Abstract

Abstract: We experimentally demonstrate broadband terahertz (THz) pulse propagation through hollow core fibers with two or four embedded Indium wires in a THz time-domain spectroscopy (THz-TDS) setup. The hybrid mode is guided in the air core region with power attenuation coefficients of 0.3 cm−1 and 0.5 cm−1 for the two-wire and four-wire configurations, respectively.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
    [CrossRef] [PubMed]
  2. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express11(20), 2549–2554 (2003).
    [CrossRef] [PubMed]
  3. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000).
    [CrossRef]
  4. L.-J. Chen, H.-W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  5. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett.76(15), 1987–1989 (2000).
    [CrossRef]
  6. C. Ponseca, E. Estacio, R. Pobre, G. Diwa, G. de los Reyes, S. Ono, H. Murakami, N. Sarukura, K. Aosaki, Y. Sakane, H. Sato, A. Argyros, and M. C. J. Large, “Transmission characteristics of lens-duct and photonic crystal waveguides in the terahertz region,” J. Opt. Soc. Am. B26(9), A95–A100 (2009).
    [CrossRef]
  7. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express17(10), 8592–8601 (2009).
    [CrossRef] [PubMed]
  8. J. Anthony, R. Leonhardt, A. Argyros, and M. C. J. Large, “Characterization of a microstructured Zeonex terahertz fiber,” J. Opt. Soc. Am. B28(5), 1013–1018 (2011).
    [CrossRef]
  9. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett.24(20), 1431–1433 (1999).
    [CrossRef] [PubMed]
  10. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express18(3), 1898–1903 (2010).
    [CrossRef] [PubMed]
  11. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001).
    [CrossRef] [PubMed]
  12. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett.33(9), 902–904 (2008).
    [CrossRef] [PubMed]
  13. A. Dupuis, K. Stoeffler, B. Ung, C. Dubois, and M. Skorobogatiy, “Transmission measurements of hollow-core THz Bragg fibers,” J. Opt. Soc. Am. B28(4), 896–907 (2011).
    [CrossRef]
  14. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, “THz propagation in kagome hollow-core microstructured fibers,” Opt. Express19(19), 18470–18478 (2011).
    [CrossRef] [PubMed]
  15. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  16. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88(6), 061113 (2006).
    [CrossRef]
  17. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express17(17), 14839–14850 (2009).
    [CrossRef] [PubMed]
  18. M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express13(26), 10815–10822 (2005).
    [CrossRef] [PubMed]
  19. M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett.95(23), 233506 (2009).
    [CrossRef]
  20. D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett.97(13), 133502 (2010).
    [CrossRef]
  21. A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett.96(19), 191101 (2010).
    [CrossRef]
  22. Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express16(20), 15991–15998 (2008).
    [CrossRef] [PubMed]
  23. MODE Solutions, www.lumerical.com .
  24. R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B8(6), 2426–2432 (1973).
    [CrossRef]
  25. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow core and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).
  26. D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B12(10), 4036–4046 (1975).
    [CrossRef]
  27. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B26(9), A6–A13 (2009).
    [CrossRef]
  28. J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides: mathematical theory,” Bell Syst. Tech. J.15, 310–333 (1936).
  29. L. J. Chu and W. L. Barrow, “Electromagnetic waves in hollow metal tubes or rectangular cross section,” Proc. I.R.E. 26, 1520–1555 (1938).
  30. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000).
    [CrossRef]

2011

2010

O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express18(3), 1898–1903 (2010).
[CrossRef] [PubMed]

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett.97(13), 133502 (2010).
[CrossRef]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett.96(19), 191101 (2010).
[CrossRef]

2009

2008

2006

L.-J. Chen, H.-W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett.31(3), 308–310 (2006).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88(6), 061113 (2006).
[CrossRef]

2005

2004

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

2003

2001

2000

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett.76(15), 1987–1989 (2000).
[CrossRef]

1999

1975

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B12(10), 4036–4046 (1975).
[CrossRef]

1973

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B8(6), 2426–2432 (1973).
[CrossRef]

1964

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow core and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).

1936

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides: mathematical theory,” Bell Syst. Tech. J.15, 310–333 (1936).

