2012).
[CrossRef] [PubMed]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012).
[CrossRef]

A. Pors, M. G. Nielsen, G. Della Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett.36, 1626–1628 (2011).
[CrossRef] [PubMed]

M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Continuous layer gap plasmon resonators,” Opt. Express19, 19310–19322 (2011).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys.13, 023034 (2011).
[CrossRef]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett.10, 4571–4577 (2010).
[CrossRef] [PubMed]

Puscasu, I.

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett.92, 233102 (2008).
[CrossRef]

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic matematerial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80, 023807 (2009).
[CrossRef]

Radko, I. P.

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett.10, 4571–4577 (2010).
[CrossRef] [PubMed]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarization by anisotropic metamaterials,” Phys. Rev. Lett.99, 063908 (2007).
[CrossRef] [PubMed]

Ren, Q.

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80, 023807 (2009).
[CrossRef]

Roberts, A.

Rochat, N.

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestreb, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys Lett.100, 113305 (2012).
[CrossRef]

Schaich, W. L.

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett.92, 233102 (2008).
[CrossRef]

Schatz, G. C.

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. Chem.91, 634–643 (1987).
[CrossRef]

Scherer, A.

Shalaev, V. M.

Sievenpiper, D.

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
[CrossRef]

Søndergaard, T.

G. Della Valle, T. Søndergaard, and S. I. Bozhevolnyi, “Plasmon-polariton nano-strip resonators: from visible to infra-red,” Opt. Express16, 6867–6876 (2008).
[CrossRef] [PubMed]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Greens function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B77, 245310 (2008).
[CrossRef]

S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express15, 10869–10877 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions,” Phys. Rev. B67, 165405 (2003).
[CrossRef]

Soukoulis, C. M.

Streibl, N.

Sun, K.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101, 023101 (2012).
[CrossRef]

Sun, P.-C.

Sun, W.

Tyan, R.-C.

Van Labeke, D.

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B84, 035107 (2011).
[CrossRef]

Wang, F.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101, 023101 (2012).
[CrossRef]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic matematerial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

Wegener, M.

Wei, P.-K.

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett.95, 013105 (2009).
[CrossRef]

Wei, Q.-H.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101, 023101 (2012).
[CrossRef]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

Willatzen, M.

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012).
[CrossRef]

S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys.13, 023034 (2011).
[CrossRef]

A. Pors, M. G. Nielsen, G. Della Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett.36, 1626–1628 (2011).
[CrossRef] [PubMed]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett.10, 4571–4577 (2010).
[CrossRef] [PubMed]

Xu, F.

Yablonovitch, E.

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
[CrossRef]

Yu, W.

Yuan, H.-K.

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarization by anisotropic metamaterials,” Phys. Rev. Lett.99, 063908 (2007).
[CrossRef] [PubMed]

Zalkovskij, M.

D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” (2012). ArXiv:1209.0095v1.

Zeman, E. J.

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. Chem.91, 634–643 (1987).
[CrossRef]

Zhang, L.

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
[CrossRef]

Zhao, Y.

Y. Zhao, N. Engheta, and A. Alú, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials5, 90–96 (2011).
[CrossRef]

Y. Zhao and A. Alú, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84, 205428 (2011).
[CrossRef]

Zhou, J. F.

Zhou, L.

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36, 927–929 (2011).
[CrossRef] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic matematerial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80, 023807 (2009).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarization by anisotropic metamaterials,” Phys. Rev. Lett.99, 063908 (2007).
[CrossRef] [PubMed]

J. M. Hao, L. Zhou, and C. T. Chan, “An effective-medium model for high-impedance surfaces,” Appl. Phys. A87, 281–284 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys Lett. (1)

J. Le Perchec, Y. Desieres, N. Rochat, and R. Espiau de Lamaestreb, “Subwavelength optical absorber with an integrated photon sorter,” Appl. Phys Lett.100, 113305 (2012).
[CrossRef]

Appl. Phys. A (1)