Adam, A. J.

Anthony, J.

Aosaki, K.

Argyros, A.

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Bang, O.

Carson, J. R.

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides: mathematical theory,” Bell Syst. Tech. J.15, 310–333 (1936).

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Chen, H.-W.

Chen, L.-J.

Chen, Z.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett.97(13), 133502 (2010).
[CrossRef]

de los Reyes, G.

Diwa, G.

Dubois, C.

Dupuis, A.

Estacio, E.

Fleming, S. C.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett.96(19), 191101 (2010).
[CrossRef]

Gallot, G.

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Grischkowsky, D.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88(6), 061113 (2006).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett.26(11), 846–848 (2001).
[CrossRef] [PubMed]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett.76(15), 1987–1989 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett.24(20), 1431–1433 (1999).
[CrossRef] [PubMed]

Guo, X.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett.97(13), 133502 (2010).
[CrossRef]

Harrington, J. A.

Inoue, H.

Jamison, S. P.

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B17(5), 851–863 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett.76(15), 1987–1989 (2000).
[CrossRef]

Jeon, T.-I.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88(6), 061113 (2006).
[CrossRef]

Jepsen, P. U.

Kao, T. F.

Kawase, K.

Koyama, R. Y.

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B8(6), 2426–2432 (1973).
[CrossRef]

Kuhlmey, B. T.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett.96(19), 191101 (2010).
[CrossRef]

Kurz, H.

Large, M. C.

Large, M. C. J.

Leonhardt, R.

Leon-Saval, S. G.

Li, S.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett.97(13), 133502 (2010).
[CrossRef]

Lo, Y. H.

Lu, J. Y.

Lwin, R.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett.96(19), 191101 (2010).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow core and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).

Mbonye, M.

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett.95(23), 233506 (2009).
[CrossRef]

McGowan, R. W.

Mead, S. P.

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides: mathematical theory,” Bell Syst. Tech. J.15, 310–333 (1936).

Mendis, R.

Mills, D. L.

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B12(10), 4036–4046 (1975).
[CrossRef]

Mitrofanov, O.

Mittleman, D. M.

Murakami, H.

Nagel, M.

Nielsen, K.

Ogawa, Y.

Ono, S.

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Planken, P. C.

Pobre, R.

Ponseca, C.

Ponseca, C. S.

Rasmussen, H. K.

Sakane, Y.

Sarukura, N.

Sato, H.

Schelkunoff, S. A.

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides: mathematical theory,” Bell Syst. Tech. J.15, 310–333 (1936).

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow core and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).

Skorobogatiy, M.

Smith, N. V.

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B8(6), 2426–2432 (1973).
[CrossRef]

Spicer, W. E.

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B8(6), 2426–2432 (1973).
[CrossRef]

Stoeffler, K.

Sun, C. K.

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Tian, D.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett.97(13), 133502 (2010).
[CrossRef]

Tuniz, A.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett.96(19), 191101 (2010).
[CrossRef]

Ung, B.

van Eijkelenborg, M. A.

Wächter, M.

Wang, A.

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett.96(19), 191101 (2010).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Wang, Z.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett.97(13), 133502 (2010).
[CrossRef]

Watanabe, Y.

Wen, Q.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett.97(13), 133502 (2010).
[CrossRef]

Zhang, H.

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett.97(13), 133502 (2010).
[CrossRef]

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett.76(15), 1987–1989 (2000).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett.88(6), 061113 (2006).
[CrossRef]

M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett.95(23), 233506 (2009).
[CrossRef]

D. Tian, H. Zhang, Q. Wen, Z. Wang, S. Li, Z. Chen, and X. Guo, “Dual cylindrical metallic grating-cladding polymer hollow waveguide for terahertz transmission with low loss,” Appl. Phys. Lett.97(13), 133502 (2010).
[CrossRef]

A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, and S. C. Fleming, “Drawn metamaterials with plasmonic response at terahertz frequencies,” Appl. Phys. Lett.96(19), 191101 (2010).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow core and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).

J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyper-frequency wave guides: mathematical theory,” Bell Syst. Tech. J.15, 310–333 (1936).