J. M. Hao, L. Zhou, and C. T. Chan, “An effective-medium model for high-impedance surfaces,” Appl. Phys. A87, 281–284 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic matematerial,” Appl. Phys. Lett.96, 251104 (2010).
[CrossRef]

I. Puscasu and W. L. Schaich, “Narrow-band, tunable infrared emission from arrays of microstrip patches,” Appl. Phys. Lett.92, 233102 (2008).
[CrossRef]

S.-Y. Hsu, K.-L. Lee, E.-H. Lin, M.-C. Lee, and P.-K. Wei, “Giant birefringence induced by plasmonic nanoslit arrays,” Appl. Phys. Lett.95, 013105 (2009).
[CrossRef]

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101, 023101 (2012).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alexópolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech.47, 2059–2074 (1999).
[CrossRef]

J. Phys. Chem. (1)

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd,” J. Phys. Chem.91, 634–643 (1987).
[CrossRef]

Metamaterials (1)

Y. Zhao, N. Engheta, and A. Alú, “Homogenization of plasmonic metasurfaces modeled as transmission-line loads,” Metamaterials5, 90–96 (2011).
[CrossRef]

Nano Lett. (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10, 2342–2348 (2010).
[CrossRef] [PubMed]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. Pors, M. G. Nielsen, I. P. Radko, M. Willatzen, and O. Albrektsen, “Detuned electrical dipoles for plasmonic sensing,” Nano Lett.10, 4571–4577 (2010).
[CrossRef] [PubMed]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 1–7 (2011).
[CrossRef]

New J. Phys. (1)

S. I. Bozhevolnyi, A. B. Evlyukhin, A. Pors, M. G. Nielsen, M. Willatzen, and O. Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys.13, 023034 (2011).
[CrossRef]

Opt. Express (7)

Opt. Lett. (8)

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett.30, 3198–3200 (2005).
[CrossRef] [PubMed]

Y. Chu and K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett.34, 244–246 (2009).
[CrossRef] [PubMed]

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36, 927–929 (2011).
[CrossRef] [PubMed]

E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett.36, 2498–2500 (2011).
[CrossRef] [PubMed]

P. Bouchon, C. Koechlin, F. Pardo, R. Haider, and J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37, 1038–1040 (2012).
[CrossRef] [PubMed]

F. Xu, R.-C. Tyan, P.-C. Sun, Y. Fainman, C.-C. Cheng, and A. Scherer, “Fabrication, modeling, and characterization of form-birefringent nanostructures,” Opt. Lett.20, 2457–2459 (1995).
[CrossRef] [PubMed]

A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37, 1820–1822 (2012).
[CrossRef] [PubMed]

A. Pors, M. G. Nielsen, G. Della Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett.36, 1626–1628 (2011).
[CrossRef] [PubMed]

Phys. Rev. A (1)

J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80, 023807 (2009).
[CrossRef]

Phys. Rev. B (6)

Y. Zhao and A. Alú, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84, 205428 (2011).
[CrossRef]

J. Jung, T. Søndergaard, and S. I. Bozhevolnyi, “Greens function surface integral equation method for theoretical analysis of scatterers close to a metal interface,” Phys. Rev. B77, 245310 (2008).
[CrossRef]

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B84, 035107 (2011).
[CrossRef]

D. K. Gramotnev, A. Pors, M. Willatzen, and S. I. Bozhevolnyi, “Gap-plasmon nanoantennas and bowtie resonators,” Phys. Rev. B85, 045434 (2012).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Vectorial model for multiple scattering by surface nanoparticles via surface polariton-to-polariton interactions,” Phys. Rev. B67, 165405 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarization by anisotropic metamaterials,” Phys. Rev. Lett.99, 063908 (2007).
[CrossRef] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101, 043902 (2008).
[CrossRef] [PubMed]

Other (3)

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Prentice Hall, 1993), 2nd ed.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, Weinheim, 1983).