J. Appl. Phys.

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys.88(7), 4449–4451 (2000).
[CrossRef]

J. Opt. Soc. Am. B

Nature

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature444(7119), 597–600 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

D. L. Mills, “Attenuation of surface polaritons by surface roughness,” Phys. Rev. B12(10), 4036–4046 (1975).
[CrossRef]

R. Y. Koyama, N. V. Smith, and W. E. Spicer, “Optical properties of indium,” Phys. Rev. B8(6), 2426–2432 (1973).
[CrossRef]

Other

L. J. Chu and W. L. Barrow, “Electromagnetic waves in hollow metal tubes or rectangular cross section,” Proc. I.R.E. 26, 1520–1555 (1938).

MODE Solutions, www.lumerical.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of THz-TDS setup using photoconductive antennas as a THz emitter and a THz detector to characterize the fibers. The THz emission is modulated with 40V amplitude at 28 kHz. The THz electric field direction is out of the page. (b) Micrograph of the fabricated two-wire fiber sample with core diameter of about 2 mm. The indium wires are located at the left- and right-hand side of the hollow core and are seen as optically silvertone in this micrograph. The four-wire fiber samples have all cladding holes filled with Indium.

Fig. 2
Fig. 2

Measured temporal signals through several lengths of (a) two-wire and (b) four wire fibers. Inset in (a) is the input reference pulse. Vertical dashed cyan lines indicate the position of the amplitude peak, to highlight time delays from 1 to 2 ps for the different fiber lengths. All temporal signals through the fibers are on the same scale. (c) The calculated group index for the fibers shows a group index is close to that of air (n = 1.0).

Fig. 3
Fig. 3

Experimentally observed mode field intensity (normalized, linear plot) at 0.8 THz from a 5 cm length of (a) two-wire and (b) four-wire fiber. In the two-wire fiber in (a) the metal wires are aligned in the x-direction. The white vectors show the simulation results of magnitude and direction of the mode electric-field components obtained from MODE. The mode simulation plots at 1.2 THz for (c) Hz and (d) Ez components for the two-wire fiber show the hybrid mode characteristics, having non-zero longitudinal components. The simulated mode at (e) 0.65 THz and (f) 1.2 THz for the two-wire fiber shows some energy leaked into the cladding holes for the lower frequency, compared to the near-round shape at higher frequency. In all (c-f) plots, the color map is linear and the metal is in the left and right side of the hollow core. (g) The full-width-half-maximum (FWHM) of the modes as calculated from the simulations for the two-wire (blue) and four-wire (red-filled triangle) fibers. The FWHM experimental data are obtained from the mode scan of the two-wire (black-hollow square and black-filled circle) and the four-wire (black-hollow triangle) configurations. The FWHM for the four-wire configuration has one-standard deviation (black vertical line). The average FWHM for the two-wire configuration is calculated separately along the axes with and without wires.

Fig. 4
Fig. 4

Loss coefficients as measured (grey) and as simulated (red line) for (a) two-wire and (b) four-wire fibers. The plotted vertical thin (grey) lines represent one standard deviation of measurement values. The green regions in both plots indicate the frequencies where the simulations gave no solutions to the eigenvalue problem formulation employed by MODE.

Fig. 5
Fig. 5

Normalized transmission spectrum of 8 cm two-wire fiber with different wire plane orientation with respect to the electric field polarization as indicated. The indium wires are depicted as the grey ellipses, while the air region is the filled white space. The grey area indicates the noise floor of the measurement.

Fig. 6
Fig. 6

Phase refractive indices as measured (grey) and as simulated (red line) for (a) two-wire and (b) four-wire fibers. The vertical lines indicate one standard deviation of the measured data. The green regions in both plots indicate the frequencies where the simulations gave no solutions to the eigenvalue problem formulation employed by MODE.

Fig. 7
Fig. 7

The group velocity dispersion (GVD) parameter determined from the measured data (grey) and the as calculated from the simulation (red line) for (a) two-wire and (b) four-wire fibers. The green regions in both plots indicate the frequencies for which the simulations give no solutions to the eigenvalue problem formulation employed by MODE.

Metrics