D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” (2012). ArXiv:1209.0095v1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Sketch of a three-medium system with a metasurface positioned at the interface between medium 1 and 2. The incident plane wave propagates normal to the interfaces in the z-direction with polarization along the major axis of the prolate spheroids. The reflection coefficient in Eq. (4) corresponds to ‘r’ in the drawing. (b) Amplitude and (c) phase of the reflection coefficient for three different cases: (I) No metasurface and medium 3 is assumed to be gold [equivalent to Z3 = ZAu and αii = 0 in Eq. (4)], (II) Structured MIM configuration with medium 3 as gold [equivalent to Z3 = ZAu in Eq. (4)], (III) Metasurface in homogeneous surroundings [equivalent to Z3 = ZAir in Eq. (4)]. The other parameters are: medium 1 and 2 are assumed to be air, the prolate gold spheroids have major and minor axes 71 nm and 12 nm, respectively, the period is Λ = 230 nm, thickness of medium 2 is ts = 150 nm, and the gold permittivity is described by interpolated experimental data [33].

Fig. 2
Fig. 2

(a) Resonance wavelength λres as a function of the strip width w for the continuous-layer GSP resonator depicted in the inset. In the calculations, the metal strip and substrate are assumed to be gold and the spacer is SiO2 with refractive index ns = 1.45. The height of the strip is h = 50 nm. (b) Sketch of the structured MIM unit cell used in the design of a quarter-wave plate in reflection. The metal parts are assumed to be gold, the spacer is SiO2, and the upper dielectric is air. In this work, the nanobrick dimensions are fixed at t = 50 nm, Lx = 138 nm, Ly = 105 nm, and the corners are rounded with a radius of 5 nm.

Fig. 3
Fig. 3

Reflection as a function of wavelength and unit cell period for the nanobrick MIM configuration in Fig. 2(b). The nanobrick parameters are t = 50 nm, Lx = 138 nm, Ly = 105 nm, and the incident wave is normal to the surface and x-polarized. Green dashed curve, excitation wavelength of (1,0) SPP; Blue dashed-dotted curve, excitation wavelength of (1,1) SPP; magenta dotted curve, resonance wavelength of GSP mode for isolated structure (Λ → ∞). (a) ts = 20 nm, (b) ts = 50 nm.

Fig. 4
Fig. 4

(a)–(c) Magnitude of the H-field relative to H-field of the incident wave in the xz-plane. (d)–(f) The dominant Hy-component relative to the H-field of the incident wave in the xy-plane in the center of the spacer (the images display the entire unit cell). (a,d) GSP mode at λ = 840 nm, (b,e) (1,0) SPP mode at λ = 700 nm, (c,f) (1,1) SPP mode at λ = 606 nm. The nontrivial parameters are ts = 50 nm and Λ = 700 nm.

Fig. 5
Fig. 5

(a) Reflection coefficients for normal incident x- and y-polarized light for the nanobrick MIM configuration in Fig. 2(b) with ts = 50 nm and Λ = 240 nm. Here, ΔΦ = arg(rxx/ryy). (b) Reflectance and absorption for normal incident circularly-polarized light. The cyan-shaded area depicts the operation bandwidth. (c) Degree and angle of linear polarization (DoLP and AoLP, respectively) for normal incident left and right circularly polarized light (LCP and RCP, respectively). AoLP is measured from the x-axis.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α i i = α i i 0 1 i k 3 6 π α i i 0 k 2 4 π a i i α i i 0 ,
z ^ × ( E 1 E 2 ) = 0 , z ^ × ( H 1 H 2 ) = K s ,
K s = i ω α ¯ ¯ eff Λ 2 ( z ^ × E 1 ) .
r i i ( ω ) = e i k 0 n 2 2 t s [ 1 i Λ 2 ( Z 1 + Z 2 ) α i i eff ω Z 1 Z 2 ] Z 2 Z 3 Z 2 + Z 3 1 i Λ 2 ( Z 1 Z 2 ) α i i eff ω Z 1 Z 2 e i k 0 n 2 2 t s [ 1 i Λ 2 ( Z 1 Z 2 ) α i i eff ω Z 1 Z 2 ] Z 2 Z 3 Z 2 + Z 3 1 i Λ 2 ( Z 1 + Z 2 ) α i i eff ω Z 1 Z 2 ,

Metrics